The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991 Regents of the University of California.
    5  * All rights reserved.
    6  * Copyright (c) 1994 John S. Dyson
    7  * All rights reserved.
    8  * Copyright (c) 1994 David Greenman
    9  * All rights reserved.
   10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
   11  * All rights reserved.
   12  *
   13  * This code is derived from software contributed to Berkeley by
   14  * The Mach Operating System project at Carnegie-Mellon University.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 3. All advertising materials mentioning features or use of this software
   25  *    must display the following acknowledgement:
   26  *      This product includes software developed by the University of
   27  *      California, Berkeley and its contributors.
   28  * 4. Neither the name of the University nor the names of its contributors
   29  *    may be used to endorse or promote products derived from this software
   30  *    without specific prior written permission.
   31  *
   32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   42  * SUCH DAMAGE.
   43  *
   44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   45  *
   46  *
   47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   48  * All rights reserved.
   49  *
   50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   51  *
   52  * Permission to use, copy, modify and distribute this software and
   53  * its documentation is hereby granted, provided that both the copyright
   54  * notice and this permission notice appear in all copies of the
   55  * software, derivative works or modified versions, and any portions
   56  * thereof, and that both notices appear in supporting documentation.
   57  *
   58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   61  *
   62  * Carnegie Mellon requests users of this software to return to
   63  *
   64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   65  *  School of Computer Science
   66  *  Carnegie Mellon University
   67  *  Pittsburgh PA 15213-3890
   68  *
   69  * any improvements or extensions that they make and grant Carnegie the
   70  * rights to redistribute these changes.
   71  */
   72 
   73 /*
   74  *      The proverbial page-out daemon.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD$");
   79 
   80 #include "opt_vm.h"
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/kernel.h>
   85 #include <sys/blockcount.h>
   86 #include <sys/eventhandler.h>
   87 #include <sys/lock.h>
   88 #include <sys/mutex.h>
   89 #include <sys/proc.h>
   90 #include <sys/kthread.h>
   91 #include <sys/ktr.h>
   92 #include <sys/mount.h>
   93 #include <sys/racct.h>
   94 #include <sys/resourcevar.h>
   95 #include <sys/sched.h>
   96 #include <sys/sdt.h>
   97 #include <sys/signalvar.h>
   98 #include <sys/smp.h>
   99 #include <sys/time.h>
  100 #include <sys/vnode.h>
  101 #include <sys/vmmeter.h>
  102 #include <sys/rwlock.h>
  103 #include <sys/sx.h>
  104 #include <sys/sysctl.h>
  105 
  106 #include <vm/vm.h>
  107 #include <vm/vm_param.h>
  108 #include <vm/vm_object.h>
  109 #include <vm/vm_page.h>
  110 #include <vm/vm_map.h>
  111 #include <vm/vm_pageout.h>
  112 #include <vm/vm_pager.h>
  113 #include <vm/vm_phys.h>
  114 #include <vm/vm_pagequeue.h>
  115 #include <vm/swap_pager.h>
  116 #include <vm/vm_extern.h>
  117 #include <vm/uma.h>
  118 
  119 /*
  120  * System initialization
  121  */
  122 
  123 /* the kernel process "vm_pageout"*/
  124 static void vm_pageout(void);
  125 static void vm_pageout_init(void);
  126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
  127 static int vm_pageout_cluster(vm_page_t m);
  128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
  129     int starting_page_shortage);
  130 
  131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
  132     NULL);
  133 
  134 struct proc *pageproc;
  135 
  136 static struct kproc_desc page_kp = {
  137         "pagedaemon",
  138         vm_pageout,
  139         &pageproc
  140 };
  141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
  142     &page_kp);
  143 
  144 SDT_PROVIDER_DEFINE(vm);
  145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
  146 
  147 /* Pagedaemon activity rates, in subdivisions of one second. */
  148 #define VM_LAUNDER_RATE         10
  149 #define VM_INACT_SCAN_RATE      10
  150 
  151 static int swapdev_enabled;
  152 int vm_pageout_page_count = 32;
  153 
  154 static int vm_panic_on_oom = 0;
  155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
  156     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
  157     "Panic on the given number of out-of-memory errors instead of "
  158     "killing the largest process");
  159 
  160 static int vm_pageout_update_period;
  161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
  162     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
  163     "Maximum active LRU update period");
  164 
  165 static int pageout_cpus_per_thread = 16;
  166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
  167     &pageout_cpus_per_thread, 0,
  168     "Number of CPUs per pagedaemon worker thread");
  169   
  170 static int lowmem_period = 10;
  171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
  172     "Low memory callback period");
  173 
  174 static int disable_swap_pageouts;
  175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  176     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
  177     "Disallow swapout of dirty pages");
  178 
  179 static int pageout_lock_miss;
  180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  181     CTLFLAG_RD, &pageout_lock_miss, 0,
  182     "vget() lock misses during pageout");
  183 
  184 static int vm_pageout_oom_seq = 12;
  185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
  186     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
  187     "back-to-back calls to oom detector to start OOM");
  188 
  189 static int act_scan_laundry_weight = 3;
  190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
  191     &act_scan_laundry_weight, 0,
  192     "weight given to clean vs. dirty pages in active queue scans");
  193 
  194 static u_int vm_background_launder_rate = 4096;
  195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
  196     &vm_background_launder_rate, 0,
  197     "background laundering rate, in kilobytes per second");
  198 
  199 static u_int vm_background_launder_max = 20 * 1024;
  200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
  201     &vm_background_launder_max, 0,
  202     "background laundering cap, in kilobytes");
  203 
  204 u_long vm_page_max_user_wired;
  205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
  206     &vm_page_max_user_wired, 0,
  207     "system-wide limit to user-wired page count");
  208 
  209 static u_int isqrt(u_int num);
  210 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
  211     bool in_shortfall);
  212 static void vm_pageout_laundry_worker(void *arg);
  213 
  214 struct scan_state {
  215         struct vm_batchqueue bq;
  216         struct vm_pagequeue *pq;
  217         vm_page_t       marker;
  218         int             maxscan;
  219         int             scanned;
  220 };
  221 
  222 static void
  223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
  224     vm_page_t marker, vm_page_t after, int maxscan)
  225 {
  226 
  227         vm_pagequeue_assert_locked(pq);
  228         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
  229             ("marker %p already enqueued", marker));
  230 
  231         if (after == NULL)
  232                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
  233         else
  234                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
  235         vm_page_aflag_set(marker, PGA_ENQUEUED);
  236 
  237         vm_batchqueue_init(&ss->bq);
  238         ss->pq = pq;
  239         ss->marker = marker;
  240         ss->maxscan = maxscan;
  241         ss->scanned = 0;
  242         vm_pagequeue_unlock(pq);
  243 }
  244 
  245 static void
  246 vm_pageout_end_scan(struct scan_state *ss)
  247 {
  248         struct vm_pagequeue *pq;
  249 
  250         pq = ss->pq;
  251         vm_pagequeue_assert_locked(pq);
  252         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
  253             ("marker %p not enqueued", ss->marker));
  254 
  255         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
  256         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
  257         pq->pq_pdpages += ss->scanned;
  258 }
  259 
  260 /*
  261  * Add a small number of queued pages to a batch queue for later processing
  262  * without the corresponding queue lock held.  The caller must have enqueued a
  263  * marker page at the desired start point for the scan.  Pages will be
  264  * physically dequeued if the caller so requests.  Otherwise, the returned
  265  * batch may contain marker pages, and it is up to the caller to handle them.
  266  *
  267  * When processing the batch queue, vm_pageout_defer() must be used to
  268  * determine whether the page has been logically dequeued since the batch was
  269  * collected.
  270  */
  271 static __always_inline void
  272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
  273 {
  274         struct vm_pagequeue *pq;
  275         vm_page_t m, marker, n;
  276 
  277         marker = ss->marker;
  278         pq = ss->pq;
  279 
  280         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
  281             ("marker %p not enqueued", ss->marker));
  282 
  283         vm_pagequeue_lock(pq);
  284         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
  285             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
  286             m = n, ss->scanned++) {
  287                 n = TAILQ_NEXT(m, plinks.q);
  288                 if ((m->flags & PG_MARKER) == 0) {
  289                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
  290                             ("page %p not enqueued", m));
  291                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
  292                             ("Fictitious page %p cannot be in page queue", m));
  293                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
  294                             ("Unmanaged page %p cannot be in page queue", m));
  295                 } else if (dequeue)
  296                         continue;
  297 
  298                 (void)vm_batchqueue_insert(&ss->bq, m);
  299                 if (dequeue) {
  300                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
  301                         vm_page_aflag_clear(m, PGA_ENQUEUED);
  302                 }
  303         }
  304         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
  305         if (__predict_true(m != NULL))
  306                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
  307         else
  308                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
  309         if (dequeue)
  310                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
  311         vm_pagequeue_unlock(pq);
  312 }
  313 
  314 /*
  315  * Return the next page to be scanned, or NULL if the scan is complete.
  316  */
  317 static __always_inline vm_page_t
  318 vm_pageout_next(struct scan_state *ss, const bool dequeue)
  319 {
  320 
  321         if (ss->bq.bq_cnt == 0)
  322                 vm_pageout_collect_batch(ss, dequeue);
  323         return (vm_batchqueue_pop(&ss->bq));
  324 }
  325 
  326 /*
  327  * Determine whether processing of a page should be deferred and ensure that any
  328  * outstanding queue operations are processed.
  329  */
  330 static __always_inline bool
  331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
  332 {
  333         vm_page_astate_t as;
  334 
  335         as = vm_page_astate_load(m);
  336         if (__predict_false(as.queue != queue ||
  337             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
  338                 return (true);
  339         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
  340                 vm_page_pqbatch_submit(m, queue);
  341                 return (true);
  342         }
  343         return (false);
  344 }
  345 
  346 /*
  347  * Scan for pages at adjacent offsets within the given page's object that are
  348  * eligible for laundering, form a cluster of these pages and the given page,
  349  * and launder that cluster.
  350  */
  351 static int
  352 vm_pageout_cluster(vm_page_t m)
  353 {
  354         vm_object_t object;
  355         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
  356         vm_pindex_t pindex;
  357         int ib, is, page_base, pageout_count;
  358 
  359         object = m->object;
  360         VM_OBJECT_ASSERT_WLOCKED(object);
  361         pindex = m->pindex;
  362 
  363         vm_page_assert_xbusied(m);
  364 
  365         mc[vm_pageout_page_count] = pb = ps = m;
  366         pageout_count = 1;
  367         page_base = vm_pageout_page_count;
  368         ib = 1;
  369         is = 1;
  370 
  371         /*
  372          * We can cluster only if the page is not clean, busy, or held, and
  373          * the page is in the laundry queue.
