FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_pageout.c 254622 2013-08-21 22:39:19Z jeff $");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/smp.h>
94 #include <sys/vnode.h>
95 #include <sys/vmmeter.h>
96 #include <sys/rwlock.h>
97 #include <sys/sx.h>
98 #include <sys/sysctl.h>
99
100 #include <vm/vm.h>
101 #include <vm/vm_param.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_phys.h>
108 #include <vm/swap_pager.h>
109 #include <vm/vm_extern.h>
110 #include <vm/uma.h>
111
112 /*
113 * System initialization
114 */
115
116 /* the kernel process "vm_pageout"*/
117 static void vm_pageout(void);
118 static int vm_pageout_clean(vm_page_t);
119 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
120 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
121
122 struct proc *pageproc;
123
124 static struct kproc_desc page_kp = {
125 "pagedaemon",
126 vm_pageout,
127 &pageproc
128 };
129 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
130 &page_kp);
131
132 #if !defined(NO_SWAPPING)
133 /* the kernel process "vm_daemon"*/
134 static void vm_daemon(void);
135 static struct proc *vmproc;
136
137 static struct kproc_desc vm_kp = {
138 "vmdaemon",
139 vm_daemon,
140 &vmproc
141 };
142 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
143 #endif
144
145
146 int vm_pages_needed; /* Event on which pageout daemon sleeps */
147 int vm_pageout_deficit; /* Estimated number of pages deficit */
148 int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */
149 int vm_pageout_wakeup_thresh;
150
151 #if !defined(NO_SWAPPING)
152 static int vm_pageout_req_swapout; /* XXX */
153 static int vm_daemon_needed;
154 static struct mtx vm_daemon_mtx;
155 /* Allow for use by vm_pageout before vm_daemon is initialized. */
156 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
157 #endif
158 static int vm_max_launder = 32;
159 static int vm_pageout_update_period;
160 static int defer_swap_pageouts;
161 static int disable_swap_pageouts;
162 static int lowmem_period = 10;
163 static int lowmem_ticks;
164
165 #if defined(NO_SWAPPING)
166 static int vm_swap_enabled = 0;
167 static int vm_swap_idle_enabled = 0;
168 #else
169 static int vm_swap_enabled = 1;
170 static int vm_swap_idle_enabled = 0;
171 #endif
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
174 CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
175 "free page threshold for waking up the pageout daemon");
176
177 SYSCTL_INT(_vm, OID_AUTO, max_launder,
178 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
181 CTLFLAG_RW, &vm_pageout_update_period, 0,
182 "Maximum active LRU update period");
183
184 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
185 "Low memory callback period");
186
187 #if defined(NO_SWAPPING)
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #else
193 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
194 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
195 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
196 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
197 #endif
198
199 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
200 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
201
202 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
203 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
204
205 static int pageout_lock_miss;
206 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
207 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
208
209 #define VM_PAGEOUT_PAGE_COUNT 16
210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211
212 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
213 SYSCTL_INT(_vm, OID_AUTO, max_wired,
214 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
215
216 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
217 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
218 vm_paddr_t);
219 #if !defined(NO_SWAPPING)
220 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
221 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
222 static void vm_req_vmdaemon(int req);
223 #endif
224 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
225
226 /*
227 * Initialize a dummy page for marking the caller's place in the specified
228 * paging queue. In principle, this function only needs to set the flag
229 * PG_MARKER. Nonetheless, it wirte busies and initializes the hold count
230 * to one as safety precautions.
231 */
232 static void
233 vm_pageout_init_marker(vm_page_t marker, u_short queue)
234 {
235
236 bzero(marker, sizeof(*marker));
237 marker->flags = PG_MARKER;
238 marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
239 marker->queue = queue;
240 marker->hold_count = 1;
241 }
242
243 /*
244 * vm_pageout_fallback_object_lock:
245 *
246 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
247 * known to have failed and page queue must be either PQ_ACTIVE or
248 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues
249 * while locking the vm object. Use marker page to detect page queue
250 * changes and maintain notion of next page on page queue. Return
251 * TRUE if no changes were detected, FALSE otherwise. vm object is
252 * locked on return.
253 *
254 * This function depends on both the lock portion of struct vm_object
255 * and normal struct vm_page being type stable.
