FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2005 Yahoo! Technologies Norway AS
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
45 *
46 *
47 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48 * All rights reserved.
49 *
50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 /*
74 * The proverbial page-out daemon.
75 */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 /*
120 * System initialization
121 */
122
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129 int starting_page_shortage);
130
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132 NULL);
133
134 struct proc *pageproc;
135
136 static struct kproc_desc page_kp = {
137 "pagedaemon",
138 vm_pageout,
139 &pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142 &page_kp);
143
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define VM_LAUNDER_RATE 10
149 #define VM_INACT_SCAN_RATE 10
150
151 static int swapdev_enabled;
152 int vm_pageout_page_count = 32;
153
154 static int vm_panic_on_oom = 0;
155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
156 CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
157 "Panic on the given number of out-of-memory errors instead of "
158 "killing the largest process");
159
160 static int vm_pageout_update_period;
161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
162 CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
163 "Maximum active LRU update period");
164
165 static int pageout_cpus_per_thread = 16;
166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
167 &pageout_cpus_per_thread, 0,
168 "Number of CPUs per pagedaemon worker thread");
169
170 static int lowmem_period = 10;
171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
172 "Low memory callback period");
173
174 static int disable_swap_pageouts;
175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
176 CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
177 "Disallow swapout of dirty pages");
178
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181 CTLFLAG_RD, &pageout_lock_miss, 0,
182 "vget() lock misses during pageout");
183
184 static int vm_pageout_oom_seq = 12;
185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
186 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
187 "back-to-back calls to oom detector to start OOM");
188
189 static int act_scan_laundry_weight = 3;
190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
191 &act_scan_laundry_weight, 0,
192 "weight given to clean vs. dirty pages in active queue scans");
193
194 static u_int vm_background_launder_rate = 4096;
195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
196 &vm_background_launder_rate, 0,
197 "background laundering rate, in kilobytes per second");
198
199 static u_int vm_background_launder_max = 20 * 1024;
200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
201 &vm_background_launder_max, 0,
202 "background laundering cap, in kilobytes");
203
204 u_long vm_page_max_user_wired;
205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
206 &vm_page_max_user_wired, 0,
207 "system-wide limit to user-wired page count");
208
209 static u_int isqrt(u_int num);
210 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
211 bool in_shortfall);
212 static void vm_pageout_laundry_worker(void *arg);
213
214 struct scan_state {
215 struct vm_batchqueue bq;
216 struct vm_pagequeue *pq;
217 vm_page_t marker;
218 int maxscan;
219 int scanned;
220 };
221
222 static void
223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
224 vm_page_t marker, vm_page_t after, int maxscan)
225 {
226
227 vm_pagequeue_assert_locked(pq);
228 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
229 ("marker %p already enqueued", marker));
230
231 if (after == NULL)
232 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
233 else
234 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
235 vm_page_aflag_set(marker, PGA_ENQUEUED);
236
237 vm_batchqueue_init(&ss->bq);
238 ss->pq = pq;
239 ss->marker = marker;
240 ss->maxscan = maxscan;
241 ss->scanned = 0;
242 vm_pagequeue_unlock(pq);
243 }
244
245 static void
246 vm_pageout_end_scan(struct scan_state *ss)
247 {
248 struct vm_pagequeue *pq;
249
250 pq = ss->pq;
251 vm_pagequeue_assert_locked(pq);
252 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
253 ("marker %p not enqueued", ss->marker));
254
255 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
256 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
257 pq->pq_pdpages += ss->scanned;
258 }
259
260 /*
261 * Add a small number of queued pages to a batch queue for later processing
262 * without the corresponding queue lock held. The caller must have enqueued a
263 * marker page at the desired start point for the scan. Pages will be
264 * physically dequeued if the caller so requests. Otherwise, the returned
265 * batch may contain marker pages, and it is up to the caller to handle them.
266 *
267 * When processing the batch queue, vm_pageout_defer() must be used to
268 * determine whether the page has been logically dequeued since the batch was
269 * collected.
270 */
271 static __always_inline void
272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
273 {
274 struct vm_pagequeue *pq;
275 vm_page_t m, marker, n;
276
277 marker = ss->marker;
278 pq = ss->pq;
279
280 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
281 ("marker %p not enqueued", ss->marker));
282
283 vm_pagequeue_lock(pq);
284 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
285 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
286 m = n, ss->scanned++) {
287 n = TAILQ_NEXT(m, plinks.q);
288 if ((m->flags & PG_MARKER) == 0) {
289 KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
290 ("page %p not enqueued", m));
291 KASSERT((m->flags & PG_FICTITIOUS) == 0,
292 ("Fictitious page %p cannot be in page queue", m));
293 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
294 ("Unmanaged page %p cannot be in page queue", m));
295 } else if (dequeue)
296 continue;
297
298 (void)vm_batchqueue_insert(&ss->bq, m);
299 if (dequeue) {
300 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
301 vm_page_aflag_clear(m, PGA_ENQUEUED);
302 }
303 }
304 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
305 if (__predict_true(m != NULL))
306 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
307 else
308 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
309 if (dequeue)
310 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
311 vm_pagequeue_unlock(pq);
312 }
313
314 /*
315 * Return the next page to be scanned, or NULL if the scan is complete.
316 */
317 static __always_inline vm_page_t
318 vm_pageout_next(struct scan_state *ss, const bool dequeue)
319 {
320
321 if (ss->bq.bq_cnt == 0)
322 vm_pageout_collect_batch(ss, dequeue);
323 return (vm_batchqueue_pop(&ss->bq));
324 }
325
326 /*
327 * Determine whether processing of a page should be deferred and ensure that any
328 * outstanding queue operations are processed.
329 */
330 static __always_inline bool
331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
332 {
333 vm_page_astate_t as;
334
335 as = vm_page_astate_load(m);
336 if (__predict_false(as.queue != queue ||
337 ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
338 return (true);
339 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
340 vm_page_pqbatch_submit(m, queue);
341 return (true);
342 }
343 return (false);
344 }
345
346 /*
347 * Scan for pages at adjacent offsets within the given page's object that are
348 * eligible for laundering, form a cluster of these pages and the given page,
349 * and launder that cluster.
350 */
351 static int
352 vm_pageout_cluster(vm_page_t m)
353 {
354 vm_object_t object;
355 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
356 vm_pindex_t pindex;
357 int ib, is, page_base, pageout_count;
358
359 object = m->object;
360 VM_OBJECT_ASSERT_WLOCKED(object);
361 pindex = m->pindex;
362
363 vm_page_assert_xbusied(m);
364
365 mc[vm_pageout_page_count] = pb = ps = m;
366 pageout_count = 1;
367 page_base = vm_pageout_page_count;
368 ib = 1;
369 is = 1;
370
371 /*
372 * We can cluster only if the page is not clean, busy, or held, and
373 * the page is in the laundry queue.
374 *
375 * During heavy mmap/modification loads the pageout
376 * daemon can really fragment the underlying file
377 * due to flushing pages out of order and not trying to
378 * align the clusters (which leaves sporadic out-of-order
379 * holes). To solve this problem we do the reverse scan
380 * first and attempt to align our cluster, then do a
381 * forward scan if room remains.
382 */
383 more:
384 while (ib != 0 && pageout_count < vm_pageout_page_count) {
385 if (ib > pindex) {
386 ib = 0;
387 break;
388 }
389 if ((p = vm_page_prev(pb)) == NULL ||
390 vm_page_tryxbusy(p) == 0) {
391 ib = 0;
392 break;
393 }
394 if (vm_page_wired(p)) {
395 ib = 0;
396 vm_page_xunbusy(p);
397 break;
398 }
399 vm_page_test_dirty(p);
400 if (p->dirty == 0) {
401 ib = 0;
402 vm_page_xunbusy(p);
403 break;
404 }
405 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
406 vm_page_xunbusy(p);
407 ib = 0;
408 break;
409 }
410 mc[--page_base] = pb = p;
411 ++pageout_count;
412 ++ib;
413
414 /*
415 * We are at an alignment boundary. Stop here, and switch
416 * directions. Do not clear ib.
417 */
418 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
419 break;
420 }
421 while (pageout_count < vm_pageout_page_count &&
422 pindex + is < object->size) {
423 if ((p = vm_page_next(ps)) == NULL ||
424 vm_page_tryxbusy(p) == 0)
425 break;
426 if (vm_page_wired(p)) {
427 vm_page_xunbusy(p);
428 break;
429 }
430 vm_page_test_dirty(p);
431 if (p->dirty == 0) {
432 vm_page_xunbusy(p);
433 break;
434 }
435 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
436 vm_page_xunbusy(p);
437 break;
438 }
439 mc[page_base + pageout_count] = ps = p;
440 ++pageout_count;
441 ++is;
442 }
443
444 /*
445 * If we exhausted our forward scan, continue with the reverse scan
446 * when possible, even past an alignment boundary. This catches
447 * boundary conditions.