  374          *
  375          * During heavy mmap/modification loads the pageout
  376          * daemon can really fragment the underlying file
  377          * due to flushing pages out of order and not trying to
  378          * align the clusters (which leaves sporadic out-of-order
  379          * holes).  To solve this problem we do the reverse scan
  380          * first and attempt to align our cluster, then do a 
  381          * forward scan if room remains.
  382          */
  383 more:
  384         while (ib != 0 && pageout_count < vm_pageout_page_count) {
  385                 if (ib > pindex) {
  386                         ib = 0;
  387                         break;
  388                 }
  389                 if ((p = vm_page_prev(pb)) == NULL ||
  390                     vm_page_tryxbusy(p) == 0) {
  391                         ib = 0;
  392                         break;
  393                 }
  394                 if (vm_page_wired(p)) {
  395                         ib = 0;
  396                         vm_page_xunbusy(p);
  397                         break;
  398                 }
  399                 vm_page_test_dirty(p);
  400                 if (p->dirty == 0) {
  401                         ib = 0;
  402                         vm_page_xunbusy(p);
  403                         break;
  404                 }
  405                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
  406                         vm_page_xunbusy(p);
  407                         ib = 0;
  408                         break;
  409                 }
  410                 mc[--page_base] = pb = p;
  411                 ++pageout_count;
  412                 ++ib;
  413 
  414                 /*
  415                  * We are at an alignment boundary.  Stop here, and switch
  416                  * directions.  Do not clear ib.
  417                  */
  418                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  419                         break;
  420         }
  421         while (pageout_count < vm_pageout_page_count && 
  422             pindex + is < object->size) {
  423                 if ((p = vm_page_next(ps)) == NULL ||
  424                     vm_page_tryxbusy(p) == 0)
  425                         break;
  426                 if (vm_page_wired(p)) {
  427                         vm_page_xunbusy(p);
  428                         break;
  429                 }
  430                 vm_page_test_dirty(p);
  431                 if (p->dirty == 0) {
  432                         vm_page_xunbusy(p);
  433                         break;
  434                 }
  435                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
  436                         vm_page_xunbusy(p);
  437                         break;
  438                 }
  439                 mc[page_base + pageout_count] = ps = p;
  440                 ++pageout_count;
  441                 ++is;
  442         }
  443 
  444         /*
  445          * If we exhausted our forward scan, continue with the reverse scan
  446          * when possible, even past an alignment boundary.  This catches
  447          * boundary conditions.
  448          */
  449         if (ib != 0 && pageout_count < vm_pageout_page_count)
  450                 goto more;
  451 
  452         return (vm_pageout_flush(&mc[page_base], pageout_count,
  453             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
  454 }
  455 
  456 /*
  457  * vm_pageout_flush() - launder the given pages
  458  *
  459  *      The given pages are laundered.  Note that we setup for the start of
  460  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  461  *      reference count all in here rather then in the parent.  If we want
  462  *      the parent to do more sophisticated things we may have to change
  463  *      the ordering.
  464  *
  465  *      Returned runlen is the count of pages between mreq and first
  466  *      page after mreq with status VM_PAGER_AGAIN.
  467  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  468  *      for any page in runlen set.
  469  */
  470 int
  471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  472     boolean_t *eio)
  473 {
  474         vm_object_t object = mc[0]->object;
  475         int pageout_status[count];
  476         int numpagedout = 0;
  477         int i, runlen;
  478 
  479         VM_OBJECT_ASSERT_WLOCKED(object);
  480 
  481         /*
  482          * Initiate I/O.  Mark the pages shared busy and verify that they're
  483          * valid and read-only.
  484          *
  485          * We do not have to fixup the clean/dirty bits here... we can
  486          * allow the pager to do it after the I/O completes.
  487          *
  488          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  489          * edge case with file fragments.
  490          */
  491         for (i = 0; i < count; i++) {
  492                 KASSERT(vm_page_all_valid(mc[i]),
  493                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  494                         mc[i], i, count));
  495                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
  496                     ("vm_pageout_flush: writeable page %p", mc[i]));
  497                 vm_page_busy_downgrade(mc[i]);
  498         }
  499         vm_object_pip_add(object, count);
  500 
  501         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  502 
  503         runlen = count - mreq;
  504         if (eio != NULL)
  505                 *eio = FALSE;
  506         for (i = 0; i < count; i++) {
  507                 vm_page_t mt = mc[i];
  508 
  509                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  510                     !pmap_page_is_write_mapped(mt),
  511                     ("vm_pageout_flush: page %p is not write protected", mt));
  512                 switch (pageout_status[i]) {
  513                 case VM_PAGER_OK:
  514                         /*
  515                          * The page may have moved since laundering started, in
  516                          * which case it should be left alone.
  517                          */
  518                         if (vm_page_in_laundry(mt))
  519                                 vm_page_deactivate_noreuse(mt);
  520                         /* FALLTHROUGH */
  521                 case VM_PAGER_PEND:
  522                         numpagedout++;
  523                         break;
  524                 case VM_PAGER_BAD:
  525                         /*
  526                          * The page is outside the object's range.  We pretend
  527                          * that the page out worked and clean the page, so the
  528                          * changes will be lost if the page is reclaimed by
  529                          * the page daemon.
  530                          */
  531                         vm_page_undirty(mt);
  532                         if (vm_page_in_laundry(mt))
  533                                 vm_page_deactivate_noreuse(mt);
  534                         break;
  535                 case VM_PAGER_ERROR:
  536                 case VM_PAGER_FAIL:
  537                         /*
  538                          * If the page couldn't be paged out to swap because the
  539                          * pager wasn't able to find space, place the page in
  540                          * the PQ_UNSWAPPABLE holding queue.  This is an
  541                          * optimization that prevents the page daemon from
  542                          * wasting CPU cycles on pages that cannot be reclaimed
  543                          * because no swap device is configured.
  544                          *
  545                          * Otherwise, reactivate the page so that it doesn't
  546                          * clog the laundry and inactive queues.  (We will try
  547                          * paging it out again later.)
  548                          */
  549                         if ((object->flags & OBJ_SWAP) != 0 &&
  550                             pageout_status[i] == VM_PAGER_FAIL) {
  551                                 vm_page_unswappable(mt);
  552                                 numpagedout++;
  553                         } else
  554                                 vm_page_activate(mt);
  555                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  556                                 *eio = TRUE;
  557                         break;
  558                 case VM_PAGER_AGAIN:
  559                         if (i >= mreq && i - mreq < runlen)
  560                                 runlen = i - mreq;
  561                         break;
  562                 }
  563 
  564                 /*
  565                  * If the operation is still going, leave the page busy to
  566                  * block all other accesses. Also, leave the paging in
  567                  * progress indicator set so that we don't attempt an object
  568                  * collapse.
  569                  */
  570                 if (pageout_status[i] != VM_PAGER_PEND) {
  571                         vm_object_pip_wakeup(object);
  572                         vm_page_sunbusy(mt);
  573                 }
  574         }
  575         if (prunlen != NULL)
  576                 *prunlen = runlen;
  577         return (numpagedout);
  578 }
  579 
  580 static void
  581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
  582 {
  583 
  584         atomic_store_rel_int(&swapdev_enabled, 1);
  585 }
  586 
  587 static void
  588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
  589 {
  590 
  591         if (swap_pager_nswapdev() == 1)
  592                 atomic_store_rel_int(&swapdev_enabled, 0);
  593 }
  594 
  595 /*
  596  * Attempt to acquire all of the necessary locks to launder a page and
  597  * then call through the clustering layer to PUTPAGES.  Wait a short
  598  * time for a vnode lock.
  599  *
  600  * Requires the page and object lock on entry, releases both before return.
  601  * Returns 0 on success and an errno otherwise.
  602  */
  603 static int
  604 vm_pageout_clean(vm_page_t m, int *numpagedout)
  605 {
  606         struct vnode *vp;
  607         struct mount *mp;
  608         vm_object_t object;
  609         vm_pindex_t pindex;
  610         int error;
  611 
  612         object = m->object;
  613         VM_OBJECT_ASSERT_WLOCKED(object);
  614         error = 0;
  615         vp = NULL;
  616         mp = NULL;
  617 
  618         /*
  619          * The object is already known NOT to be dead.   It
  620          * is possible for the vget() to block the whole
  621          * pageout daemon, but the new low-memory handling
  622          * code should prevent it.
  623          *
  624          * We can't wait forever for the vnode lock, we might
  625          * deadlock due to a vn_read() getting stuck in
  626          * vm_wait while holding this vnode.  We skip the 
  627          * vnode if we can't get it in a reasonable amount
  628          * of time.
  629          */
  630         if (object->type == OBJT_VNODE) {
  631                 vm_page_xunbusy(m);
  632                 vp = object->handle;
  633                 if (vp->v_type == VREG &&
  634                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
  635                         mp = NULL;
  636                         error = EDEADLK;
  637                         goto unlock_all;
  638                 }
  639                 KASSERT(mp != NULL,
  640                     ("vp %p with NULL v_mount", vp));
  641                 vm_object_reference_locked(object);
  642                 pindex = m->pindex;
  643                 VM_OBJECT_WUNLOCK(object);
  644                 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
  645                         vp = NULL;
  646                         error = EDEADLK;
  647                         goto unlock_mp;
  648                 }
  649                 VM_OBJECT_WLOCK(object);
  650 
  651                 /*
  652                  * Ensure that the object and vnode were not disassociated
  653                  * while locks were dropped.
  654                  */
  655                 if (vp->v_object != object) {
  656                         error = ENOENT;
  657                         goto unlock_all;
  658                 }
  659 
  660                 /*
  661                  * While the object was unlocked, the page may have been:
  662                  * (1) moved to a different queue,
  663                  * (2) reallocated to a different object,
  664                  * (3) reallocated to a different offset, or
  665                  * (4) cleaned.
  666                  */
  667                 if (!vm_page_in_laundry(m) || m->object != object ||
  668                     m->pindex != pindex || m->dirty == 0) {
  669                         error = ENXIO;
  670                         goto unlock_all;
  671                 }
  672 
  673                 /*
  674                  * The page may have been busied while the object lock was
  675                  * released.