256 */
257 static boolean_t
258 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
259 {
260 struct vm_page marker;
261 struct vm_pagequeue *pq;
262 boolean_t unchanged;
263 u_short queue;
264 vm_object_t object;
265
266 queue = m->queue;
267 vm_pageout_init_marker(&marker, queue);
268 pq = vm_page_pagequeue(m);
269 object = m->object;
270
271 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
272 vm_pagequeue_unlock(pq);
273 vm_page_unlock(m);
274 VM_OBJECT_WLOCK(object);
275 vm_page_lock(m);
276 vm_pagequeue_lock(pq);
277
278 /* Page queue might have changed. */
279 *next = TAILQ_NEXT(&marker, plinks.q);
280 unchanged = (m->queue == queue &&
281 m->object == object &&
282 &marker == TAILQ_NEXT(m, plinks.q));
283 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
284 return (unchanged);
285 }
286
287 /*
288 * Lock the page while holding the page queue lock. Use marker page
289 * to detect page queue changes and maintain notion of next page on
290 * page queue. Return TRUE if no changes were detected, FALSE
291 * otherwise. The page is locked on return. The page queue lock might
292 * be dropped and reacquired.
293 *
294 * This function depends on normal struct vm_page being type stable.
295 */
296 static boolean_t
297 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
298 {
299 struct vm_page marker;
300 struct vm_pagequeue *pq;
301 boolean_t unchanged;
302 u_short queue;
303
304 vm_page_lock_assert(m, MA_NOTOWNED);
305 if (vm_page_trylock(m))
306 return (TRUE);
307
308 queue = m->queue;
309 vm_pageout_init_marker(&marker, queue);
310 pq = vm_page_pagequeue(m);
311
312 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
313 vm_pagequeue_unlock(pq);
314 vm_page_lock(m);
315 vm_pagequeue_lock(pq);
316
317 /* Page queue might have changed. */
318 *next = TAILQ_NEXT(&marker, plinks.q);
319 unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
320 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
321 return (unchanged);
322 }
323
324 /*
325 * vm_pageout_clean:
326 *
327 * Clean the page and remove it from the laundry.
328 *
329 * We set the busy bit to cause potential page faults on this page to
330 * block. Note the careful timing, however, the busy bit isn't set till
331 * late and we cannot do anything that will mess with the page.
332 */
333 static int
334 vm_pageout_clean(vm_page_t m)
335 {
336 vm_object_t object;
337 vm_page_t mc[2*vm_pageout_page_count], pb, ps;
338 int pageout_count;
339 int ib, is, page_base;
340 vm_pindex_t pindex = m->pindex;
341
342 vm_page_lock_assert(m, MA_OWNED);
343 object = m->object;
344 VM_OBJECT_ASSERT_WLOCKED(object);
345
346 /*
347 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
348 * with the new swapper, but we could have serious problems paging
349 * out other object types if there is insufficient memory.
350 *
351 * Unfortunately, checking free memory here is far too late, so the
352 * check has been moved up a procedural level.
353 */
354
355 /*
356 * Can't clean the page if it's busy or held.
357 */
358 vm_page_assert_unbusied(m);
359 KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
360 vm_page_unlock(m);
361
362 mc[vm_pageout_page_count] = pb = ps = m;
363 pageout_count = 1;
364 page_base = vm_pageout_page_count;
365 ib = 1;
366 is = 1;
367
368 /*
369 * Scan object for clusterable pages.
370 *
371 * We can cluster ONLY if: ->> the page is NOT
372 * clean, wired, busy, held, or mapped into a
373 * buffer, and one of the following:
374 * 1) The page is inactive, or a seldom used
375 * active page.
376 * -or-
377 * 2) we force the issue.
378 *
379 * During heavy mmap/modification loads the pageout
380 * daemon can really fragment the underlying file
381 * due to flushing pages out of order and not trying
382 * align the clusters (which leave sporatic out-of-order
383 * holes). To solve this problem we do the reverse scan
384 * first and attempt to align our cluster, then do a
385 * forward scan if room remains.