448 */
449 if (ib != 0 && pageout_count < vm_pageout_page_count)
450 goto more;
451
452 return (vm_pageout_flush(&mc[page_base], pageout_count,
453 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
454 }
455
456 /*
457 * vm_pageout_flush() - launder the given pages
458 *
459 * The given pages are laundered. Note that we setup for the start of
460 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
461 * reference count all in here rather then in the parent. If we want
462 * the parent to do more sophisticated things we may have to change
463 * the ordering.
464 *
465 * Returned runlen is the count of pages between mreq and first
466 * page after mreq with status VM_PAGER_AGAIN.
467 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468 * for any page in runlen set.
469 */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472 boolean_t *eio)
473 {
474 vm_object_t object = mc[0]->object;
475 int pageout_status[count];
476 int numpagedout = 0;
477 int i, runlen;
478
479 VM_OBJECT_ASSERT_WLOCKED(object);
480
481 /*
482 * Initiate I/O. Mark the pages shared busy and verify that they're
483 * valid and read-only.
484 *
485 * We do not have to fixup the clean/dirty bits here... we can
486 * allow the pager to do it after the I/O completes.
487 *
488 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489 * edge case with file fragments.
490 */
491 for (i = 0; i < count; i++) {
492 KASSERT(vm_page_all_valid(mc[i]),
493 ("vm_pageout_flush: partially invalid page %p index %d/%d",
494 mc[i], i, count));
495 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
496 ("vm_pageout_flush: writeable page %p", mc[i]));
497 vm_page_busy_downgrade(mc[i]);
498 }
499 vm_object_pip_add(object, count);
500
501 vm_pager_put_pages(object, mc, count, flags, pageout_status);
502
503 runlen = count - mreq;
504 if (eio != NULL)
505 *eio = FALSE;
506 for (i = 0; i < count; i++) {
507 vm_page_t mt = mc[i];
508
509 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
510 !pmap_page_is_write_mapped(mt),
511 ("vm_pageout_flush: page %p is not write protected", mt));
512 switch (pageout_status[i]) {
513 case VM_PAGER_OK:
514 /*
515 * The page may have moved since laundering started, in
516 * which case it should be left alone.
517 */
518 if (vm_page_in_laundry(mt))
519 vm_page_deactivate_noreuse(mt);
520 /* FALLTHROUGH */
521 case VM_PAGER_PEND:
522 numpagedout++;
523 break;
524 case VM_PAGER_BAD:
525 /*
526 * The page is outside the object's range. We pretend
527 * that the page out worked and clean the page, so the
528 * changes will be lost if the page is reclaimed by
529 * the page daemon.
530 */
531 vm_page_undirty(mt);
532 if (vm_page_in_laundry(mt))
533 vm_page_deactivate_noreuse(mt);
534 break;
535 case VM_PAGER_ERROR:
536 case VM_PAGER_FAIL:
537 /*
538 * If the page couldn't be paged out to swap because the
539 * pager wasn't able to find space, place the page in
540 * the PQ_UNSWAPPABLE holding queue. This is an
541 * optimization that prevents the page daemon from
542 * wasting CPU cycles on pages that cannot be reclaimed
543 * because no swap device is configured.
544 *
545 * Otherwise, reactivate the page so that it doesn't
546 * clog the laundry and inactive queues. (We will try
547 * paging it out again later.)
548 */
549 if ((object->flags & OBJ_SWAP) != 0 &&
550 pageout_status[i] == VM_PAGER_FAIL) {
551 vm_page_unswappable(mt);
552 numpagedout++;
553 } else
554 vm_page_activate(mt);
555 if (eio != NULL && i >= mreq && i - mreq < runlen)
556 *eio = TRUE;
557 break;
558 case VM_PAGER_AGAIN:
559 if (i >= mreq && i - mreq < runlen)
560 runlen = i - mreq;
561 break;
562 }
563
564 /*
565 * If the operation is still going, leave the page busy to
566 * block all other accesses. Also, leave the paging in
567 * progress indicator set so that we don't attempt an object
568 * collapse.
569 */
570 if (pageout_status[i] != VM_PAGER_PEND) {
571 vm_object_pip_wakeup(object);
572 vm_page_sunbusy(mt);
573 }
574 }
575 if (prunlen != NULL)
576 *prunlen = runlen;
577 return (numpagedout);
578 }
579
580 static void
581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
582 {
583
584 atomic_store_rel_int(&swapdev_enabled, 1);
585 }
586
587 static void
588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
589 {
590
591 if (swap_pager_nswapdev() == 1)
592 atomic_store_rel_int(&swapdev_enabled, 0);
593 }
594
595 /*
596 * Attempt to acquire all of the necessary locks to launder a page and
597 * then call through the clustering layer to PUTPAGES. Wait a short
598 * time for a vnode lock.
599 *
600 * Requires the page and object lock on entry, releases both before return.
601 * Returns 0 on success and an errno otherwise.
602 */
603 static int
604 vm_pageout_clean(vm_page_t m, int *numpagedout)
605 {
606 struct vnode *vp;
607 struct mount *mp;
608 vm_object_t object;
609 vm_pindex_t pindex;
610 int error;
611
612 object = m->object;
613 VM_OBJECT_ASSERT_WLOCKED(object);
614 error = 0;
615 vp = NULL;
616 mp = NULL;
617
618 /*
619 * The object is already known NOT to be dead. It
620 * is possible for the vget() to block the whole
621 * pageout daemon, but the new low-memory handling
622 * code should prevent it.
623 *
624 * We can't wait forever for the vnode lock, we might
625 * deadlock due to a vn_read() getting stuck in
626 * vm_wait while holding this vnode. We skip the
627 * vnode if we can't get it in a reasonable amount
628 * of time.
629 */
630 if (object->type == OBJT_VNODE) {
631 vm_page_xunbusy(m);
632 vp = object->handle;
633 if (vp->v_type == VREG &&
634 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
635 mp = NULL;
636 error = EDEADLK;
637 goto unlock_all;
638 }
639 KASSERT(mp != NULL,
640 ("vp %p with NULL v_mount", vp));
641 vm_object_reference_locked(object);
642 pindex = m->pindex;
643 VM_OBJECT_WUNLOCK(object);
644 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
645 vp = NULL;
646 error = EDEADLK;
647 goto unlock_mp;
648 }
649 VM_OBJECT_WLOCK(object);
650
651 /*
652 * Ensure that the object and vnode were not disassociated
653 * while locks were dropped.
654 */
655 if (vp->v_object != object) {
656 error = ENOENT;
657 goto unlock_all;
658 }
659
660 /*
661 * While the object was unlocked, the page may have been:
662 * (1) moved to a different queue,
663 * (2) reallocated to a different object,
664 * (3) reallocated to a different offset, or
665 * (4) cleaned.
666 */
667 if (!vm_page_in_laundry(m) || m->object != object ||
668 m->pindex != pindex || m->dirty == 0) {
669 error = ENXIO;
670 goto unlock_all;
671 }
672
673 /*
674 * The page may have been busied while the object lock was
675 * released.
676 */
677 if (vm_page_tryxbusy(m) == 0) {
678 error = EBUSY;
679 goto unlock_all;
680 }
681 }
682
683 /*
684 * Remove all writeable mappings, failing if the page is wired.
685 */
686 if (!vm_page_try_remove_write(m)) {
687 vm_page_xunbusy(m);
688 error = EBUSY;
689 goto unlock_all;
690 }
691
692 /*
693 * If a page is dirty, then it is either being washed
694 * (but not yet cleaned) or it is still in the
695 * laundry. If it is still in the laundry, then we
696 * start the cleaning operation.
697 */
698 if ((*numpagedout = vm_pageout_cluster(m)) == 0)
699 error = EIO;
700
701 unlock_all:
702 VM_OBJECT_WUNLOCK(object);
703
704 unlock_mp:
705 if (mp != NULL) {
706 if (vp != NULL)
707 vput(vp);
708 vm_object_deallocate(object);
709 vn_finished_write(mp);
710 }
711
712 return (error);
713 }
714
715 /*
716 * Attempt to launder the specified number of pages.
717 *
718 * Returns the number of pages successfully laundered.
719 */
720 static int
721 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
722 {
723 struct scan_state ss;
724 struct vm_pagequeue *pq;
725 vm_object_t object;
726 vm_page_t m, marker;
727 vm_page_astate_t new, old;
728 int act_delta, error, numpagedout, queue, refs, starting_target;
729 int vnodes_skipped;
730 bool pageout_ok;
731
732 object = NULL;
733 starting_target = launder;
734 vnodes_skipped = 0;
735
736 /*
737 * Scan the laundry queues for pages eligible to be laundered. We stop
738 * once the target number of dirty pages have been laundered, or once
739 * we've reached the end of the queue. A single iteration of this loop
740 * may cause more than one page to be laundered because of clustering.
741 *
742 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
743 * swap devices are configured.