  676                  */
  677                 if (vm_page_tryxbusy(m) == 0) {
  678                         error = EBUSY;
  679                         goto unlock_all;
  680                 }
  681         }
  682 
  683         /*
  684          * Remove all writeable mappings, failing if the page is wired.
  685          */
  686         if (!vm_page_try_remove_write(m)) {
  687                 vm_page_xunbusy(m);
  688                 error = EBUSY;
  689                 goto unlock_all;
  690         }
  691 
  692         /*
  693          * If a page is dirty, then it is either being washed
  694          * (but not yet cleaned) or it is still in the
  695          * laundry.  If it is still in the laundry, then we
  696          * start the cleaning operation. 
  697          */
  698         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
  699                 error = EIO;
  700 
  701 unlock_all:
  702         VM_OBJECT_WUNLOCK(object);
  703 
  704 unlock_mp:
  705         if (mp != NULL) {
  706                 if (vp != NULL)
  707                         vput(vp);
  708                 vm_object_deallocate(object);
  709                 vn_finished_write(mp);
  710         }
  711 
  712         return (error);
  713 }
  714 
  715 /*
  716  * Attempt to launder the specified number of pages.
  717  *
  718  * Returns the number of pages successfully laundered.
  719  */
  720 static int
  721 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
  722 {
  723         struct scan_state ss;
  724         struct vm_pagequeue *pq;
  725         vm_object_t object;
  726         vm_page_t m, marker;
  727         vm_page_astate_t new, old;
  728         int act_delta, error, numpagedout, queue, refs, starting_target;
  729         int vnodes_skipped;
  730         bool pageout_ok;
  731 
  732         object = NULL;
  733         starting_target = launder;
  734         vnodes_skipped = 0;
  735 
  736         /*
  737          * Scan the laundry queues for pages eligible to be laundered.  We stop
  738          * once the target number of dirty pages have been laundered, or once
  739          * we've reached the end of the queue.  A single iteration of this loop
  740          * may cause more than one page to be laundered because of clustering.
  741          *
  742          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
  743          * swap devices are configured.
  744          */
  745         if (atomic_load_acq_int(&swapdev_enabled))
  746                 queue = PQ_UNSWAPPABLE;
  747         else
  748                 queue = PQ_LAUNDRY;
  749 
  750 scan:
  751         marker = &vmd->vmd_markers[queue];
  752         pq = &vmd->vmd_pagequeues[queue];
  753         vm_pagequeue_lock(pq);
  754         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
  755         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
  756                 if (__predict_false((m->flags & PG_MARKER) != 0))
  757                         continue;
  758 
  759                 /*
  760                  * Don't touch a page that was removed from the queue after the
  761                  * page queue lock was released.  Otherwise, ensure that any
  762                  * pending queue operations, such as dequeues for wired pages,
  763                  * are handled.
  764                  */
  765                 if (vm_pageout_defer(m, queue, true))
  766                         continue;
  767 
  768                 /*
  769                  * Lock the page's object.
  770                  */
  771                 if (object == NULL || object != m->object) {
  772                         if (object != NULL)
  773                                 VM_OBJECT_WUNLOCK(object);
  774                         object = atomic_load_ptr(&m->object);
  775                         if (__predict_false(object == NULL))
  776                                 /* The page is being freed by another thread. */
  777                                 continue;
  778 
  779                         /* Depends on type-stability. */
  780                         VM_OBJECT_WLOCK(object);
  781                         if (__predict_false(m->object != object)) {
  782                                 VM_OBJECT_WUNLOCK(object);
  783                                 object = NULL;
  784                                 continue;
  785                         }
  786                 }
  787 
  788                 if (vm_page_tryxbusy(m) == 0)
  789                         continue;
  790 
  791                 /*
  792                  * Check for wirings now that we hold the object lock and have
  793                  * exclusively busied the page.  If the page is mapped, it may
  794                  * still be wired by pmap lookups.  The call to
  795                  * vm_page_try_remove_all() below atomically checks for such
  796                  * wirings and removes mappings.  If the page is unmapped, the
  797                  * wire count is guaranteed not to increase after this check.
  798                  */
  799                 if (__predict_false(vm_page_wired(m)))
  800                         goto skip_page;
  801 
  802                 /*
  803                  * Invalid pages can be easily freed.  They cannot be
  804                  * mapped; vm_page_free() asserts this.
  805                  */
  806                 if (vm_page_none_valid(m))
  807                         goto free_page;
  808 
  809                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
  810 
  811                 for (old = vm_page_astate_load(m);;) {
  812                         /*
  813                          * Check to see if the page has been removed from the
  814                          * queue since the first such check.  Leave it alone if
  815                          * so, discarding any references collected by
  816                          * pmap_ts_referenced().
  817                          */
  818                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
  819                                 goto skip_page;
  820 
  821                         new = old;
  822                         act_delta = refs;
  823                         if ((old.flags & PGA_REFERENCED) != 0) {
  824                                 new.flags &= ~PGA_REFERENCED;
  825                                 act_delta++;
  826                         }
  827                         if (act_delta == 0) {
  828                                 ;
  829                         } else if (object->ref_count != 0) {
  830                                 /*
  831                                  * Increase the activation count if the page was
  832                                  * referenced while in the laundry queue.  This
  833                                  * makes it less likely that the page will be
  834                                  * returned prematurely to the laundry queue.
  835                                  */
  836                                 new.act_count += ACT_ADVANCE +
  837                                     act_delta;
  838                                 if (new.act_count > ACT_MAX)
  839                                         new.act_count = ACT_MAX;
  840 
  841                                 new.flags &= ~PGA_QUEUE_OP_MASK;
  842                                 new.flags |= PGA_REQUEUE;
  843                                 new.queue = PQ_ACTIVE;
  844                                 if (!vm_page_pqstate_commit(m, &old, new))
  845                                         continue;
  846 
  847                                 /*
  848                                  * If this was a background laundering, count
  849                                  * activated pages towards our target.  The
  850                                  * purpose of background laundering is to ensure
  851                                  * that pages are eventually cycled through the
  852                                  * laundry queue, and an activation is a valid
  853                                  * way out.
  854                                  */
  855                                 if (!in_shortfall)
  856                                         launder--;
  857                                 VM_CNT_INC(v_reactivated);
  858                                 goto skip_page;
  859                         } else if ((object->flags & OBJ_DEAD) == 0) {
  860                                 new.flags |= PGA_REQUEUE;
  861                                 if (!vm_page_pqstate_commit(m, &old, new))
  862                                         continue;
  863                                 goto skip_page;
  864                         }
  865                         break;
  866                 }
  867 
  868                 /*
  869                  * If the page appears to be clean at the machine-independent
  870                  * layer, then remove all of its mappings from the pmap in
  871                  * anticipation of freeing it.  If, however, any of the page's
  872                  * mappings allow write access, then the page may still be
  873                  * modified until the last of those mappings are removed.
  874                  */
  875                 if (object->ref_count != 0) {
  876                         vm_page_test_dirty(m);
  877                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
  878                                 goto skip_page;
  879                 }
  880 
  881                 /*
  882                  * Clean pages are freed, and dirty pages are paged out unless
  883                  * they belong to a dead object.  Requeueing dirty pages from
  884                  * dead objects is pointless, as they are being paged out and
  885                  * freed by the thread that destroyed the object.
  886                  */
  887                 if (m->dirty == 0) {
  888 free_page:
  889                         /*
  890                          * Now we are guaranteed that no other threads are
  891                          * manipulating the page, check for a last-second
  892                          * reference.
  893                          */
  894                         if (vm_pageout_defer(m, queue, true))
  895                                 goto skip_page;
  896                         vm_page_free(m);
  897                         VM_CNT_INC(v_dfree);
  898                 } else if ((object->flags & OBJ_DEAD) == 0) {
  899                         if ((object->flags & OBJ_SWAP) != 0)
  900                                 pageout_ok = disable_swap_pageouts == 0;
  901                         else
  902                                 pageout_ok = true;
  903                         if (!pageout_ok) {
  904                                 vm_page_launder(m);
  905                                 goto skip_page;
  906                         }
  907 
  908                         /*
  909                          * Form a cluster with adjacent, dirty pages from the
  910                          * same object, and page out that entire cluster.
  911                          *
  912                          * The adjacent, dirty pages must also be in the
  913                          * laundry.  However, their mappings are not checked
  914                          * for new references.  Consequently, a recently
  915                          * referenced page may be paged out.  However, that
  916                          * page will not be prematurely reclaimed.  After page
  917                          * out, the page will be placed in the inactive queue,
  918                          * where any new references will be detected and the
  919                          * page reactivated.
  920                          */
  921                         error = vm_pageout_clean(m, &numpagedout);
  922                         if (error == 0) {
  923                                 launder -= numpagedout;
  924                                 ss.scanned += numpagedout;
  925                         } else if (error == EDEADLK) {
  926                                 pageout_lock_miss++;
  927                                 vnodes_skipped++;
  928                         }
  929                         object = NULL;
  930                 } else {
  931 skip_page:
  932                         vm_page_xunbusy(m);
  933                 }
  934         }
  935         if (object != NULL) {
  936                 VM_OBJECT_WUNLOCK(object);
  937                 object = NULL;
  938         }
  939         vm_pagequeue_lock(pq);
  940         vm_pageout_end_scan(&ss);
  941         vm_pagequeue_unlock(pq);
  942 
  943         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
  944                 queue = PQ_LAUNDRY;
  945                 goto scan;
  946         }
  947 
  948         /*
  949          * Wakeup the sync daemon if we skipped a vnode in a writeable object
  950          * and we didn't launder enough pages.
  951          */
  952         if (vnodes_skipped > 0 && launder > 0)
  953                 (void)speedup_syncer();
  954 
  955         return (starting_target - launder);
  956 }
  957 
  958 /*
  959  * Compute the integer square root.
  960  */
  961 static u_int
  962 isqrt(u_int num)
  963 {
  964         u_int bit, root, tmp;
  965 
  966         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
  967         root = 0;
  968         while (bit != 0) {
  969                 tmp = root + bit;
  970                 root >>= 1;
  971                 if (num >= tmp) {
  972                         num -= tmp;
  973                         root += bit;
  974                 }
  975                 bit >>= 2;
  976         }
  977         return (root);
  978 }
  979 
  980 /*
  981  * Perform the work of the laundry thread: periodically wake up and determine
  982  * whether any pages need to be laundered.  If so, determine the number of pages
  983  * that need to be laundered, and launder them.