386 */
387 more:
388 while (ib && pageout_count < vm_pageout_page_count) {
389 vm_page_t p;
390
391 if (ib > pindex) {
392 ib = 0;
393 break;
394 }
395
396 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
397 ib = 0;
398 break;
399 }
400 vm_page_lock(p);
401 vm_page_test_dirty(p);
402 if (p->dirty == 0 ||
403 p->queue != PQ_INACTIVE ||
404 p->hold_count != 0) { /* may be undergoing I/O */
405 vm_page_unlock(p);
406 ib = 0;
407 break;
408 }
409 vm_page_unlock(p);
410 mc[--page_base] = pb = p;
411 ++pageout_count;
412 ++ib;
413 /*
414 * alignment boundry, stop here and switch directions. Do
415 * not clear ib.
416 */
417 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418 break;
419 }
420
421 while (pageout_count < vm_pageout_page_count &&
422 pindex + is < object->size) {
423 vm_page_t p;
424
425 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
426 break;
427 vm_page_lock(p);
428 vm_page_test_dirty(p);
429 if (p->dirty == 0 ||
430 p->queue != PQ_INACTIVE ||
431 p->hold_count != 0) { /* may be undergoing I/O */
432 vm_page_unlock(p);
433 break;
434 }
435 vm_page_unlock(p);
436 mc[page_base + pageout_count] = ps = p;
437 ++pageout_count;
438 ++is;
439 }
440
441 /*
442 * If we exhausted our forward scan, continue with the reverse scan
443 * when possible, even past a page boundry. This catches boundry
444 * conditions.
445 */
446 if (ib && pageout_count < vm_pageout_page_count)
447 goto more;
448
449 /*
450 * we allow reads during pageouts...
451 */
452 return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
453 NULL));
454 }
455
456 /*
457 * vm_pageout_flush() - launder the given pages
458 *
459 * The given pages are laundered. Note that we setup for the start of
460 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
461 * reference count all in here rather then in the parent. If we want
462 * the parent to do more sophisticated things we may have to change
463 * the ordering.
464 *
465 * Returned runlen is the count of pages between mreq and first
466 * page after mreq with status VM_PAGER_AGAIN.
467 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468 * for any page in runlen set.
469 */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472 boolean_t *eio)
473 {
474 vm_object_t object = mc[0]->object;
475 int pageout_status[count];
476 int numpagedout = 0;
477 int i, runlen;
478
479 VM_OBJECT_ASSERT_WLOCKED(object);
480
481 /*
482 * Initiate I/O. Bump the vm_page_t->busy counter and
483 * mark the pages read-only.
484 *
485 * We do not have to fixup the clean/dirty bits here... we can
486 * allow the pager to do it after the I/O completes.
487 *
488 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489 * edge case with file fragments.
490 */
491 for (i = 0; i < count; i++) {
492 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
493 ("vm_pageout_flush: partially invalid page %p index %d/%d",
494 mc[i], i, count));
495 vm_page_sbusy(mc[i]);
496 pmap_remove_write(mc[i]);
497 }
498 vm_object_pip_add(object, count);
499
500 vm_pager_put_pages(object, mc, count, flags, pageout_status);
501
502 runlen = count - mreq;
503 if (eio != NULL)
504 *eio = FALSE;
505 for (i = 0; i < count; i++) {
506 vm_page_t mt = mc[i];
507
508 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509 !pmap_page_is_write_mapped(mt),
510 ("vm_pageout_flush: page %p is not write protected", mt));
511 switch (pageout_status[i]) {
512 case VM_PAGER_OK:
513 case VM_PAGER_PEND:
514 numpagedout++;
515 break;
516 case VM_PAGER_BAD:
517 /*
518 * Page outside of range of object. Right now we
519 * essentially lose the changes by pretending it
520 * worked.
521 */
522 vm_page_undirty(mt);
523 break;
524 case VM_PAGER_ERROR:
525 case VM_PAGER_FAIL:
526 /*
527 * If page couldn't be paged out, then reactivate the
528 * page so it doesn't clog the inactive list. (We
529 * will try paging out it again later).
530 */
531 vm_page_lock(mt);
532 vm_page_activate(mt);
533 vm_page_unlock(mt);
534 if (eio != NULL && i >= mreq && i - mreq < runlen)
535 *eio = TRUE;
536 break;
537 case VM_PAGER_AGAIN:
538 if (i >= mreq && i - mreq < runlen)
539 runlen = i - mreq;
540 break;
541 }
542
543 /*
544 * If the operation is still going, leave the page busy to
545 * block all other accesses. Also, leave the paging in
546 * progress indicator set so that we don't attempt an object
547 * collapse.