744 */
745 if (atomic_load_acq_int(&swapdev_enabled))
746 queue = PQ_UNSWAPPABLE;
747 else
748 queue = PQ_LAUNDRY;
749
750 scan:
751 marker = &vmd->vmd_markers[queue];
752 pq = &vmd->vmd_pagequeues[queue];
753 vm_pagequeue_lock(pq);
754 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
755 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
756 if (__predict_false((m->flags & PG_MARKER) != 0))
757 continue;
758
759 /*
760 * Don't touch a page that was removed from the queue after the
761 * page queue lock was released. Otherwise, ensure that any
762 * pending queue operations, such as dequeues for wired pages,
763 * are handled.
764 */
765 if (vm_pageout_defer(m, queue, true))
766 continue;
767
768 /*
769 * Lock the page's object.
770 */
771 if (object == NULL || object != m->object) {
772 if (object != NULL)
773 VM_OBJECT_WUNLOCK(object);
774 object = atomic_load_ptr(&m->object);
775 if (__predict_false(object == NULL))
776 /* The page is being freed by another thread. */
777 continue;
778
779 /* Depends on type-stability. */
780 VM_OBJECT_WLOCK(object);
781 if (__predict_false(m->object != object)) {
782 VM_OBJECT_WUNLOCK(object);
783 object = NULL;
784 continue;
785 }
786 }
787
788 if (vm_page_tryxbusy(m) == 0)
789 continue;
790
791 /*
792 * Check for wirings now that we hold the object lock and have
793 * exclusively busied the page. If the page is mapped, it may
794 * still be wired by pmap lookups. The call to
795 * vm_page_try_remove_all() below atomically checks for such
796 * wirings and removes mappings. If the page is unmapped, the
797 * wire count is guaranteed not to increase after this check.
798 */
799 if (__predict_false(vm_page_wired(m)))
800 goto skip_page;
801
802 /*
803 * Invalid pages can be easily freed. They cannot be
804 * mapped; vm_page_free() asserts this.
805 */
806 if (vm_page_none_valid(m))
807 goto free_page;
808
809 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
810
811 for (old = vm_page_astate_load(m);;) {
812 /*
813 * Check to see if the page has been removed from the
814 * queue since the first such check. Leave it alone if
815 * so, discarding any references collected by
816 * pmap_ts_referenced().
817 */
818 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
819 goto skip_page;
820
821 new = old;
822 act_delta = refs;
823 if ((old.flags & PGA_REFERENCED) != 0) {
824 new.flags &= ~PGA_REFERENCED;
825 act_delta++;
826 }
827 if (act_delta == 0) {
828 ;
829 } else if (object->ref_count != 0) {
830 /*
831 * Increase the activation count if the page was
832 * referenced while in the laundry queue. This
833 * makes it less likely that the page will be
834 * returned prematurely to the laundry queue.
835 */
836 new.act_count += ACT_ADVANCE +
837 act_delta;
838 if (new.act_count > ACT_MAX)
839 new.act_count = ACT_MAX;
840
841 new.flags &= ~PGA_QUEUE_OP_MASK;
842 new.flags |= PGA_REQUEUE;
843 new.queue = PQ_ACTIVE;
844 if (!vm_page_pqstate_commit(m, &old, new))
845 continue;
846
847 /*
848 * If this was a background laundering, count
849 * activated pages towards our target. The
850 * purpose of background laundering is to ensure
851 * that pages are eventually cycled through the
852 * laundry queue, and an activation is a valid
853 * way out.
854 */
855 if (!in_shortfall)
856 launder--;
857 VM_CNT_INC(v_reactivated);
858 goto skip_page;
859 } else if ((object->flags & OBJ_DEAD) == 0) {
860 new.flags |= PGA_REQUEUE;
861 if (!vm_page_pqstate_commit(m, &old, new))
862 continue;
863 goto skip_page;
864 }
865 break;
866 }
867
868 /*
869 * If the page appears to be clean at the machine-independent
870 * layer, then remove all of its mappings from the pmap in
871 * anticipation of freeing it. If, however, any of the page's
872 * mappings allow write access, then the page may still be
873 * modified until the last of those mappings are removed.
874 */
875 if (object->ref_count != 0) {
876 vm_page_test_dirty(m);
877 if (m->dirty == 0 && !vm_page_try_remove_all(m))
878 goto skip_page;
879 }
880
881 /*
882 * Clean pages are freed, and dirty pages are paged out unless
883 * they belong to a dead object. Requeueing dirty pages from
884 * dead objects is pointless, as they are being paged out and
885 * freed by the thread that destroyed the object.
886 */
887 if (m->dirty == 0) {
888 free_page:
889 /*
890 * Now we are guaranteed that no other threads are
891 * manipulating the page, check for a last-second
892 * reference.
893 */
894 if (vm_pageout_defer(m, queue, true))
895 goto skip_page;
896 vm_page_free(m);
897 VM_CNT_INC(v_dfree);
898 } else if ((object->flags & OBJ_DEAD) == 0) {
899 if ((object->flags & OBJ_SWAP) != 0)
900 pageout_ok = disable_swap_pageouts == 0;
901 else
902 pageout_ok = true;
903 if (!pageout_ok) {
904 vm_page_launder(m);
905 goto skip_page;
906 }
907
908 /*
909 * Form a cluster with adjacent, dirty pages from the
910 * same object, and page out that entire cluster.
911 *
912 * The adjacent, dirty pages must also be in the
913 * laundry. However, their mappings are not checked
914 * for new references. Consequently, a recently
915 * referenced page may be paged out. However, that
916 * page will not be prematurely reclaimed. After page
917 * out, the page will be placed in the inactive queue,
918 * where any new references will be detected and the
919 * page reactivated.
920 */
921 error = vm_pageout_clean(m, &numpagedout);
922 if (error == 0) {
923 launder -= numpagedout;
924 ss.scanned += numpagedout;
925 } else if (error == EDEADLK) {
926 pageout_lock_miss++;
927 vnodes_skipped++;
928 }
929 object = NULL;
930 } else {
931 skip_page:
932 vm_page_xunbusy(m);
933 }
934 }
935 if (object != NULL) {
936 VM_OBJECT_WUNLOCK(object);
937 object = NULL;
938 }
939 vm_pagequeue_lock(pq);
940 vm_pageout_end_scan(&ss);
941 vm_pagequeue_unlock(pq);
942
943 if (launder > 0 && queue == PQ_UNSWAPPABLE) {
944 queue = PQ_LAUNDRY;
945 goto scan;
946 }
947
948 /*
949 * Wakeup the sync daemon if we skipped a vnode in a writeable object
950 * and we didn't launder enough pages.
951 */
952 if (vnodes_skipped > 0 && launder > 0)
953 (void)speedup_syncer();
954
955 return (starting_target - launder);
956 }
957
958 /*
959 * Compute the integer square root.
960 */
961 static u_int
962 isqrt(u_int num)
963 {
964 u_int bit, root, tmp;
965
966 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
967 root = 0;
968 while (bit != 0) {
969 tmp = root + bit;
970 root >>= 1;
971 if (num >= tmp) {
972 num -= tmp;
973 root += bit;
974 }
975 bit >>= 2;
976 }
977 return (root);
978 }
979
980 /*
981 * Perform the work of the laundry thread: periodically wake up and determine
982 * whether any pages need to be laundered. If so, determine the number of pages
983 * that need to be laundered, and launder them.
984 */
985 static void
986 vm_pageout_laundry_worker(void *arg)
987 {
988 struct vm_domain *vmd;
989 struct vm_pagequeue *pq;
990 uint64_t nclean, ndirty, nfreed;
991 int domain, last_target, launder, shortfall, shortfall_cycle, target;
992 bool in_shortfall;
993
994 domain = (uintptr_t)arg;
995 vmd = VM_DOMAIN(domain);
996 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
997 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
998
999 shortfall = 0;
1000 in_shortfall = false;
1001 shortfall_cycle = 0;
1002 last_target = target = 0;
1003 nfreed = 0;
1004
1005 /*
1006 * Calls to these handlers are serialized by the swap syscall lock.
1007 */
1008 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1009 EVENTHANDLER_PRI_ANY);
1010 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1011 EVENTHANDLER_PRI_ANY);
1012
1013 /*
1014 * The pageout laundry worker is never done, so loop forever.
1015 */
1016 for (;;) {
1017 KASSERT(target >= 0, ("negative target %d", target));
1018 KASSERT(shortfall_cycle >= 0,
1019 ("negative cycle %d", shortfall_cycle));
1020 launder = 0;
1021
1022 /*
1023 * First determine whether we need to launder pages to meet a
1024 * shortage of free pages.
1025 */
1026 if (shortfall > 0) {
1027 in_shortfall = true;
1028 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1029 target = shortfall;
1030 } else if (!in_shortfall)
1031 goto trybackground;
1032 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1033 /*
1034 * We recently entered shortfall and began laundering
1035 * pages. If we have completed that laundering run
1036 * (and we are no longer in shortfall) or we have met
1037 * our laundry target through other activity, then we
1038 * can stop laundering pages.