  984  */
  985 static void
  986 vm_pageout_laundry_worker(void *arg)
  987 {
  988         struct vm_domain *vmd;
  989         struct vm_pagequeue *pq;
  990         uint64_t nclean, ndirty, nfreed;
  991         int domain, last_target, launder, shortfall, shortfall_cycle, target;
  992         bool in_shortfall;
  993 
  994         domain = (uintptr_t)arg;
  995         vmd = VM_DOMAIN(domain);
  996         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
  997         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
  998 
  999         shortfall = 0;
 1000         in_shortfall = false;
 1001         shortfall_cycle = 0;
 1002         last_target = target = 0;
 1003         nfreed = 0;
 1004 
 1005         /*
 1006          * Calls to these handlers are serialized by the swap syscall lock.
 1007          */
 1008         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
 1009             EVENTHANDLER_PRI_ANY);
 1010         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
 1011             EVENTHANDLER_PRI_ANY);
 1012 
 1013         /*
 1014          * The pageout laundry worker is never done, so loop forever.
 1015          */
 1016         for (;;) {
 1017                 KASSERT(target >= 0, ("negative target %d", target));
 1018                 KASSERT(shortfall_cycle >= 0,
 1019                     ("negative cycle %d", shortfall_cycle));
 1020                 launder = 0;
 1021 
 1022                 /*
 1023                  * First determine whether we need to launder pages to meet a
 1024                  * shortage of free pages.
 1025                  */
 1026                 if (shortfall > 0) {
 1027                         in_shortfall = true;
 1028                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
 1029                         target = shortfall;
 1030                 } else if (!in_shortfall)
 1031                         goto trybackground;
 1032                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
 1033                         /*
 1034                          * We recently entered shortfall and began laundering
 1035                          * pages.  If we have completed that laundering run
 1036                          * (and we are no longer in shortfall) or we have met
 1037                          * our laundry target through other activity, then we
 1038                          * can stop laundering pages.
 1039                          */
 1040                         in_shortfall = false;
 1041                         target = 0;
 1042                         goto trybackground;
 1043                 }
 1044                 launder = target / shortfall_cycle--;
 1045                 goto dolaundry;
 1046 
 1047                 /*
 1048                  * There's no immediate need to launder any pages; see if we
 1049                  * meet the conditions to perform background laundering:
 1050                  *
 1051                  * 1. The ratio of dirty to clean inactive pages exceeds the
 1052                  *    background laundering threshold, or
 1053                  * 2. we haven't yet reached the target of the current
 1054                  *    background laundering run.
 1055                  *
 1056                  * The background laundering threshold is not a constant.
 1057                  * Instead, it is a slowly growing function of the number of
 1058                  * clean pages freed by the page daemon since the last
 1059                  * background laundering.  Thus, as the ratio of dirty to
 1060                  * clean inactive pages grows, the amount of memory pressure
 1061                  * required to trigger laundering decreases.  We ensure
 1062                  * that the threshold is non-zero after an inactive queue
 1063                  * scan, even if that scan failed to free a single clean page.
 1064                  */
 1065 trybackground:
 1066                 nclean = vmd->vmd_free_count +
 1067                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
 1068                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
 1069                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
 1070                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
 1071                         target = vmd->vmd_background_launder_target;
 1072                 }
 1073 
 1074                 /*
 1075                  * We have a non-zero background laundering target.  If we've
 1076                  * laundered up to our maximum without observing a page daemon
 1077                  * request, just stop.  This is a safety belt that ensures we
 1078                  * don't launder an excessive amount if memory pressure is low
 1079                  * and the ratio of dirty to clean pages is large.  Otherwise,
 1080                  * proceed at the background laundering rate.
 1081                  */
 1082                 if (target > 0) {
 1083                         if (nfreed > 0) {
 1084                                 nfreed = 0;
 1085                                 last_target = target;
 1086                         } else if (last_target - target >=
 1087                             vm_background_launder_max * PAGE_SIZE / 1024) {
 1088                                 target = 0;
 1089                         }
 1090                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
 1091                         launder /= VM_LAUNDER_RATE;
 1092                         if (launder > target)
 1093                                 launder = target;
 1094                 }
 1095 
 1096 dolaundry:
 1097                 if (launder > 0) {
 1098                         /*
 1099                          * Because of I/O clustering, the number of laundered
 1100                          * pages could exceed "target" by the maximum size of
 1101                          * a cluster minus one. 
 1102                          */
 1103                         target -= min(vm_pageout_launder(vmd, launder,
 1104                             in_shortfall), target);
 1105                         pause("laundp", hz / VM_LAUNDER_RATE);
 1106                 }
 1107 
 1108                 /*
 1109                  * If we're not currently laundering pages and the page daemon
 1110                  * hasn't posted a new request, sleep until the page daemon
 1111                  * kicks us.
 1112                  */
 1113                 vm_pagequeue_lock(pq);
 1114                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
 1115                         (void)mtx_sleep(&vmd->vmd_laundry_request,
 1116                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
 1117 
 1118                 /*
 1119                  * If the pagedaemon has indicated that it's in shortfall, start
 1120                  * a shortfall laundering unless we're already in the middle of
 1121                  * one.  This may preempt a background laundering.
 1122                  */
 1123                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
 1124                     (!in_shortfall || shortfall_cycle == 0)) {
 1125                         shortfall = vm_laundry_target(vmd) +
 1126                             vmd->vmd_pageout_deficit;
 1127                         target = 0;
 1128                 } else
 1129                         shortfall = 0;
 1130 
 1131                 if (target == 0)
 1132                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
 1133                 nfreed += vmd->vmd_clean_pages_freed;
 1134                 vmd->vmd_clean_pages_freed = 0;
 1135                 vm_pagequeue_unlock(pq);
 1136         }
 1137 }
 1138 
 1139 /*
 1140  * Compute the number of pages we want to try to move from the
 1141  * active queue to either the inactive or laundry queue.
 1142  *
 1143  * When scanning active pages during a shortage, we make clean pages
 1144  * count more heavily towards the page shortage than dirty pages.
 1145  * This is because dirty pages must be laundered before they can be
 1146  * reused and thus have less utility when attempting to quickly
 1147  * alleviate a free page shortage.  However, this weighting also
 1148  * causes the scan to deactivate dirty pages more aggressively,
 1149  * improving the effectiveness of clustering.
 1150  */
 1151 static int
 1152 vm_pageout_active_target(struct vm_domain *vmd)
 1153 {
 1154         int shortage;
 1155 
 1156         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
 1157             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
 1158             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
 1159         shortage *= act_scan_laundry_weight;
 1160         return (shortage);
 1161 }
 1162 
 1163 /*
 1164  * Scan the active queue.  If there is no shortage of inactive pages, scan a
 1165  * small portion of the queue in order to maintain quasi-LRU.
 1166  */
 1167 static void
 1168 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
 1169 {
 1170         struct scan_state ss;
 1171         vm_object_t object;
 1172         vm_page_t m, marker;
 1173         struct vm_pagequeue *pq;
 1174         vm_page_astate_t old, new;
 1175         long min_scan;
 1176         int act_delta, max_scan, ps_delta, refs, scan_tick;
 1177         uint8_t nqueue;
 1178 
 1179         marker = &vmd->vmd_markers[PQ_ACTIVE];
 1180         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
 1181         vm_pagequeue_lock(pq);
 1182 
 1183         /*
 1184          * If we're just idle polling attempt to visit every
 1185          * active page within 'update_period' seconds.
 1186          */
 1187         scan_tick = ticks;
 1188         if (vm_pageout_update_period != 0) {
 1189                 min_scan = pq->pq_cnt;
 1190                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
 1191                 min_scan /= hz * vm_pageout_update_period;
 1192         } else
 1193                 min_scan = 0;
 1194         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
 1195                 vmd->vmd_last_active_scan = scan_tick;
 1196 
 1197         /*
 1198          * Scan the active queue for pages that can be deactivated.  Update
 1199          * the per-page activity counter and use it to identify deactivation
 1200          * candidates.  Held pages may be deactivated.
 1201          *
 1202          * To avoid requeuing each page that remains in the active queue, we
 1203          * implement the CLOCK algorithm.  To keep the implementation of the
 1204          * enqueue operation consistent for all page queues, we use two hands,
 1205          * represented by marker pages. Scans begin at the first hand, which
 1206          * precedes the second hand in the queue.  When the two hands meet,
 1207          * they are moved back to the head and tail of the queue, respectively,
 1208          * and scanning resumes.
 1209          */
 1210         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
 1211 act_scan:
 1212         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
 1213         while ((m = vm_pageout_next(&ss, false)) != NULL) {
 1214                 if (__predict_false(m == &vmd->vmd_clock[1])) {
 1215                         vm_pagequeue_lock(pq);
 1216                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
 1217                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
 1218                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
 1219                             plinks.q);
 1220                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
 1221                             plinks.q);
 1222                         max_scan -= ss.scanned;
 1223                         vm_pageout_end_scan(&ss);
 1224                         goto act_scan;
 1225                 }
 1226                 if (__predict_false((m->flags & PG_MARKER) != 0))
 1227                         continue;
 1228 
 1229                 /*
 1230                  * Don't touch a page that was removed from the queue after the
 1231                  * page queue lock was released.  Otherwise, ensure that any
 1232                  * pending queue operations, such as dequeues for wired pages,
 1233                  * are handled.
 1234                  */
 1235                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
 1236                         continue;
 1237 
 1238                 /*
 1239                  * A page's object pointer may be set to NULL before
 1240                  * the object lock is acquired.
 1241                  */
 1242                 object = atomic_load_ptr(&m->object);
 1243                 if (__predict_false(object == NULL))
 1244                         /*
 1245                          * The page has been removed from its object.
 1246                          */
 1247                         continue;
 1248 
 1249                 /* Deferred free of swap space. */
 1250                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
 1251                     VM_OBJECT_TRYWLOCK(object)) {
 1252                         if (m->object == object)
 1253                                 vm_pager_page_unswapped(m);
 1254                         VM_OBJECT_WUNLOCK(object);
 1255                 }
 1256 
 1257                 /*
 1258                  * Check to see "how much" the page has been used.
 1259                  *
 1260                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
 1261                  * that a reference from a concurrently destroyed mapping is
 1262                  * observed here and now.