548 */
549 if (pageout_status[i] != VM_PAGER_PEND) {
550 vm_object_pip_wakeup(object);
551 vm_page_sunbusy(mt);
552 if (vm_page_count_severe()) {
553 vm_page_lock(mt);
554 vm_page_try_to_cache(mt);
555 vm_page_unlock(mt);
556 }
557 }
558 }
559 if (prunlen != NULL)
560 *prunlen = runlen;
561 return (numpagedout);
562 }
563
564 static boolean_t
565 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
566 vm_paddr_t high)
567 {
568 struct mount *mp;
569 struct vnode *vp;
570 vm_object_t object;
571 vm_paddr_t pa;
572 vm_page_t m, m_tmp, next;
573
574 vm_pagequeue_lock(pq);
575 TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
576 if ((m->flags & PG_MARKER) != 0)
577 continue;
578 pa = VM_PAGE_TO_PHYS(m);
579 if (pa < low || pa + PAGE_SIZE > high)
580 continue;
581 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
582 vm_page_unlock(m);
583 continue;
584 }
585 object = m->object;
586 if ((!VM_OBJECT_TRYWLOCK(object) &&
587 (!vm_pageout_fallback_object_lock(m, &next) ||
588 m->hold_count != 0)) || vm_page_busied(m)) {
589 vm_page_unlock(m);
590 VM_OBJECT_WUNLOCK(object);
591 continue;
592 }
593 vm_page_test_dirty(m);
594 if (m->dirty == 0 && object->ref_count != 0)
595 pmap_remove_all(m);
596 if (m->dirty != 0) {
597 vm_page_unlock(m);
598 if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
599 VM_OBJECT_WUNLOCK(object);
600 continue;
601 }
602 if (object->type == OBJT_VNODE) {
603 vm_pagequeue_unlock(pq);
604 vp = object->handle;
605 vm_object_reference_locked(object);
606 VM_OBJECT_WUNLOCK(object);
607 (void)vn_start_write(vp, &mp, V_WAIT);
608 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
609 VM_OBJECT_WLOCK(object);
610 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
611 VM_OBJECT_WUNLOCK(object);
612 VOP_UNLOCK(vp, 0);
613 vm_object_deallocate(object);
614 vn_finished_write(mp);
615 return (TRUE);
616 } else if (object->type == OBJT_SWAP ||
617 object->type == OBJT_DEFAULT) {
618 vm_pagequeue_unlock(pq);
619 m_tmp = m;
620 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
621 0, NULL, NULL);
622 VM_OBJECT_WUNLOCK(object);
623 return (TRUE);
624 }
625 } else {
626 /*
627 * Dequeue here to prevent lock recursion in
628 * vm_page_cache().
629 */
630 vm_page_dequeue_locked(m);
631 vm_page_cache(m);
632 vm_page_unlock(m);
633 }
634 VM_OBJECT_WUNLOCK(object);
635 }
636 vm_pagequeue_unlock(pq);
637 return (FALSE);
638 }
639
640 /*
641 * Increase the number of cached pages. The specified value, "tries",
642 * determines which categories of pages are cached:
643 *
644 * 0: All clean, inactive pages within the specified physical address range
645 * are cached. Will not sleep.
646 * 1: The vm_lowmem handlers are called. All inactive pages within
647 * the specified physical address range are cached. May sleep.
648 * 2: The vm_lowmem handlers are called. All inactive and active pages
649 * within the specified physical address range are cached. May sleep.
650 */
651 void
652 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
653 {
654 int actl, actmax, inactl, inactmax, dom, initial_dom;
655 static int start_dom = 0;
656
657 if (tries > 0) {
658 /*
659 * Decrease registered cache sizes. The vm_lowmem handlers
660 * may acquire locks and/or sleep, so they can only be invoked
661 * when "tries" is greater than zero.
662 */
663 EVENTHANDLER_INVOKE(vm_lowmem, 0);
664
665 /*
666 * We do this explicitly after the caches have been drained
667 * above.