1039 */
1040 in_shortfall = false;
1041 target = 0;
1042 goto trybackground;
1043 }
1044 launder = target / shortfall_cycle--;
1045 goto dolaundry;
1046
1047 /*
1048 * There's no immediate need to launder any pages; see if we
1049 * meet the conditions to perform background laundering:
1050 *
1051 * 1. The ratio of dirty to clean inactive pages exceeds the
1052 * background laundering threshold, or
1053 * 2. we haven't yet reached the target of the current
1054 * background laundering run.
1055 *
1056 * The background laundering threshold is not a constant.
1057 * Instead, it is a slowly growing function of the number of
1058 * clean pages freed by the page daemon since the last
1059 * background laundering. Thus, as the ratio of dirty to
1060 * clean inactive pages grows, the amount of memory pressure
1061 * required to trigger laundering decreases. We ensure
1062 * that the threshold is non-zero after an inactive queue
1063 * scan, even if that scan failed to free a single clean page.
1064 */
1065 trybackground:
1066 nclean = vmd->vmd_free_count +
1067 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1068 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1069 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1070 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1071 target = vmd->vmd_background_launder_target;
1072 }
1073
1074 /*
1075 * We have a non-zero background laundering target. If we've
1076 * laundered up to our maximum without observing a page daemon
1077 * request, just stop. This is a safety belt that ensures we
1078 * don't launder an excessive amount if memory pressure is low
1079 * and the ratio of dirty to clean pages is large. Otherwise,
1080 * proceed at the background laundering rate.
1081 */
1082 if (target > 0) {
1083 if (nfreed > 0) {
1084 nfreed = 0;
1085 last_target = target;
1086 } else if (last_target - target >=
1087 vm_background_launder_max * PAGE_SIZE / 1024) {
1088 target = 0;
1089 }
1090 launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1091 launder /= VM_LAUNDER_RATE;
1092 if (launder > target)
1093 launder = target;
1094 }
1095
1096 dolaundry:
1097 if (launder > 0) {
1098 /*
1099 * Because of I/O clustering, the number of laundered
1100 * pages could exceed "target" by the maximum size of
1101 * a cluster minus one.
1102 */
1103 target -= min(vm_pageout_launder(vmd, launder,
1104 in_shortfall), target);
1105 pause("laundp", hz / VM_LAUNDER_RATE);
1106 }
1107
1108 /*
1109 * If we're not currently laundering pages and the page daemon
1110 * hasn't posted a new request, sleep until the page daemon
1111 * kicks us.
1112 */
1113 vm_pagequeue_lock(pq);
1114 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1115 (void)mtx_sleep(&vmd->vmd_laundry_request,
1116 vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1117
1118 /*
1119 * If the pagedaemon has indicated that it's in shortfall, start
1120 * a shortfall laundering unless we're already in the middle of
1121 * one. This may preempt a background laundering.
1122 */
1123 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1124 (!in_shortfall || shortfall_cycle == 0)) {
1125 shortfall = vm_laundry_target(vmd) +
1126 vmd->vmd_pageout_deficit;
1127 target = 0;
1128 } else
1129 shortfall = 0;
1130
1131 if (target == 0)
1132 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1133 nfreed += vmd->vmd_clean_pages_freed;
1134 vmd->vmd_clean_pages_freed = 0;
1135 vm_pagequeue_unlock(pq);
1136 }
1137 }
1138
1139 /*
1140 * Compute the number of pages we want to try to move from the
1141 * active queue to either the inactive or laundry queue.
1142 *
1143 * When scanning active pages during a shortage, we make clean pages
1144 * count more heavily towards the page shortage than dirty pages.
1145 * This is because dirty pages must be laundered before they can be
1146 * reused and thus have less utility when attempting to quickly
1147 * alleviate a free page shortage. However, this weighting also
1148 * causes the scan to deactivate dirty pages more aggressively,
1149 * improving the effectiveness of clustering.
1150 */
1151 static int
1152 vm_pageout_active_target(struct vm_domain *vmd)
1153 {
1154 int shortage;
1155
1156 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1157 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1158 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1159 shortage *= act_scan_laundry_weight;
1160 return (shortage);
1161 }
1162
1163 /*
1164 * Scan the active queue. If there is no shortage of inactive pages, scan a
1165 * small portion of the queue in order to maintain quasi-LRU.
1166 */
1167 static void
1168 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1169 {
1170 struct scan_state ss;
1171 vm_object_t object;
1172 vm_page_t m, marker;
1173 struct vm_pagequeue *pq;
1174 vm_page_astate_t old, new;
1175 long min_scan;
1176 int act_delta, max_scan, ps_delta, refs, scan_tick;
1177 uint8_t nqueue;
1178
1179 marker = &vmd->vmd_markers[PQ_ACTIVE];
1180 pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1181 vm_pagequeue_lock(pq);
1182
1183 /*
1184 * If we're just idle polling attempt to visit every
1185 * active page within 'update_period' seconds.
1186 */
1187 scan_tick = ticks;
1188 if (vm_pageout_update_period != 0) {
1189 min_scan = pq->pq_cnt;
1190 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1191 min_scan /= hz * vm_pageout_update_period;
1192 } else
1193 min_scan = 0;
1194 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1195 vmd->vmd_last_active_scan = scan_tick;
1196
1197 /*
1198 * Scan the active queue for pages that can be deactivated. Update
1199 * the per-page activity counter and use it to identify deactivation
1200 * candidates. Held pages may be deactivated.
1201 *
1202 * To avoid requeuing each page that remains in the active queue, we
1203 * implement the CLOCK algorithm. To keep the implementation of the
1204 * enqueue operation consistent for all page queues, we use two hands,
1205 * represented by marker pages. Scans begin at the first hand, which
1206 * precedes the second hand in the queue. When the two hands meet,
1207 * they are moved back to the head and tail of the queue, respectively,
1208 * and scanning resumes.
1209 */
1210 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1211 act_scan:
1212 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1213 while ((m = vm_pageout_next(&ss, false)) != NULL) {
1214 if (__predict_false(m == &vmd->vmd_clock[1])) {
1215 vm_pagequeue_lock(pq);
1216 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1217 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1218 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1219 plinks.q);
1220 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1221 plinks.q);
1222 max_scan -= ss.scanned;
1223 vm_pageout_end_scan(&ss);
1224 goto act_scan;
1225 }
1226 if (__predict_false((m->flags & PG_MARKER) != 0))
1227 continue;
1228
1229 /*
1230 * Don't touch a page that was removed from the queue after the
1231 * page queue lock was released. Otherwise, ensure that any
1232 * pending queue operations, such as dequeues for wired pages,
1233 * are handled.
1234 */
1235 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1236 continue;
1237
1238 /*
1239 * A page's object pointer may be set to NULL before
1240 * the object lock is acquired.
1241 */
1242 object = atomic_load_ptr(&m->object);
1243 if (__predict_false(object == NULL))
1244 /*
1245 * The page has been removed from its object.
1246 */
1247 continue;
1248
1249 /* Deferred free of swap space. */
1250 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1251 VM_OBJECT_TRYWLOCK(object)) {
1252 if (m->object == object)
1253 vm_pager_page_unswapped(m);
1254 VM_OBJECT_WUNLOCK(object);
1255 }
1256
1257 /*
1258 * Check to see "how much" the page has been used.
1259 *
1260 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1261 * that a reference from a concurrently destroyed mapping is
1262 * observed here and now.
1263 *
1264 * Perform an unsynchronized object ref count check. While
1265 * the page lock ensures that the page is not reallocated to
1266 * another object, in particular, one with unmanaged mappings
1267 * that cannot support pmap_ts_referenced(), two races are,
1268 * nonetheless, possible:
1269 * 1) The count was transitioning to zero, but we saw a non-
1270 * zero value. pmap_ts_referenced() will return zero
1271 * because the page is not mapped.
1272 * 2) The count was transitioning to one, but we saw zero.
1273 * This race delays the detection of a new reference. At
1274 * worst, we will deactivate and reactivate the page.
1275 */
1276 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1277
1278 old = vm_page_astate_load(m);
1279 do {
1280 /*
1281 * Check to see if the page has been removed from the
1282 * queue since the first such check. Leave it alone if
1283 * so, discarding any references collected by
1284 * pmap_ts_referenced().
1285 */
1286 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1287 ps_delta = 0;
1288 break;
1289 }
1290
1291 /*
1292 * Advance or decay the act_count based on recent usage.