 1263                  *
 1264                  * Perform an unsynchronized object ref count check.  While
 1265                  * the page lock ensures that the page is not reallocated to
 1266                  * another object, in particular, one with unmanaged mappings
 1267                  * that cannot support pmap_ts_referenced(), two races are,
 1268                  * nonetheless, possible:
 1269                  * 1) The count was transitioning to zero, but we saw a non-
 1270                  *    zero value.  pmap_ts_referenced() will return zero
 1271                  *    because the page is not mapped.
 1272                  * 2) The count was transitioning to one, but we saw zero.
 1273                  *    This race delays the detection of a new reference.  At
 1274                  *    worst, we will deactivate and reactivate the page.
 1275                  */
 1276                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
 1277 
 1278                 old = vm_page_astate_load(m);
 1279                 do {
 1280                         /*
 1281                          * Check to see if the page has been removed from the
 1282                          * queue since the first such check.  Leave it alone if
 1283                          * so, discarding any references collected by
 1284                          * pmap_ts_referenced().
 1285                          */
 1286                         if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
 1287                                 ps_delta = 0;
 1288                                 break;
 1289                         }
 1290 
 1291                         /*
 1292                          * Advance or decay the act_count based on recent usage.
 1293                          */
 1294                         new = old;
 1295                         act_delta = refs;
 1296                         if ((old.flags & PGA_REFERENCED) != 0) {
 1297                                 new.flags &= ~PGA_REFERENCED;
 1298                                 act_delta++;
 1299                         }
 1300                         if (act_delta != 0) {
 1301                                 new.act_count += ACT_ADVANCE + act_delta;
 1302                                 if (new.act_count > ACT_MAX)
 1303                                         new.act_count = ACT_MAX;
 1304                         } else {
 1305                                 new.act_count -= min(new.act_count,
 1306                                     ACT_DECLINE);
 1307                         }
 1308 
 1309                         if (new.act_count > 0) {
 1310                                 /*
 1311                                  * Adjust the activation count and keep the page
 1312                                  * in the active queue.  The count might be left
 1313                                  * unchanged if it is saturated.  The page may
 1314                                  * have been moved to a different queue since we
 1315                                  * started the scan, in which case we move it
 1316                                  * back.
 1317                                  */
 1318                                 ps_delta = 0;
 1319                                 if (old.queue != PQ_ACTIVE) {
 1320                                         new.flags &= ~PGA_QUEUE_OP_MASK;
 1321                                         new.flags |= PGA_REQUEUE;
 1322                                         new.queue = PQ_ACTIVE;
 1323                                 }
 1324                         } else {
 1325                                 /*
 1326                                  * When not short for inactive pages, let dirty
 1327                                  * pages go through the inactive queue before
 1328                                  * moving to the laundry queue.  This gives them
 1329                                  * some extra time to be reactivated,
 1330                                  * potentially avoiding an expensive pageout.
 1331                                  * However, during a page shortage, the inactive
 1332                                  * queue is necessarily small, and so dirty
 1333                                  * pages would only spend a trivial amount of
 1334                                  * time in the inactive queue.  Therefore, we
 1335                                  * might as well place them directly in the
 1336                                  * laundry queue to reduce queuing overhead.
 1337                                  *
 1338                                  * Calling vm_page_test_dirty() here would
 1339                                  * require acquisition of the object's write
 1340                                  * lock.  However, during a page shortage,
 1341                                  * directing dirty pages into the laundry queue
 1342                                  * is only an optimization and not a
 1343                                  * requirement.  Therefore, we simply rely on
 1344                                  * the opportunistic updates to the page's dirty
 1345                                  * field by the pmap.
 1346                                  */
 1347                                 if (page_shortage <= 0) {
 1348                                         nqueue = PQ_INACTIVE;
 1349                                         ps_delta = 0;
 1350                                 } else if (m->dirty == 0) {
 1351                                         nqueue = PQ_INACTIVE;
 1352                                         ps_delta = act_scan_laundry_weight;
 1353                                 } else {
 1354                                         nqueue = PQ_LAUNDRY;
 1355                                         ps_delta = 1;
 1356                                 }
 1357 
 1358                                 new.flags &= ~PGA_QUEUE_OP_MASK;
 1359                                 new.flags |= PGA_REQUEUE;
 1360                                 new.queue = nqueue;
 1361                         }
 1362                 } while (!vm_page_pqstate_commit(m, &old, new));
 1363 
 1364                 page_shortage -= ps_delta;
 1365         }
 1366         vm_pagequeue_lock(pq);
 1367         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
 1368         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
 1369         vm_pageout_end_scan(&ss);
 1370         vm_pagequeue_unlock(pq);
 1371 }
 1372 
 1373 static int
 1374 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
 1375     vm_page_t m)
 1376 {
 1377         vm_page_astate_t as;
 1378 
 1379         vm_pagequeue_assert_locked(pq);
 1380 
 1381         as = vm_page_astate_load(m);
 1382         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
 1383                 return (0);
 1384         vm_page_aflag_set(m, PGA_ENQUEUED);
 1385         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
 1386         return (1);
 1387 }
 1388 
 1389 /*
 1390  * Re-add stuck pages to the inactive queue.  We will examine them again
 1391  * during the next scan.  If the queue state of a page has changed since
 1392  * it was physically removed from the page queue in
 1393  * vm_pageout_collect_batch(), don't do anything with that page.
 1394  */
 1395 static void
 1396 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
 1397     vm_page_t m)
 1398 {
 1399         struct vm_pagequeue *pq;
 1400         vm_page_t marker;
 1401         int delta;
 1402 
 1403         delta = 0;
 1404         marker = ss->marker;
 1405         pq = ss->pq;
 1406 
 1407         if (m != NULL) {
 1408                 if (vm_batchqueue_insert(bq, m) != 0)
 1409                         return;
 1410                 vm_pagequeue_lock(pq);
 1411                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
 1412         } else
 1413                 vm_pagequeue_lock(pq);
 1414         while ((m = vm_batchqueue_pop(bq)) != NULL)
 1415                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
 1416         vm_pagequeue_cnt_add(pq, delta);
 1417         vm_pagequeue_unlock(pq);
 1418         vm_batchqueue_init(bq);
 1419 }
 1420 
 1421 static void
 1422 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
 1423 {
 1424         struct timeval start, end;
 1425         struct scan_state ss;
 1426         struct vm_batchqueue rq;
 1427         struct vm_page marker_page;
 1428         vm_page_t m, marker;
 1429         struct vm_pagequeue *pq;
 1430         vm_object_t object;
 1431         vm_page_astate_t old, new;
 1432         int act_delta, addl_page_shortage, starting_page_shortage, refs;
 1433 
 1434         object = NULL;
 1435         vm_batchqueue_init(&rq);
 1436         getmicrouptime(&start);
 1437 
 1438         /*
 1439          * The addl_page_shortage is an estimate of the number of temporarily
 1440          * stuck pages in the inactive queue.  In other words, the
 1441          * number of pages from the inactive count that should be
 1442          * discounted in setting the target for the active queue scan.
 1443          */
 1444         addl_page_shortage = 0;
 1445 
 1446         /*
 1447          * Start scanning the inactive queue for pages that we can free.  The
 1448          * scan will stop when we reach the target or we have scanned the
 1449          * entire queue.  (Note that m->a.act_count is not used to make
 1450          * decisions for the inactive queue, only for the active queue.)
 1451          */
 1452         starting_page_shortage = page_shortage;
 1453         marker = &marker_page;
 1454         vm_page_init_marker(marker, PQ_INACTIVE, 0);
 1455         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
 1456         vm_pagequeue_lock(pq);
 1457         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
 1458         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
 1459                 KASSERT((m->flags & PG_MARKER) == 0,
 1460                     ("marker page %p was dequeued", m));
 1461 
 1462                 /*
 1463                  * Don't touch a page that was removed from the queue after the
 1464                  * page queue lock was released.  Otherwise, ensure that any
 1465                  * pending queue operations, such as dequeues for wired pages,
 1466                  * are handled.
 1467                  */
 1468                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
 1469                         continue;
 1470 
 1471                 /*
 1472                  * Lock the page's object.
 1473                  */
 1474                 if (object == NULL || object != m->object) {
 1475                         if (object != NULL)
 1476                                 VM_OBJECT_WUNLOCK(object);
 1477                         object = atomic_load_ptr(&m->object);
 1478                         if (__predict_false(object == NULL))
 1479                                 /* The page is being freed by another thread. */
 1480                                 continue;
 1481 
 1482                         /* Depends on type-stability. */
 1483                         VM_OBJECT_WLOCK(object);
 1484                         if (__predict_false(m->object != object)) {
 1485                                 VM_OBJECT_WUNLOCK(object);
 1486                                 object = NULL;
 1487                                 goto reinsert;
 1488                         }
 1489                 }
 1490 
 1491                 if (vm_page_tryxbusy(m) == 0) {
 1492                         /*
 1493                          * Don't mess with busy pages.  Leave them at
 1494                          * the front of the queue.  Most likely, they
 1495                          * are being paged out and will leave the
 1496                          * queue shortly after the scan finishes.  So,
 1497                          * they ought to be discounted from the
 1498                          * inactive count.
 1499                          */
 1500                         addl_page_shortage++;
 1501                         goto reinsert;
 1502                 }
 1503 
 1504                 /* Deferred free of swap space. */
 1505                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
 1506                         vm_pager_page_unswapped(m);
 1507 
 1508                 /*
 1509                  * Check for wirings now that we hold the object lock and have
 1510                  * exclusively busied the page.  If the page is mapped, it may
 1511                  * still be wired by pmap lookups.  The call to
 1512                  * vm_page_try_remove_all() below atomically checks for such
 1513                  * wirings and removes mappings.  If the page is unmapped, the
 1514                  * wire count is guaranteed not to increase after this check.
 1515                  */
 1516                 if (__predict_false(vm_page_wired(m)))
 1517                         goto skip_page;
 1518 
 1519                 /*
 1520                  * Invalid pages can be easily freed. They cannot be
 1521                  * mapped, vm_page_free() asserts this.
 1522                  */
 1523                 if (vm_page_none_valid(m))
 1524                         goto free_page;
 1525 
 1526                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
 1527 
 1528                 for (old = vm_page_astate_load(m);;) {
 1529                         /*
 1530                          * Check to see if the page has been removed from the
 1531                          * queue since the first such check.  Leave it alone if
 1532                          * so, discarding any references collected by
 1533                          * pmap_ts_referenced().