668 */
669 uma_reclaim();
670 }
671
672 /*
673 * Make the next scan start on the next domain.
674 */
675 initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
676
677 inactl = 0;
678 inactmax = cnt.v_inactive_count;
679 actl = 0;
680 actmax = tries < 2 ? 0 : cnt.v_active_count;
681 dom = initial_dom;
682
683 /*
684 * Scan domains in round-robin order, first inactive queues,
685 * then active. Since domain usually owns large physically
686 * contiguous chunk of memory, it makes sense to completely
687 * exhaust one domain before switching to next, while growing
688 * the pool of contiguous physical pages.
689 *
690 * Do not even start launder a domain which cannot contain
691 * the specified address range, as indicated by segments
692 * constituting the domain.
693 */
694 again:
695 if (inactl < inactmax) {
696 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
697 low, high) &&
698 vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
699 tries, low, high)) {
700 inactl++;
701 goto again;
702 }
703 if (++dom == vm_ndomains)
704 dom = 0;
705 if (dom != initial_dom)
706 goto again;
707 }
708 if (actl < actmax) {
709 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
710 low, high) &&
711 vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
712 tries, low, high)) {
713 actl++;
714 goto again;
715 }
716 if (++dom == vm_ndomains)
717 dom = 0;
718 if (dom != initial_dom)
719 goto again;
720 }
721 }
722
723 #if !defined(NO_SWAPPING)
724 /*
725 * vm_pageout_object_deactivate_pages
726 *
727 * Deactivate enough pages to satisfy the inactive target
728 * requirements.
729 *
730 * The object and map must be locked.
731 */
732 static void
733 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
734 long desired)
735 {
736 vm_object_t backing_object, object;
737 vm_page_t p;
738 int act_delta, remove_mode;
739
740 VM_OBJECT_ASSERT_LOCKED(first_object);
741 if ((first_object->flags & OBJ_FICTITIOUS) != 0)
742 return;
743 for (object = first_object;; object = backing_object) {
744 if (pmap_resident_count(pmap) <= desired)
745 goto unlock_return;
746 VM_OBJECT_ASSERT_LOCKED(object);
747 if ((object->flags & OBJ_UNMANAGED) != 0 ||
748 object->paging_in_progress != 0)
749 goto unlock_return;
750
751 remove_mode = 0;
752 if (object->shadow_count > 1)
753 remove_mode = 1;
754 /*
755 * Scan the object's entire memory queue.
756 */
757 TAILQ_FOREACH(p, &object->memq, listq) {
758 if (pmap_resident_count(pmap) <= desired)
759 goto unlock_return;
760 if (vm_page_busied(p))
761 continue;
762 PCPU_INC(cnt.v_pdpages);
763 vm_page_lock(p);
764 if (p->wire_count != 0 || p->hold_count != 0 ||
765 !pmap_page_exists_quick(pmap, p)) {
766 vm_page_unlock(p);
767 continue;
768 }
769 act_delta = pmap_ts_referenced(p);
770 if ((p->aflags & PGA_REFERENCED) != 0) {
771 if (act_delta == 0)
772 act_delta = 1;
773 vm_page_aflag_clear(p, PGA_REFERENCED);
774 }
775 if (p->queue != PQ_ACTIVE && act_delta != 0) {
776 vm_page_activate(p);
777 p->act_count += act_delta;
778 } else if (p->queue == PQ_ACTIVE) {
779 if (act_delta == 0) {
780 p->act_count -= min(p->act_count,
781 ACT_DECLINE);
782 if (!remove_mode && p->act_count == 0) {
783 pmap_remove_all(p);
784 vm_page_deactivate(p);
785 } else
786 vm_page_requeue(p);
787 } else {
788 vm_page_activate(p);
789 if (p->act_count < ACT_MAX -
790 ACT_ADVANCE)
791 p->act_count += ACT_ADVANCE;
792 vm_page_requeue(p);
793 }
794 } else if (p->queue == PQ_INACTIVE)
795 pmap_remove_all(p);
796 vm_page_unlock(p);
797 }
798 if ((backing_object = object->backing_object) == NULL)
799 goto unlock_return;
800 VM_OBJECT_RLOCK(backing_object);
801 if (object != first_object)
802 VM_OBJECT_RUNLOCK(object);
803 }
804 unlock_return:
805 if (object != first_object)
806 VM_OBJECT_RUNLOCK(object);
807 }
808
809 /*
810 * deactivate some number of pages in a map, try to do it fairly, but
811 * that is really hard to do.