1293 */
1294 new = old;
1295 act_delta = refs;
1296 if ((old.flags & PGA_REFERENCED) != 0) {
1297 new.flags &= ~PGA_REFERENCED;
1298 act_delta++;
1299 }
1300 if (act_delta != 0) {
1301 new.act_count += ACT_ADVANCE + act_delta;
1302 if (new.act_count > ACT_MAX)
1303 new.act_count = ACT_MAX;
1304 } else {
1305 new.act_count -= min(new.act_count,
1306 ACT_DECLINE);
1307 }
1308
1309 if (new.act_count > 0) {
1310 /*
1311 * Adjust the activation count and keep the page
1312 * in the active queue. The count might be left
1313 * unchanged if it is saturated. The page may
1314 * have been moved to a different queue since we
1315 * started the scan, in which case we move it
1316 * back.
1317 */
1318 ps_delta = 0;
1319 if (old.queue != PQ_ACTIVE) {
1320 new.flags &= ~PGA_QUEUE_OP_MASK;
1321 new.flags |= PGA_REQUEUE;
1322 new.queue = PQ_ACTIVE;
1323 }
1324 } else {
1325 /*
1326 * When not short for inactive pages, let dirty
1327 * pages go through the inactive queue before
1328 * moving to the laundry queue. This gives them
1329 * some extra time to be reactivated,
1330 * potentially avoiding an expensive pageout.
1331 * However, during a page shortage, the inactive
1332 * queue is necessarily small, and so dirty
1333 * pages would only spend a trivial amount of
1334 * time in the inactive queue. Therefore, we
1335 * might as well place them directly in the
1336 * laundry queue to reduce queuing overhead.
1337 *
1338 * Calling vm_page_test_dirty() here would
1339 * require acquisition of the object's write
1340 * lock. However, during a page shortage,
1341 * directing dirty pages into the laundry queue
1342 * is only an optimization and not a
1343 * requirement. Therefore, we simply rely on
1344 * the opportunistic updates to the page's dirty
1345 * field by the pmap.
1346 */
1347 if (page_shortage <= 0) {
1348 nqueue = PQ_INACTIVE;
1349 ps_delta = 0;
1350 } else if (m->dirty == 0) {
1351 nqueue = PQ_INACTIVE;
1352 ps_delta = act_scan_laundry_weight;
1353 } else {
1354 nqueue = PQ_LAUNDRY;
1355 ps_delta = 1;
1356 }
1357
1358 new.flags &= ~PGA_QUEUE_OP_MASK;
1359 new.flags |= PGA_REQUEUE;
1360 new.queue = nqueue;
1361 }
1362 } while (!vm_page_pqstate_commit(m, &old, new));
1363
1364 page_shortage -= ps_delta;
1365 }
1366 vm_pagequeue_lock(pq);
1367 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1368 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1369 vm_pageout_end_scan(&ss);
1370 vm_pagequeue_unlock(pq);
1371 }
1372
1373 static int
1374 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1375 vm_page_t m)
1376 {
1377 vm_page_astate_t as;
1378
1379 vm_pagequeue_assert_locked(pq);
1380
1381 as = vm_page_astate_load(m);
1382 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1383 return (0);
1384 vm_page_aflag_set(m, PGA_ENQUEUED);
1385 TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1386 return (1);
1387 }
1388
1389 /*
1390 * Re-add stuck pages to the inactive queue. We will examine them again
1391 * during the next scan. If the queue state of a page has changed since
1392 * it was physically removed from the page queue in
1393 * vm_pageout_collect_batch(), don't do anything with that page.
1394 */
1395 static void
1396 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1397 vm_page_t m)
1398 {
1399 struct vm_pagequeue *pq;
1400 vm_page_t marker;
1401 int delta;
1402
1403 delta = 0;
1404 marker = ss->marker;
1405 pq = ss->pq;
1406
1407 if (m != NULL) {
1408 if (vm_batchqueue_insert(bq, m) != 0)
1409 return;
1410 vm_pagequeue_lock(pq);
1411 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412 } else
1413 vm_pagequeue_lock(pq);
1414 while ((m = vm_batchqueue_pop(bq)) != NULL)
1415 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1416 vm_pagequeue_cnt_add(pq, delta);
1417 vm_pagequeue_unlock(pq);
1418 vm_batchqueue_init(bq);
1419 }
1420
1421 static void
1422 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1423 {
1424 struct timeval start, end;
1425 struct scan_state ss;
1426 struct vm_batchqueue rq;
1427 struct vm_page marker_page;
1428 vm_page_t m, marker;
1429 struct vm_pagequeue *pq;
1430 vm_object_t object;
1431 vm_page_astate_t old, new;
1432 int act_delta, addl_page_shortage, starting_page_shortage, refs;
1433
1434 object = NULL;
1435 vm_batchqueue_init(&rq);
1436 getmicrouptime(&start);
1437
1438 /*
1439 * The addl_page_shortage is an estimate of the number of temporarily
1440 * stuck pages in the inactive queue. In other words, the
1441 * number of pages from the inactive count that should be
1442 * discounted in setting the target for the active queue scan.
1443 */
1444 addl_page_shortage = 0;
1445
1446 /*
1447 * Start scanning the inactive queue for pages that we can free. The
1448 * scan will stop when we reach the target or we have scanned the
1449 * entire queue. (Note that m->a.act_count is not used to make
1450 * decisions for the inactive queue, only for the active queue.)
1451 */
1452 starting_page_shortage = page_shortage;
1453 marker = &marker_page;
1454 vm_page_init_marker(marker, PQ_INACTIVE, 0);
1455 pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1456 vm_pagequeue_lock(pq);
1457 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1458 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1459 KASSERT((m->flags & PG_MARKER) == 0,
1460 ("marker page %p was dequeued", m));
1461
1462 /*
1463 * Don't touch a page that was removed from the queue after the
1464 * page queue lock was released. Otherwise, ensure that any
1465 * pending queue operations, such as dequeues for wired pages,
1466 * are handled.
1467 */
1468 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1469 continue;
1470
1471 /*
1472 * Lock the page's object.
1473 */
1474 if (object == NULL || object != m->object) {
1475 if (object != NULL)
1476 VM_OBJECT_WUNLOCK(object);
1477 object = atomic_load_ptr(&m->object);
1478 if (__predict_false(object == NULL))
1479 /* The page is being freed by another thread. */
1480 continue;
1481
1482 /* Depends on type-stability. */
1483 VM_OBJECT_WLOCK(object);
1484 if (__predict_false(m->object != object)) {
1485 VM_OBJECT_WUNLOCK(object);
1486 object = NULL;
1487 goto reinsert;
1488 }
1489 }
1490
1491 if (vm_page_tryxbusy(m) == 0) {
1492 /*
1493 * Don't mess with busy pages. Leave them at
1494 * the front of the queue. Most likely, they
1495 * are being paged out and will leave the
1496 * queue shortly after the scan finishes. So,
1497 * they ought to be discounted from the
1498 * inactive count.
1499 */
1500 addl_page_shortage++;
1501 goto reinsert;
1502 }
1503
1504 /* Deferred free of swap space. */
1505 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1506 vm_pager_page_unswapped(m);
1507
1508 /*
1509 * Check for wirings now that we hold the object lock and have
1510 * exclusively busied the page. If the page is mapped, it may
1511 * still be wired by pmap lookups. The call to
1512 * vm_page_try_remove_all() below atomically checks for such
1513 * wirings and removes mappings. If the page is unmapped, the
1514 * wire count is guaranteed not to increase after this check.
1515 */
1516 if (__predict_false(vm_page_wired(m)))
1517 goto skip_page;
1518
1519 /*
1520 * Invalid pages can be easily freed. They cannot be
1521 * mapped, vm_page_free() asserts this.
1522 */
1523 if (vm_page_none_valid(m))
1524 goto free_page;
1525
1526 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1527
1528 for (old = vm_page_astate_load(m);;) {
1529 /*
1530 * Check to see if the page has been removed from the
1531 * queue since the first such check. Leave it alone if
1532 * so, discarding any references collected by
1533 * pmap_ts_referenced().
1534 */
1535 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1536 goto skip_page;
1537
1538 new = old;
1539 act_delta = refs;
1540 if ((old.flags & PGA_REFERENCED) != 0) {
1541 new.flags &= ~PGA_REFERENCED;
1542 act_delta++;
1543 }
1544 if (act_delta == 0) {
1545 ;
1546 } else if (object->ref_count != 0) {
1547 /*
1548 * Increase the activation count if the
1549 * page was referenced while in the
1550 * inactive queue. This makes it less
1551 * likely that the page will be returned
1552 * prematurely to the inactive queue.
1553 */
1554 new.act_count += ACT_ADVANCE +
1555 act_delta;
1556 if (new.act_count > ACT_MAX)
1557 new.act_count = ACT_MAX;
1558
1559 new.flags &= ~PGA_QUEUE_OP_MASK;
1560 new.flags |= PGA_REQUEUE;
1561 new.queue = PQ_ACTIVE;
1562 if (!vm_page_pqstate_commit(m, &old, new))
1563 continue;
1564
1565 VM_CNT_INC(v_reactivated);
1566 goto skip_page;
1567 } else if ((object->flags & OBJ_DEAD) == 0) {
1568 new.queue = PQ_INACTIVE;
1569 new.flags |= PGA_REQUEUE;
1570 if (!vm_page_pqstate_commit(m, &old, new))
1571 continue;
1572 goto skip_page;
1573 }
1574 break;
1575 }
1576
1577 /*
1578 * If the page appears to be clean at the machine-independent
1579 * layer, then remove all of its mappings from the pmap in
1580 * anticipation of freeing it. If, however, any of the page's
1581 * mappings allow write access, then the page may still be
1582 * modified until the last of those mappings are removed.