 1534                          */
 1535                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
 1536                                 goto skip_page;
 1537 
 1538                         new = old;
 1539                         act_delta = refs;
 1540                         if ((old.flags & PGA_REFERENCED) != 0) {
 1541                                 new.flags &= ~PGA_REFERENCED;
 1542                                 act_delta++;
 1543                         }
 1544                         if (act_delta == 0) {
 1545                                 ;
 1546                         } else if (object->ref_count != 0) {
 1547                                 /*
 1548                                  * Increase the activation count if the
 1549                                  * page was referenced while in the
 1550                                  * inactive queue.  This makes it less
 1551                                  * likely that the page will be returned
 1552                                  * prematurely to the inactive queue.
 1553                                  */
 1554                                 new.act_count += ACT_ADVANCE +
 1555                                     act_delta;
 1556                                 if (new.act_count > ACT_MAX)
 1557                                         new.act_count = ACT_MAX;
 1558 
 1559                                 new.flags &= ~PGA_QUEUE_OP_MASK;
 1560                                 new.flags |= PGA_REQUEUE;
 1561                                 new.queue = PQ_ACTIVE;
 1562                                 if (!vm_page_pqstate_commit(m, &old, new))
 1563                                         continue;
 1564 
 1565                                 VM_CNT_INC(v_reactivated);
 1566                                 goto skip_page;
 1567                         } else if ((object->flags & OBJ_DEAD) == 0) {
 1568                                 new.queue = PQ_INACTIVE;
 1569                                 new.flags |= PGA_REQUEUE;
 1570                                 if (!vm_page_pqstate_commit(m, &old, new))
 1571                                         continue;
 1572                                 goto skip_page;
 1573                         }
 1574                         break;
 1575                 }
 1576 
 1577                 /*
 1578                  * If the page appears to be clean at the machine-independent
 1579                  * layer, then remove all of its mappings from the pmap in
 1580                  * anticipation of freeing it.  If, however, any of the page's
 1581                  * mappings allow write access, then the page may still be
 1582                  * modified until the last of those mappings are removed.
 1583                  */
 1584                 if (object->ref_count != 0) {
 1585                         vm_page_test_dirty(m);
 1586                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
 1587                                 goto skip_page;
 1588                 }
 1589 
 1590                 /*
 1591                  * Clean pages can be freed, but dirty pages must be sent back
 1592                  * to the laundry, unless they belong to a dead object.
 1593                  * Requeueing dirty pages from dead objects is pointless, as
 1594                  * they are being paged out and freed by the thread that
 1595                  * destroyed the object.
 1596                  */
 1597                 if (m->dirty == 0) {
 1598 free_page:
 1599                         /*
 1600                          * Now we are guaranteed that no other threads are
 1601                          * manipulating the page, check for a last-second
 1602                          * reference that would save it from doom.
 1603                          */
 1604                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
 1605                                 goto skip_page;
 1606 
 1607                         /*
 1608                          * Because we dequeued the page and have already checked
 1609                          * for pending dequeue and enqueue requests, we can
 1610                          * safely disassociate the page from the inactive queue
 1611                          * without holding the queue lock.
 1612                          */
 1613                         m->a.queue = PQ_NONE;
 1614                         vm_page_free(m);
 1615                         page_shortage--;
 1616                         continue;
 1617                 }
 1618                 if ((object->flags & OBJ_DEAD) == 0)
 1619                         vm_page_launder(m);
 1620 skip_page:
 1621                 vm_page_xunbusy(m);
 1622                 continue;
 1623 reinsert:
 1624                 vm_pageout_reinsert_inactive(&ss, &rq, m);
 1625         }
 1626         if (object != NULL)
 1627                 VM_OBJECT_WUNLOCK(object);
 1628         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
 1629         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
 1630         vm_pagequeue_lock(pq);
 1631         vm_pageout_end_scan(&ss);
 1632         vm_pagequeue_unlock(pq);
 1633 
 1634         /*
 1635          * Record the remaining shortage and the progress and rate it was made.
 1636          */
 1637         atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
 1638         getmicrouptime(&end);
 1639         timevalsub(&end, &start);
 1640         atomic_add_int(&vmd->vmd_inactive_us,
 1641             end.tv_sec * 1000000 + end.tv_usec);
 1642         atomic_add_int(&vmd->vmd_inactive_freed,
 1643             starting_page_shortage - page_shortage);
 1644 }
 1645 
 1646 /*
 1647  * Dispatch a number of inactive threads according to load and collect the
 1648  * results to present a coherent view of paging activity on this domain.
 1649  */
 1650 static int
 1651 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
 1652 {
 1653         u_int freed, pps, slop, threads, us;
 1654 
 1655         vmd->vmd_inactive_shortage = shortage;
 1656         slop = 0;
 1657 
 1658         /*
 1659          * If we have more work than we can do in a quarter of our interval, we
 1660          * fire off multiple threads to process it.
 1661          */
 1662         threads = vmd->vmd_inactive_threads;
 1663         if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
 1664             shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
 1665                 vmd->vmd_inactive_shortage /= threads;
 1666                 slop = shortage % threads;
 1667                 vm_domain_pageout_lock(vmd);
 1668                 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
 1669                 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
 1670                 wakeup(&vmd->vmd_inactive_shortage);
 1671                 vm_domain_pageout_unlock(vmd);
 1672         }
 1673 
 1674         /* Run the local thread scan. */
 1675         vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
 1676 
 1677         /*
 1678          * Block until helper threads report results and then accumulate
 1679          * totals.
 1680          */
 1681         blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
 1682         freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
 1683         VM_CNT_ADD(v_dfree, freed);
 1684 
 1685         /*
 1686          * Calculate the per-thread paging rate with an exponential decay of
 1687          * prior results.  Careful to avoid integer rounding errors with large
 1688          * us values.
 1689          */
 1690         us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
 1691         if (us > 1000000)
 1692                 /* Keep rounding to tenths */
 1693                 pps = (freed * 10) / ((us * 10) / 1000000);
 1694         else
 1695                 pps = (1000000 / us) * freed;
 1696         vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
 1697 
 1698         return (shortage - freed);
 1699 }
 1700 
 1701 /*
 1702  * Attempt to reclaim the requested number of pages from the inactive queue.
 1703  * Returns true if the shortage was addressed.
 1704  */
 1705 static int
 1706 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
 1707 {
 1708         struct vm_pagequeue *pq;
 1709         u_int addl_page_shortage, deficit, page_shortage;
 1710         u_int starting_page_shortage;
 1711 
 1712         /*
 1713          * vmd_pageout_deficit counts the number of pages requested in
 1714          * allocations that failed because of a free page shortage.  We assume
 1715          * that the allocations will be reattempted and thus include the deficit
 1716          * in our scan target.
 1717          */
 1718         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
 1719         starting_page_shortage = shortage + deficit;
 1720 
 1721         /*
 1722          * Run the inactive scan on as many threads as is necessary.
 1723          */
 1724         page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
 1725         addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
 1726 
 1727         /*
 1728          * Wake up the laundry thread so that it can perform any needed
 1729          * laundering.  If we didn't meet our target, we're in shortfall and
 1730          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
 1731          * swap devices are configured, the laundry thread has no work to do, so
 1732          * don't bother waking it up.
 1733          *
 1734          * The laundry thread uses the number of inactive queue scans elapsed
 1735          * since the last laundering to determine whether to launder again, so
 1736          * keep count.
 1737          */
 1738         if (starting_page_shortage > 0) {
 1739                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
 1740                 vm_pagequeue_lock(pq);
 1741                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
 1742                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
 1743                         if (page_shortage > 0) {
 1744                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
 1745                                 VM_CNT_INC(v_pdshortfalls);
 1746                         } else if (vmd->vmd_laundry_request !=
 1747                             VM_LAUNDRY_SHORTFALL)
 1748                                 vmd->vmd_laundry_request =
 1749                                     VM_LAUNDRY_BACKGROUND;
 1750                         wakeup(&vmd->vmd_laundry_request);
 1751                 }
 1752                 vmd->vmd_clean_pages_freed +=
 1753                     starting_page_shortage - page_shortage;
 1754                 vm_pagequeue_unlock(pq);
 1755         }
 1756 
 1757         /*
 1758          * Wakeup the swapout daemon if we didn't free the targeted number of
 1759          * pages.
 1760          */
 1761         if (page_shortage > 0)
 1762                 vm_swapout_run();
 1763 
 1764         /*
 1765          * If the inactive queue scan fails repeatedly to meet its
 1766          * target, kill the largest process.
 1767          */
 1768         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
 1769 
 1770         /*
 1771          * Reclaim pages by swapping out idle processes, if configured to do so.
 1772          */
 1773         vm_swapout_run_idle();
 1774 
 1775         /*
 1776          * See the description of addl_page_shortage above.
 1777          */
 1778         *addl_shortage = addl_page_shortage + deficit;
 1779 
 1780         return (page_shortage <= 0);
 1781 }
 1782 
 1783 static int vm_pageout_oom_vote;
 1784 
 1785 /*
 1786  * The pagedaemon threads randlomly select one to perform the
 1787  * OOM.  Trying to kill processes before all pagedaemons
 1788  * failed to reach free target is premature.
 1789  */
 1790 static void
 1791 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
 1792     int starting_page_shortage)
 1793 {
 1794         int old_vote;
 1795 
 1796         if (starting_page_shortage <= 0 || starting_page_shortage !=
 1797             page_shortage)
 1798                 vmd->vmd_oom_seq = 0;
 1799         else
 1800                 vmd->vmd_oom_seq++;
 1801         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
 1802                 if (vmd->vmd_oom) {
 1803                         vmd->vmd_oom = FALSE;
 1804                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1805                 }
 1806                 return;
 1807         }
 1808 
 1809         /*
 1810          * Do not follow the call sequence until OOM condition is
 1811          * cleared.
 1812          */
 1813         vmd->vmd_oom_seq = 0;
 1814 
 1815         if (vmd->vmd_oom)
 1816                 return;
 1817 
 1818         vmd->vmd_oom = TRUE;
 1819         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
 1820         if (old_vote != vm_ndomains - 1)
 1821                 return;
 1822 
 1823         /*
 1824          * The current pagedaemon thread is the last in the quorum to
 1825          * start OOM.  Initiate the selection and signaling of the
 1826          * victim.
 1827          */
 1828         vm_pageout_oom(VM_OOM_MEM);
 1829 
 1830         /*
 1831          * After one round of OOM terror, recall our vote.  On the
 1832          * next pass, current pagedaemon would vote again if the low
 1833          * memory condition is still there, due to vmd_oom being
 1834          * false.