1583 */
1584 if (object->ref_count != 0) {
1585 vm_page_test_dirty(m);
1586 if (m->dirty == 0 && !vm_page_try_remove_all(m))
1587 goto skip_page;
1588 }
1589
1590 /*
1591 * Clean pages can be freed, but dirty pages must be sent back
1592 * to the laundry, unless they belong to a dead object.
1593 * Requeueing dirty pages from dead objects is pointless, as
1594 * they are being paged out and freed by the thread that
1595 * destroyed the object.
1596 */
1597 if (m->dirty == 0) {
1598 free_page:
1599 /*
1600 * Now we are guaranteed that no other threads are
1601 * manipulating the page, check for a last-second
1602 * reference that would save it from doom.
1603 */
1604 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1605 goto skip_page;
1606
1607 /*
1608 * Because we dequeued the page and have already checked
1609 * for pending dequeue and enqueue requests, we can
1610 * safely disassociate the page from the inactive queue
1611 * without holding the queue lock.
1612 */
1613 m->a.queue = PQ_NONE;
1614 vm_page_free(m);
1615 page_shortage--;
1616 continue;
1617 }
1618 if ((object->flags & OBJ_DEAD) == 0)
1619 vm_page_launder(m);
1620 skip_page:
1621 vm_page_xunbusy(m);
1622 continue;
1623 reinsert:
1624 vm_pageout_reinsert_inactive(&ss, &rq, m);
1625 }
1626 if (object != NULL)
1627 VM_OBJECT_WUNLOCK(object);
1628 vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1629 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1630 vm_pagequeue_lock(pq);
1631 vm_pageout_end_scan(&ss);
1632 vm_pagequeue_unlock(pq);
1633
1634 /*
1635 * Record the remaining shortage and the progress and rate it was made.
1636 */
1637 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1638 getmicrouptime(&end);
1639 timevalsub(&end, &start);
1640 atomic_add_int(&vmd->vmd_inactive_us,
1641 end.tv_sec * 1000000 + end.tv_usec);
1642 atomic_add_int(&vmd->vmd_inactive_freed,
1643 starting_page_shortage - page_shortage);
1644 }
1645
1646 /*
1647 * Dispatch a number of inactive threads according to load and collect the
1648 * results to present a coherent view of paging activity on this domain.
1649 */
1650 static int
1651 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1652 {
1653 u_int freed, pps, slop, threads, us;
1654
1655 vmd->vmd_inactive_shortage = shortage;
1656 slop = 0;
1657
1658 /*
1659 * If we have more work than we can do in a quarter of our interval, we
1660 * fire off multiple threads to process it.
1661 */
1662 threads = vmd->vmd_inactive_threads;
1663 if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1664 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1665 vmd->vmd_inactive_shortage /= threads;
1666 slop = shortage % threads;
1667 vm_domain_pageout_lock(vmd);
1668 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1669 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1670 wakeup(&vmd->vmd_inactive_shortage);
1671 vm_domain_pageout_unlock(vmd);
1672 }
1673
1674 /* Run the local thread scan. */
1675 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1676
1677 /*
1678 * Block until helper threads report results and then accumulate
1679 * totals.
1680 */
1681 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1682 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1683 VM_CNT_ADD(v_dfree, freed);
1684
1685 /*
1686 * Calculate the per-thread paging rate with an exponential decay of
1687 * prior results. Careful to avoid integer rounding errors with large
1688 * us values.
1689 */
1690 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1691 if (us > 1000000)
1692 /* Keep rounding to tenths */
1693 pps = (freed * 10) / ((us * 10) / 1000000);
1694 else
1695 pps = (1000000 / us) * freed;
1696 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1697
1698 return (shortage - freed);
1699 }
1700
1701 /*
1702 * Attempt to reclaim the requested number of pages from the inactive queue.
1703 * Returns true if the shortage was addressed.
1704 */
1705 static int
1706 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1707 {
1708 struct vm_pagequeue *pq;
1709 u_int addl_page_shortage, deficit, page_shortage;
1710 u_int starting_page_shortage;
1711
1712 /*
1713 * vmd_pageout_deficit counts the number of pages requested in
1714 * allocations that failed because of a free page shortage. We assume
1715 * that the allocations will be reattempted and thus include the deficit
1716 * in our scan target.
1717 */
1718 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1719 starting_page_shortage = shortage + deficit;
1720
1721 /*
1722 * Run the inactive scan on as many threads as is necessary.
1723 */
1724 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1725 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1726
1727 /*
1728 * Wake up the laundry thread so that it can perform any needed
1729 * laundering. If we didn't meet our target, we're in shortfall and
1730 * need to launder more aggressively. If PQ_LAUNDRY is empty and no
1731 * swap devices are configured, the laundry thread has no work to do, so
1732 * don't bother waking it up.
1733 *
1734 * The laundry thread uses the number of inactive queue scans elapsed
1735 * since the last laundering to determine whether to launder again, so
1736 * keep count.
1737 */
1738 if (starting_page_shortage > 0) {
1739 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1740 vm_pagequeue_lock(pq);
1741 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1742 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1743 if (page_shortage > 0) {
1744 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1745 VM_CNT_INC(v_pdshortfalls);
1746 } else if (vmd->vmd_laundry_request !=
1747 VM_LAUNDRY_SHORTFALL)
1748 vmd->vmd_laundry_request =
1749 VM_LAUNDRY_BACKGROUND;
1750 wakeup(&vmd->vmd_laundry_request);
1751 }
1752 vmd->vmd_clean_pages_freed +=
1753 starting_page_shortage - page_shortage;
1754 vm_pagequeue_unlock(pq);
1755 }
1756
1757 /*
1758 * Wakeup the swapout daemon if we didn't free the targeted number of
1759 * pages.
1760 */
1761 if (page_shortage > 0)
1762 vm_swapout_run();
1763
1764 /*
1765 * If the inactive queue scan fails repeatedly to meet its
1766 * target, kill the largest process.
1767 */
1768 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1769
1770 /*
1771 * Reclaim pages by swapping out idle processes, if configured to do so.
1772 */
1773 vm_swapout_run_idle();
1774
1775 /*
1776 * See the description of addl_page_shortage above.
1777 */
1778 *addl_shortage = addl_page_shortage + deficit;
1779
1780 return (page_shortage <= 0);
1781 }
1782
1783 static int vm_pageout_oom_vote;
1784
1785 /*
1786 * The pagedaemon threads randlomly select one to perform the
1787 * OOM. Trying to kill processes before all pagedaemons
1788 * failed to reach free target is premature.
1789 */
1790 static void
1791 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1792 int starting_page_shortage)
1793 {
1794 int old_vote;
1795
1796 if (starting_page_shortage <= 0 || starting_page_shortage !=
1797 page_shortage)
1798 vmd->vmd_oom_seq = 0;
1799 else
1800 vmd->vmd_oom_seq++;
1801 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1802 if (vmd->vmd_oom) {
1803 vmd->vmd_oom = FALSE;
1804 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1805 }
1806 return;
1807 }
1808
1809 /*
1810 * Do not follow the call sequence until OOM condition is
1811 * cleared.
1812 */
1813 vmd->vmd_oom_seq = 0;
1814
1815 if (vmd->vmd_oom)
1816 return;
1817
1818 vmd->vmd_oom = TRUE;
1819 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1820 if (old_vote != vm_ndomains - 1)
1821 return;
1822
1823 /*
1824 * The current pagedaemon thread is the last in the quorum to
1825 * start OOM. Initiate the selection and signaling of the
1826 * victim.
1827 */
1828 vm_pageout_oom(VM_OOM_MEM);
1829
1830 /*
1831 * After one round of OOM terror, recall our vote. On the
1832 * next pass, current pagedaemon would vote again if the low
1833 * memory condition is still there, due to vmd_oom being
1834 * false.
1835 */
1836 vmd->vmd_oom = FALSE;
1837 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1838 }
1839
1840 /*
1841 * The OOM killer is the page daemon's action of last resort when
1842 * memory allocation requests have been stalled for a prolonged period
1843 * of time because it cannot reclaim memory. This function computes
1844 * the approximate number of physical pages that could be reclaimed if
1845 * the specified address space is destroyed.
1846 *
1847 * Private, anonymous memory owned by the address space is the
1848 * principal resource that we expect to recover after an OOM kill.
1849 * Since the physical pages mapped by the address space's COW entries
1850 * are typically shared pages, they are unlikely to be released and so
1851 * they are not counted.