 1835          */
 1836         vmd->vmd_oom = FALSE;
 1837         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1838 }
 1839 
 1840 /*
 1841  * The OOM killer is the page daemon's action of last resort when
 1842  * memory allocation requests have been stalled for a prolonged period
 1843  * of time because it cannot reclaim memory.  This function computes
 1844  * the approximate number of physical pages that could be reclaimed if
 1845  * the specified address space is destroyed.
 1846  *
 1847  * Private, anonymous memory owned by the address space is the
 1848  * principal resource that we expect to recover after an OOM kill.
 1849  * Since the physical pages mapped by the address space's COW entries
 1850  * are typically shared pages, they are unlikely to be released and so
 1851  * they are not counted.
 1852  *
 1853  * To get to the point where the page daemon runs the OOM killer, its
 1854  * efforts to write-back vnode-backed pages may have stalled.  This
 1855  * could be caused by a memory allocation deadlock in the write path
 1856  * that might be resolved by an OOM kill.  Therefore, physical pages
 1857  * belonging to vnode-backed objects are counted, because they might
 1858  * be freed without being written out first if the address space holds
 1859  * the last reference to an unlinked vnode.
 1860  *
 1861  * Similarly, physical pages belonging to OBJT_PHYS objects are
 1862  * counted because the address space might hold the last reference to
 1863  * the object.
 1864  */
 1865 static long
 1866 vm_pageout_oom_pagecount(struct vmspace *vmspace)
 1867 {
 1868         vm_map_t map;
 1869         vm_map_entry_t entry;
 1870         vm_object_t obj;
 1871         long res;
 1872 
 1873         map = &vmspace->vm_map;
 1874         KASSERT(!map->system_map, ("system map"));
 1875         sx_assert(&map->lock, SA_LOCKED);
 1876         res = 0;
 1877         VM_MAP_ENTRY_FOREACH(entry, map) {
 1878                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1879                         continue;
 1880                 obj = entry->object.vm_object;
 1881                 if (obj == NULL)
 1882                         continue;
 1883                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
 1884                     obj->ref_count != 1)
 1885                         continue;
 1886                 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
 1887                     (obj->flags & OBJ_SWAP) != 0)
 1888                         res += obj->resident_page_count;
 1889         }
 1890         return (res);
 1891 }
 1892 
 1893 static int vm_oom_ratelim_last;
 1894 static int vm_oom_pf_secs = 10;
 1895 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
 1896     "");
 1897 static struct mtx vm_oom_ratelim_mtx;
 1898 
 1899 void
 1900 vm_pageout_oom(int shortage)
 1901 {
 1902         const char *reason;
 1903         struct proc *p, *bigproc;
 1904         vm_offset_t size, bigsize;
 1905         struct thread *td;
 1906         struct vmspace *vm;
 1907         int now;
 1908         bool breakout;
 1909 
 1910         /*
 1911          * For OOM requests originating from vm_fault(), there is a high
 1912          * chance that a single large process faults simultaneously in
 1913          * several threads.  Also, on an active system running many
 1914          * processes of middle-size, like buildworld, all of them
 1915          * could fault almost simultaneously as well.
 1916          *
 1917          * To avoid killing too many processes, rate-limit OOMs
 1918          * initiated by vm_fault() time-outs on the waits for free
 1919          * pages.
 1920          */
 1921         mtx_lock(&vm_oom_ratelim_mtx);
 1922         now = ticks;
 1923         if (shortage == VM_OOM_MEM_PF &&
 1924             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
 1925                 mtx_unlock(&vm_oom_ratelim_mtx);
 1926                 return;
 1927         }
 1928         vm_oom_ratelim_last = now;
 1929         mtx_unlock(&vm_oom_ratelim_mtx);
 1930 
 1931         /*
 1932          * We keep the process bigproc locked once we find it to keep anyone
 1933          * from messing with it; however, there is a possibility of
 1934          * deadlock if process B is bigproc and one of its child processes
 1935          * attempts to propagate a signal to B while we are waiting for A's
 1936          * lock while walking this list.  To avoid this, we don't block on
 1937          * the process lock but just skip a process if it is already locked.
 1938          */
 1939         bigproc = NULL;
 1940         bigsize = 0;
 1941         sx_slock(&allproc_lock);
 1942         FOREACH_PROC_IN_SYSTEM(p) {
 1943                 PROC_LOCK(p);
 1944 
 1945                 /*
 1946                  * If this is a system, protected or killed process, skip it.
 1947                  */
 1948                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
 1949                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
 1950                     p->p_pid == 1 || P_KILLED(p) ||
 1951                     (p->p_pid < 48 && swap_pager_avail != 0)) {
 1952                         PROC_UNLOCK(p);
 1953                         continue;
 1954                 }
 1955                 /*
 1956                  * If the process is in a non-running type state,
 1957                  * don't touch it.  Check all the threads individually.
 1958                  */
 1959                 breakout = false;
 1960                 FOREACH_THREAD_IN_PROC(p, td) {
 1961                         thread_lock(td);
 1962                         if (!TD_ON_RUNQ(td) &&
 1963                             !TD_IS_RUNNING(td) &&
 1964                             !TD_IS_SLEEPING(td) &&
 1965                             !TD_IS_SUSPENDED(td) &&
 1966                             !TD_IS_SWAPPED(td)) {
 1967                                 thread_unlock(td);
 1968                                 breakout = true;
 1969                                 break;
 1970                         }
 1971                         thread_unlock(td);
 1972                 }
 1973                 if (breakout) {
 1974                         PROC_UNLOCK(p);
 1975                         continue;
 1976                 }
 1977                 /*
 1978                  * get the process size
 1979                  */
 1980                 vm = vmspace_acquire_ref(p);
 1981                 if (vm == NULL) {
 1982                         PROC_UNLOCK(p);
 1983                         continue;
 1984                 }
 1985                 _PHOLD_LITE(p);
 1986                 PROC_UNLOCK(p);
 1987                 sx_sunlock(&allproc_lock);
 1988                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1989                         vmspace_free(vm);
 1990                         sx_slock(&allproc_lock);
 1991                         PRELE(p);
 1992                         continue;
 1993                 }
 1994                 size = vmspace_swap_count(vm);
 1995                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
 1996                         size += vm_pageout_oom_pagecount(vm);
 1997                 vm_map_unlock_read(&vm->vm_map);
 1998                 vmspace_free(vm);
 1999                 sx_slock(&allproc_lock);
 2000 
 2001                 /*
 2002                  * If this process is bigger than the biggest one,
 2003                  * remember it.
 2004                  */
 2005                 if (size > bigsize) {
 2006                         if (bigproc != NULL)
 2007                                 PRELE(bigproc);
 2008                         bigproc = p;
 2009                         bigsize = size;
 2010                 } else {
 2011                         PRELE(p);
 2012                 }
 2013         }
 2014         sx_sunlock(&allproc_lock);
 2015 
 2016         if (bigproc != NULL) {
 2017                 switch (shortage) {
 2018                 case VM_OOM_MEM:
 2019                         reason = "failed to reclaim memory";
 2020                         break;
 2021                 case VM_OOM_MEM_PF:
 2022                         reason = "a thread waited too long to allocate a page";
 2023                         break;
 2024                 case VM_OOM_SWAPZ:
 2025                         reason = "out of swap space";
 2026                         break;
 2027                 default:
 2028                         panic("unknown OOM reason %d", shortage);
 2029                 }
 2030                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
 2031                         panic("%s", reason);
 2032                 PROC_LOCK(bigproc);
 2033                 killproc(bigproc, reason);
 2034                 sched_nice(bigproc, PRIO_MIN);
 2035                 _PRELE(bigproc);
 2036                 PROC_UNLOCK(bigproc);
 2037         }
 2038 }
 2039 
 2040 /*
 2041  * Signal a free page shortage to subsystems that have registered an event
 2042  * handler.  Reclaim memory from UMA in the event of a severe shortage.
 2043  * Return true if the free page count should be re-evaluated.
 2044  */
 2045 static bool
 2046 vm_pageout_lowmem(void)
 2047 {
 2048         static int lowmem_ticks = 0;
 2049         int last;
 2050         bool ret;
 2051 
 2052         ret = false;
 2053 
 2054         last = atomic_load_int(&lowmem_ticks);
 2055         while ((u_int)(ticks - last) / hz >= lowmem_period) {
 2056                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
 2057                         continue;
 2058 
 2059                 /*
 2060                  * Decrease registered cache sizes.
 2061                  */
 2062                 SDT_PROBE0(vm, , , vm__lowmem_scan);
 2063                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
 2064 
 2065                 /*
 2066                  * We do this explicitly after the caches have been
 2067                  * drained above.
 2068                  */
 2069                 uma_reclaim(UMA_RECLAIM_TRIM);
 2070                 ret = true;
 2071                 break;
 2072         }
 2073 
 2074         /*
 2075          * Kick off an asynchronous reclaim of cached memory if one of the
 2076          * page daemons is failing to keep up with demand.  Use the "severe"
 2077          * threshold instead of "min" to ensure that we do not blow away the
 2078          * caches if a subset of the NUMA domains are depleted by kernel memory
 2079          * allocations; the domainset iterators automatically skip domains
 2080          * below the "min" threshold on the first pass.
 2081          *
 2082          * UMA reclaim worker has its own rate-limiting mechanism, so don't
 2083          * worry about kicking it too often.
 2084          */
 2085         if (vm_page_count_severe())
 2086                 uma_reclaim_wakeup();
 2087 
 2088         return (ret);
 2089 }
 2090 
 2091 static void
 2092 vm_pageout_worker(void *arg)
 2093 {
 2094         struct vm_domain *vmd;
 2095         u_int ofree;
 2096         int addl_shortage, domain, shortage;
 2097         bool target_met;
 2098 
 2099         domain = (uintptr_t)arg;
 2100         vmd = VM_DOMAIN(domain);
 2101         shortage = 0;
 2102         target_met = true;
 2103 
 2104         /*
 2105          * XXXKIB It could be useful to bind pageout daemon threads to
 2106          * the cores belonging to the domain, from which vm_page_array
 2107          * is allocated.
 2108          */
 2109 
 2110         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
 2111         vmd->vmd_last_active_scan = ticks;
 2112 
 2113         /*
 2114          * The pageout daemon worker is never done, so loop forever.