1852 *
1853 * To get to the point where the page daemon runs the OOM killer, its
1854 * efforts to write-back vnode-backed pages may have stalled. This
1855 * could be caused by a memory allocation deadlock in the write path
1856 * that might be resolved by an OOM kill. Therefore, physical pages
1857 * belonging to vnode-backed objects are counted, because they might
1858 * be freed without being written out first if the address space holds
1859 * the last reference to an unlinked vnode.
1860 *
1861 * Similarly, physical pages belonging to OBJT_PHYS objects are
1862 * counted because the address space might hold the last reference to
1863 * the object.
1864 */
1865 static long
1866 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1867 {
1868 vm_map_t map;
1869 vm_map_entry_t entry;
1870 vm_object_t obj;
1871 long res;
1872
1873 map = &vmspace->vm_map;
1874 KASSERT(!map->system_map, ("system map"));
1875 sx_assert(&map->lock, SA_LOCKED);
1876 res = 0;
1877 VM_MAP_ENTRY_FOREACH(entry, map) {
1878 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1879 continue;
1880 obj = entry->object.vm_object;
1881 if (obj == NULL)
1882 continue;
1883 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1884 obj->ref_count != 1)
1885 continue;
1886 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1887 (obj->flags & OBJ_SWAP) != 0)
1888 res += obj->resident_page_count;
1889 }
1890 return (res);
1891 }
1892
1893 static int vm_oom_ratelim_last;
1894 static int vm_oom_pf_secs = 10;
1895 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1896 "");
1897 static struct mtx vm_oom_ratelim_mtx;
1898
1899 void
1900 vm_pageout_oom(int shortage)
1901 {
1902 const char *reason;
1903 struct proc *p, *bigproc;
1904 vm_offset_t size, bigsize;
1905 struct thread *td;
1906 struct vmspace *vm;
1907 int now;
1908 bool breakout;
1909
1910 /*
1911 * For OOM requests originating from vm_fault(), there is a high
1912 * chance that a single large process faults simultaneously in
1913 * several threads. Also, on an active system running many
1914 * processes of middle-size, like buildworld, all of them
1915 * could fault almost simultaneously as well.
1916 *
1917 * To avoid killing too many processes, rate-limit OOMs
1918 * initiated by vm_fault() time-outs on the waits for free
1919 * pages.
1920 */
1921 mtx_lock(&vm_oom_ratelim_mtx);
1922 now = ticks;
1923 if (shortage == VM_OOM_MEM_PF &&
1924 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1925 mtx_unlock(&vm_oom_ratelim_mtx);
1926 return;
1927 }
1928 vm_oom_ratelim_last = now;
1929 mtx_unlock(&vm_oom_ratelim_mtx);
1930
1931 /*
1932 * We keep the process bigproc locked once we find it to keep anyone
1933 * from messing with it; however, there is a possibility of
1934 * deadlock if process B is bigproc and one of its child processes
1935 * attempts to propagate a signal to B while we are waiting for A's
1936 * lock while walking this list. To avoid this, we don't block on
1937 * the process lock but just skip a process if it is already locked.
1938 */
1939 bigproc = NULL;
1940 bigsize = 0;
1941 sx_slock(&allproc_lock);
1942 FOREACH_PROC_IN_SYSTEM(p) {
1943 PROC_LOCK(p);
1944
1945 /*
1946 * If this is a system, protected or killed process, skip it.
1947 */
1948 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1949 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1950 p->p_pid == 1 || P_KILLED(p) ||
1951 (p->p_pid < 48 && swap_pager_avail != 0)) {
1952 PROC_UNLOCK(p);
1953 continue;
1954 }
1955 /*
1956 * If the process is in a non-running type state,
1957 * don't touch it. Check all the threads individually.
1958 */
1959 breakout = false;
1960 FOREACH_THREAD_IN_PROC(p, td) {
1961 thread_lock(td);
1962 if (!TD_ON_RUNQ(td) &&
1963 !TD_IS_RUNNING(td) &&
1964 !TD_IS_SLEEPING(td) &&
1965 !TD_IS_SUSPENDED(td) &&
1966 !TD_IS_SWAPPED(td)) {
1967 thread_unlock(td);
1968 breakout = true;
1969 break;
1970 }
1971 thread_unlock(td);
1972 }
1973 if (breakout) {
1974 PROC_UNLOCK(p);
1975 continue;
1976 }
1977 /*
1978 * get the process size
1979 */
1980 vm = vmspace_acquire_ref(p);
1981 if (vm == NULL) {
1982 PROC_UNLOCK(p);
1983 continue;
1984 }
1985 _PHOLD_LITE(p);
1986 PROC_UNLOCK(p);
1987 sx_sunlock(&allproc_lock);
1988 if (!vm_map_trylock_read(&vm->vm_map)) {
1989 vmspace_free(vm);
1990 sx_slock(&allproc_lock);
1991 PRELE(p);
1992 continue;
1993 }
1994 size = vmspace_swap_count(vm);
1995 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1996 size += vm_pageout_oom_pagecount(vm);
1997 vm_map_unlock_read(&vm->vm_map);
1998 vmspace_free(vm);
1999 sx_slock(&allproc_lock);
2000
2001 /*
2002 * If this process is bigger than the biggest one,
2003 * remember it.
2004 */
2005 if (size > bigsize) {
2006 if (bigproc != NULL)
2007 PRELE(bigproc);
2008 bigproc = p;
2009 bigsize = size;
2010 } else {
2011 PRELE(p);
2012 }
2013 }
2014 sx_sunlock(&allproc_lock);
2015
2016 if (bigproc != NULL) {
2017 switch (shortage) {
2018 case VM_OOM_MEM:
2019 reason = "failed to reclaim memory";
2020 break;
2021 case VM_OOM_MEM_PF:
2022 reason = "a thread waited too long to allocate a page";
2023 break;
2024 case VM_OOM_SWAPZ:
2025 reason = "out of swap space";
2026 break;
2027 default:
2028 panic("unknown OOM reason %d", shortage);
2029 }
2030 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2031 panic("%s", reason);
2032 PROC_LOCK(bigproc);
2033 killproc(bigproc, reason);
2034 sched_nice(bigproc, PRIO_MIN);
2035 _PRELE(bigproc);
2036 PROC_UNLOCK(bigproc);
2037 }
2038 }
2039
2040 /*
2041 * Signal a free page shortage to subsystems that have registered an event
2042 * handler. Reclaim memory from UMA in the event of a severe shortage.
2043 * Return true if the free page count should be re-evaluated.
2044 */
2045 static bool
2046 vm_pageout_lowmem(void)
2047 {
2048 static int lowmem_ticks = 0;
2049 int last;
2050 bool ret;
2051
2052 ret = false;
2053
2054 last = atomic_load_int(&lowmem_ticks);
2055 while ((u_int)(ticks - last) / hz >= lowmem_period) {
2056 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2057 continue;
2058
2059 /*
2060 * Decrease registered cache sizes.
2061 */
2062 SDT_PROBE0(vm, , , vm__lowmem_scan);
2063 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2064
2065 /*
2066 * We do this explicitly after the caches have been
2067 * drained above.
2068 */
2069 uma_reclaim(UMA_RECLAIM_TRIM);
2070 ret = true;
2071 break;
2072 }
2073
2074 /*
2075 * Kick off an asynchronous reclaim of cached memory if one of the
2076 * page daemons is failing to keep up with demand. Use the "severe"
2077 * threshold instead of "min" to ensure that we do not blow away the
2078 * caches if a subset of the NUMA domains are depleted by kernel memory
2079 * allocations; the domainset iterators automatically skip domains
2080 * below the "min" threshold on the first pass.
2081 *
2082 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2083 * worry about kicking it too often.
2084 */
2085 if (vm_page_count_severe())
2086 uma_reclaim_wakeup();
2087
2088 return (ret);
2089 }
2090
2091 static void
2092 vm_pageout_worker(void *arg)
2093 {
2094 struct vm_domain *vmd;
2095 u_int ofree;
2096 int addl_shortage, domain, shortage;
2097 bool target_met;
2098
2099 domain = (uintptr_t)arg;
2100 vmd = VM_DOMAIN(domain);
2101 shortage = 0;
2102 target_met = true;
2103
2104 /*
2105 * XXXKIB It could be useful to bind pageout daemon threads to
2106 * the cores belonging to the domain, from which vm_page_array
2107 * is allocated.
2108 */
2109
2110 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2111 vmd->vmd_last_active_scan = ticks;
2112
2113 /*
2114 * The pageout daemon worker is never done, so loop forever.
2115 */
2116 while (TRUE) {
2117 vm_domain_pageout_lock(vmd);
2118
2119 /*
2120 * We need to clear wanted before we check the limits. This
2121 * prevents races with wakers who will check wanted after they
2122 * reach the limit.
2123 */
2124 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2125
2126 /*
2127 * Might the page daemon need to run again?
2128 */
2129 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2130 /*
2131 * Yes. If the scan failed to produce enough free
2132 * pages, sleep uninterruptibly for some time in the
2133 * hope that the laundry thread will clean some pages.
2134 */
2135 vm_domain_pageout_unlock(vmd);
2136 if (!target_met)
2137 pause("pwait", hz / VM_INACT_SCAN_RATE);
2138 } else {
2139 /*
2140 * No, sleep until the next wakeup or until pages
2141 * need to have their reference stats updated.
2142 */
2143 if (mtx_sleep(&vmd->vmd_pageout_wanted,
2144 vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2145 "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2146 VM_CNT_INC(v_pdwakeups);
2147 }
2148
2149 /* Prevent spurious wakeups by ensuring that wanted is set. */
2150 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2151
2152 /*
2153 * Use the controller to calculate how many pages to free in
2154 * this interval, and scan the inactive queue. If the lowmem
2155 * handlers appear to have freed up some pages, subtract the
2156 * difference from the inactive queue scan target.
2157 */
2158 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2159 if (shortage > 0) {
2160 ofree = vmd->vmd_free_count;
2161 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2162 shortage -= min(vmd->vmd_free_count - ofree,
2163 (u_int)shortage);
2164 target_met = vm_pageout_inactive(vmd, shortage,
2165 &addl_shortage);
2166 } else
2167 addl_shortage = 0;
2168
2169 /*
2170 * Scan the active queue. A positive value for shortage
2171 * indicates that we must aggressively deactivate pages to avoid
2172 * a shortfall.
2173 */
2174 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2175 vm_pageout_scan_active(vmd, shortage);
2176 }
2177 }
2178
2179 /*
2180 * vm_pageout_helper runs additional pageout daemons in times of high paging
2181 * activity.
2182 */
2183 static void
2184 vm_pageout_helper(void *arg)
2185 {
2186 struct vm_domain *vmd;
2187 int domain;
2188
2189 domain = (uintptr_t)arg;
2190 vmd = VM_DOMAIN(domain);
2191
2192 vm_domain_pageout_lock(vmd);
2193 for (;;) {
2194 msleep(&vmd->vmd_inactive_shortage,
2195 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2196 blockcount_release(&vmd->vmd_inactive_starting, 1);
2197
2198 vm_domain_pageout_unlock(vmd);
2199 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2200 vm_domain_pageout_lock(vmd);
2201
2202 /*
2203 * Release the running count while the pageout lock is held to
2204 * prevent wakeup races.
2205 */
2206 blockcount_release(&vmd->vmd_inactive_running, 1);
2207 }
2208 }
2209
2210 static int
2211 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2212 {
2213 unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2214
2215 if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2216 return (0);
2217
2218 /*
2219 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2220 * total number of CPUs in the system as an upper limit.
2221 */
2222 if (pageout_cpus_per_thread < 2)
2223 pageout_cpus_per_thread = 2;
2224 else if (pageout_cpus_per_thread > mp_ncpus)
2225 pageout_cpus_per_thread = mp_ncpus;
2226
2227 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2228 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2229
2230 /* Pagedaemons are not run in empty domains. */
2231 eligible_cpus = mp_ncpus;
2232 for (unsigned i = 0; i < vm_ndomains; i++)
2233 if (VM_DOMAIN_EMPTY(i))
2234 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2235
2236 /*
2237 * Assign a portion of the total pageout threads to this domain
2238 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2239 * domain. In asymmetric NUMA systems, domains with more CPUs may be
2240 * allocated more threads than domains with fewer CPUs.
2241 */
2242 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2243 }
2244
2245 /*
2246 * Initialize basic pageout daemon settings. See the comment above the
2247 * definition of vm_domain for some explanation of how these thresholds are
2248 * used.
2249 */
2250 static void
2251 vm_pageout_init_domain(int domain)
2252 {
2253 struct vm_domain *vmd;
2254 struct sysctl_oid *oid;
2255
2256 vmd = VM_DOMAIN(domain);
2257 vmd->vmd_interrupt_free_min = 2;
2258
2259 /*
2260 * v_free_reserved needs to include enough for the largest
2261 * swap pager structures plus enough for any pv_entry structs
2262 * when paging.
2263 */
2264 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2265 vmd->vmd_interrupt_free_min;
2266 vmd->vmd_free_reserved = vm_pageout_page_count +
2267 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2268 vmd->vmd_free_min = vmd->vmd_page_count / 200;
2269 vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2270 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2271 vmd->vmd_free_min += vmd->vmd_free_reserved;
2272 vmd->vmd_free_severe += vmd->vmd_free_reserved;
2273 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2274 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2275 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2276
2277 /*
2278 * Set the default wakeup threshold to be 10% below the paging
2279 * target. This keeps the steady state out of shortfall.
2280 */
2281 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2282
2283 /*
2284 * Target amount of memory to move out of the laundry queue during a
2285 * background laundering. This is proportional to the amount of system
2286 * memory.
2287 */
2288 vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2289 vmd->vmd_free_min) / 10;
2290
2291 /* Initialize the pageout daemon pid controller. */
2292 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2293 vmd->vmd_free_target, PIDCTRL_BOUND,
2294 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2295 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2296 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2297 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2298
2299 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2300 }
2301
2302 static void
2303 vm_pageout_init(void)
2304 {
2305 u_long freecount;
2306 int i;
2307
2308 /*
2309 * Initialize some paging parameters.
2310 */
2311 if (vm_cnt.v_page_count < 2000)
2312 vm_pageout_page_count = 8;
2313
2314 freecount = 0;
2315 for (i = 0; i < vm_ndomains; i++) {
2316 struct vm_domain *vmd;
2317
2318 vm_pageout_init_domain(i);
2319 vmd = VM_DOMAIN(i);
2320 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2321 vm_cnt.v_free_target += vmd->vmd_free_target;
2322 vm_cnt.v_free_min += vmd->vmd_free_min;
2323 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2324 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2325 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2326 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2327 freecount += vmd->vmd_free_count;
2328 }
2329
2330 /*
2331 * Set interval in seconds for active scan. We want to visit each
2332 * page at least once every ten minutes. This is to prevent worst
2333 * case paging behaviors with stale active LRU.
2334 */
2335 if (vm_pageout_update_period == 0)
2336 vm_pageout_update_period = 600;
2337
2338 /*
2339 * Set the maximum number of user-wired virtual pages. Historically the
2340 * main source of such pages was mlock(2) and mlockall(2). Hypervisors
2341 * may also request user-wired memory.
2342 */
2343 if (vm_page_max_user_wired == 0)
2344 vm_page_max_user_wired = 4 * freecount / 5;
2345 }
2346
2347 /*
2348 * vm_pageout is the high level pageout daemon.
2349 */
2350 static void
2351 vm_pageout(void)
2352 {
2353 struct proc *p;
2354 struct thread *td;
2355 int error, first, i, j, pageout_threads;
2356
2357 p = curproc;
2358 td = curthread;
2359
2360 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2361 swap_pager_swap_init();
2362 for (first = -1, i = 0; i < vm_ndomains; i++) {
2363 if (VM_DOMAIN_EMPTY(i)) {
2364 if (bootverbose)
2365 printf("domain %d empty; skipping pageout\n",
2366 i);
2367 continue;
2368 }
2369 if (first == -1)
2370 first = i;
2371 else {
2372 error = kthread_add(vm_pageout_worker,
2373 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2374 if (error != 0)
2375 panic("starting pageout for domain %d: %d\n",
2376 i, error);
2377 }
2378 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2379 for (j = 0; j < pageout_threads - 1; j++) {
2380 error = kthread_add(vm_pageout_helper,
2381 (void *)(uintptr_t)i, p, NULL, 0, 0,
2382 "dom%d helper%d", i, j);
2383 if (error != 0)
2384 panic("starting pageout helper %d for domain "
2385 "%d: %d\n", j, i, error);
2386 }
2387 error = kthread_add(vm_pageout_laundry_worker,
2388 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2389 if (error != 0)
2390 panic("starting laundry for domain %d: %d", i, error);
2391 }
2392 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2393 if (error != 0)
2394 panic("starting uma_reclaim helper, error %d\n", error);
2395
2396 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2397 vm_pageout_worker((void *)(uintptr_t)first);
2398 }
2399
2400 /*
2401 * Perform an advisory wakeup of the page daemon.
2402 */
2403 void
2404 pagedaemon_wakeup(int domain)
2405 {
2406 struct vm_domain *vmd;
2407
2408 vmd = VM_DOMAIN(domain);
2409 vm_domain_pageout_assert_unlocked(vmd);
2410 if (curproc == pageproc)
2411 return;
2412
2413 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2414 vm_domain_pageout_lock(vmd);
2415 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2416 wakeup(&vmd->vmd_pageout_wanted);
2417 vm_domain_pageout_unlock(vmd);
2418 }
2419 }
Cache object: 71e89ae4bfd9a3ac5416b2e45811cfac
|