 2115          */
 2116         while (TRUE) {
 2117                 vm_domain_pageout_lock(vmd);
 2118 
 2119                 /*
 2120                  * We need to clear wanted before we check the limits.  This
 2121                  * prevents races with wakers who will check wanted after they
 2122                  * reach the limit.
 2123                  */
 2124                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
 2125 
 2126                 /*
 2127                  * Might the page daemon need to run again?
 2128                  */
 2129                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
 2130                         /*
 2131                          * Yes.  If the scan failed to produce enough free
 2132                          * pages, sleep uninterruptibly for some time in the
 2133                          * hope that the laundry thread will clean some pages.
 2134                          */
 2135                         vm_domain_pageout_unlock(vmd);
 2136                         if (!target_met)
 2137                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
 2138                 } else {
 2139                         /*
 2140                          * No, sleep until the next wakeup or until pages
 2141                          * need to have their reference stats updated.
 2142                          */
 2143                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
 2144                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
 2145                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
 2146                                 VM_CNT_INC(v_pdwakeups);
 2147                 }
 2148 
 2149                 /* Prevent spurious wakeups by ensuring that wanted is set. */
 2150                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
 2151 
 2152                 /*
 2153                  * Use the controller to calculate how many pages to free in
 2154                  * this interval, and scan the inactive queue.  If the lowmem
 2155                  * handlers appear to have freed up some pages, subtract the
 2156                  * difference from the inactive queue scan target.
 2157                  */
 2158                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
 2159                 if (shortage > 0) {
 2160                         ofree = vmd->vmd_free_count;
 2161                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
 2162                                 shortage -= min(vmd->vmd_free_count - ofree,
 2163                                     (u_int)shortage);
 2164                         target_met = vm_pageout_inactive(vmd, shortage,
 2165                             &addl_shortage);
 2166                 } else
 2167                         addl_shortage = 0;
 2168 
 2169                 /*
 2170                  * Scan the active queue.  A positive value for shortage
 2171                  * indicates that we must aggressively deactivate pages to avoid
 2172                  * a shortfall.
 2173                  */
 2174                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
 2175                 vm_pageout_scan_active(vmd, shortage);
 2176         }
 2177 }
 2178 
 2179 /*
 2180  * vm_pageout_helper runs additional pageout daemons in times of high paging
 2181  * activity.
 2182  */
 2183 static void
 2184 vm_pageout_helper(void *arg)
 2185 {
 2186         struct vm_domain *vmd;
 2187         int domain;
 2188 
 2189         domain = (uintptr_t)arg;
 2190         vmd = VM_DOMAIN(domain);
 2191 
 2192         vm_domain_pageout_lock(vmd);
 2193         for (;;) {
 2194                 msleep(&vmd->vmd_inactive_shortage,
 2195                     vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
 2196                 blockcount_release(&vmd->vmd_inactive_starting, 1);
 2197 
 2198                 vm_domain_pageout_unlock(vmd);
 2199                 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
 2200                 vm_domain_pageout_lock(vmd);
 2201 
 2202                 /*
 2203                  * Release the running count while the pageout lock is held to
 2204                  * prevent wakeup races.
 2205                  */
 2206                 blockcount_release(&vmd->vmd_inactive_running, 1);
 2207         }
 2208 }
 2209 
 2210 static int
 2211 get_pageout_threads_per_domain(const struct vm_domain *vmd)
 2212 {
 2213         unsigned total_pageout_threads, eligible_cpus, domain_cpus;
 2214 
 2215         if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
 2216                 return (0);
 2217 
 2218         /*
 2219          * Semi-arbitrarily constrain pagedaemon threads to less than half the
 2220          * total number of CPUs in the system as an upper limit.
 2221          */
 2222         if (pageout_cpus_per_thread < 2)
 2223                 pageout_cpus_per_thread = 2;
 2224         else if (pageout_cpus_per_thread > mp_ncpus)
 2225                 pageout_cpus_per_thread = mp_ncpus;
 2226 
 2227         total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
 2228         domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
 2229 
 2230         /* Pagedaemons are not run in empty domains. */
 2231         eligible_cpus = mp_ncpus;
 2232         for (unsigned i = 0; i < vm_ndomains; i++)
 2233                 if (VM_DOMAIN_EMPTY(i))
 2234                         eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
 2235 
 2236         /*
 2237          * Assign a portion of the total pageout threads to this domain
 2238          * corresponding to the fraction of pagedaemon-eligible CPUs in the
 2239          * domain.  In asymmetric NUMA systems, domains with more CPUs may be
 2240          * allocated more threads than domains with fewer CPUs.
 2241          */
 2242         return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
 2243 }
 2244 
 2245 /*
 2246  * Initialize basic pageout daemon settings.  See the comment above the
 2247  * definition of vm_domain for some explanation of how these thresholds are
 2248  * used.
 2249  */
 2250 static void
 2251 vm_pageout_init_domain(int domain)
 2252 {
 2253         struct vm_domain *vmd;
 2254         struct sysctl_oid *oid;
 2255 
 2256         vmd = VM_DOMAIN(domain);
 2257         vmd->vmd_interrupt_free_min = 2;
 2258 
 2259         /*
 2260          * v_free_reserved needs to include enough for the largest
 2261          * swap pager structures plus enough for any pv_entry structs
 2262          * when paging. 
 2263          */
 2264         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
 2265             vmd->vmd_interrupt_free_min;
 2266         vmd->vmd_free_reserved = vm_pageout_page_count +
 2267             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
 2268         vmd->vmd_free_min = vmd->vmd_page_count / 200;
 2269         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
 2270         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
 2271         vmd->vmd_free_min += vmd->vmd_free_reserved;
 2272         vmd->vmd_free_severe += vmd->vmd_free_reserved;
 2273         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
 2274         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
 2275                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
 2276 
 2277         /*
 2278          * Set the default wakeup threshold to be 10% below the paging
 2279          * target.  This keeps the steady state out of shortfall.
 2280          */
 2281         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
 2282 
 2283         /*
 2284          * Target amount of memory to move out of the laundry queue during a
 2285          * background laundering.  This is proportional to the amount of system
 2286          * memory.
 2287          */
 2288         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
 2289             vmd->vmd_free_min) / 10;
 2290 
 2291         /* Initialize the pageout daemon pid controller. */
 2292         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
 2293             vmd->vmd_free_target, PIDCTRL_BOUND,
 2294             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
 2295         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
 2296             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2297         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
 2298 
 2299         vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
 2300 }
 2301 
 2302 static void
 2303 vm_pageout_init(void)
 2304 {
 2305         u_long freecount;
 2306         int i;
 2307 
 2308         /*
 2309          * Initialize some paging parameters.
 2310          */
 2311         if (vm_cnt.v_page_count < 2000)
 2312                 vm_pageout_page_count = 8;
 2313 
 2314         freecount = 0;
 2315         for (i = 0; i < vm_ndomains; i++) {
 2316                 struct vm_domain *vmd;
 2317 
 2318                 vm_pageout_init_domain(i);
 2319                 vmd = VM_DOMAIN(i);
 2320                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
 2321                 vm_cnt.v_free_target += vmd->vmd_free_target;
 2322                 vm_cnt.v_free_min += vmd->vmd_free_min;
 2323                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
 2324                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
 2325                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
 2326                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
 2327                 freecount += vmd->vmd_free_count;
 2328         }
 2329 
 2330         /*
 2331          * Set interval in seconds for active scan.  We want to visit each
 2332          * page at least once every ten minutes.  This is to prevent worst
 2333          * case paging behaviors with stale active LRU.
 2334          */
 2335         if (vm_pageout_update_period == 0)
 2336                 vm_pageout_update_period = 600;
 2337 
 2338         /*
 2339          * Set the maximum number of user-wired virtual pages.  Historically the
 2340          * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
 2341          * may also request user-wired memory.
 2342          */
 2343         if (vm_page_max_user_wired == 0)
 2344                 vm_page_max_user_wired = 4 * freecount / 5;
 2345 }
 2346 
 2347 /*
 2348  *     vm_pageout is the high level pageout daemon.
 2349  */
 2350 static void
 2351 vm_pageout(void)
 2352 {
 2353         struct proc *p;
 2354         struct thread *td;
 2355         int error, first, i, j, pageout_threads;
 2356 
 2357         p = curproc;
 2358         td = curthread;
 2359 
 2360         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
 2361         swap_pager_swap_init();
 2362         for (first = -1, i = 0; i < vm_ndomains; i++) {
 2363                 if (VM_DOMAIN_EMPTY(i)) {
 2364                         if (bootverbose)
 2365                                 printf("domain %d empty; skipping pageout\n",
 2366                                     i);
 2367                         continue;
 2368                 }
 2369                 if (first == -1)
 2370                         first = i;
 2371                 else {
 2372                         error = kthread_add(vm_pageout_worker,
 2373                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
 2374                         if (error != 0)
 2375                                 panic("starting pageout for domain %d: %d\n",
 2376                                     i, error);
 2377                 }
 2378                 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
 2379                 for (j = 0; j < pageout_threads - 1; j++) {
 2380                         error = kthread_add(vm_pageout_helper,
 2381                             (void *)(uintptr_t)i, p, NULL, 0, 0,
 2382                             "dom%d helper%d", i, j);
 2383                         if (error != 0)
 2384                                 panic("starting pageout helper %d for domain "
 2385                                     "%d: %d\n", j, i, error);
 2386                 }
 2387                 error = kthread_add(vm_pageout_laundry_worker,
 2388                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
 2389                 if (error != 0)
 2390                         panic("starting laundry for domain %d: %d", i, error);
 2391         }
 2392         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
 2393         if (error != 0)
 2394                 panic("starting uma_reclaim helper, error %d\n", error);
 2395 
 2396         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
 2397         vm_pageout_worker((void *)(uintptr_t)first);
 2398 }
 2399 
 2400 /*
 2401  * Perform an advisory wakeup of the page daemon.
 2402  */
 2403 void
 2404 pagedaemon_wakeup(int domain)
 2405 {
 2406         struct vm_domain *vmd;
 2407 
 2408         vmd = VM_DOMAIN(domain);
 2409         vm_domain_pageout_assert_unlocked(vmd);
 2410         if (curproc == pageproc)
 2411                 return;
 2412 
 2413         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
 2414                 vm_domain_pageout_lock(vmd);
 2415                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
 2416                 wakeup(&vmd->vmd_pageout_wanted);
 2417                 vm_domain_pageout_unlock(vmd);
 2418         }
 2419 }

Cache object: 71e89ae4bfd9a3ac5416b2e45811cfac


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.