812 */
813 static void
814 vm_pageout_map_deactivate_pages(map, desired)
815 vm_map_t map;
816 long desired;
817 {
818 vm_map_entry_t tmpe;
819 vm_object_t obj, bigobj;
820 int nothingwired;
821
822 if (!vm_map_trylock(map))
823 return;
824
825 bigobj = NULL;
826 nothingwired = TRUE;
827
828 /*
829 * first, search out the biggest object, and try to free pages from
830 * that.
831 */
832 tmpe = map->header.next;
833 while (tmpe != &map->header) {
834 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
835 obj = tmpe->object.vm_object;
836 if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
837 if (obj->shadow_count <= 1 &&
838 (bigobj == NULL ||
839 bigobj->resident_page_count < obj->resident_page_count)) {
840 if (bigobj != NULL)
841 VM_OBJECT_RUNLOCK(bigobj);
842 bigobj = obj;
843 } else
844 VM_OBJECT_RUNLOCK(obj);
845 }
846 }
847 if (tmpe->wired_count > 0)
848 nothingwired = FALSE;
849 tmpe = tmpe->next;
850 }
851
852 if (bigobj != NULL) {
853 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
854 VM_OBJECT_RUNLOCK(bigobj);
855 }
856 /*
857 * Next, hunt around for other pages to deactivate. We actually
858 * do this search sort of wrong -- .text first is not the best idea.
859 */
860 tmpe = map->header.next;
861 while (tmpe != &map->header) {
862 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
863 break;
864 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
865 obj = tmpe->object.vm_object;
866 if (obj != NULL) {
867 VM_OBJECT_RLOCK(obj);
868 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
869 VM_OBJECT_RUNLOCK(obj);
870 }
871 }
872 tmpe = tmpe->next;
873 }
874
875 /*
876 * Remove all mappings if a process is swapped out, this will free page
877 * table pages.
878 */
879 if (desired == 0 && nothingwired) {
880 pmap_remove(vm_map_pmap(map), vm_map_min(map),
881 vm_map_max(map));
882 }
883 vm_map_unlock(map);
884 }
885 #endif /* !defined(NO_SWAPPING) */
886
887 /*
888 * vm_pageout_scan does the dirty work for the pageout daemon.
889 *
890 * pass 0 - Update active LRU/deactivate pages
891 * pass 1 - Move inactive to cache or free
892 * pass 2 - Launder dirty pages
893 */
894 static void
895 vm_pageout_scan(struct vm_domain *vmd, int pass)
896 {
897 vm_page_t m, next;
898 struct vm_pagequeue *pq;
899 int page_shortage, maxscan, pcount;
900 int addl_page_shortage;
901 vm_object_t object;
902 int act_delta;
903 int vnodes_skipped = 0;
904 int maxlaunder;
905 boolean_t queues_locked;
906
907 /*
908 * If we need to reclaim memory ask kernel caches to return
909 * some. We rate limit to avoid thrashing.
910 */
911 if (vmd == &vm_dom[0] && pass > 0 &&
912 lowmem_ticks + (lowmem_period * hz) < ticks) {
913 /*
914 * Decrease registered cache sizes.
915 */
916 EVENTHANDLER_INVOKE(vm_lowmem, 0);
917 /*
918 * We do this explicitly after the caches have been
919 * drained above.
920 */
921 uma_reclaim();
922 lowmem_ticks = ticks;
923 }
924
925 /*
926 * The addl_page_shortage is the number of temporarily
927 * stuck pages in the inactive queue. In other words, the
928 * number of pages from the inactive count that should be
929 * discounted in setting the target for the active queue scan.
930 */
931 addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
932
933 /*
934 * Calculate the number of pages we want to either free or move
935 * to the cache.
936 */
937 page_shortage = vm_paging_target() + addl_page_shortage;
938
939 /*
940 * maxlaunder limits the number of dirty pages we flush per scan.
941 * For most systems a smaller value (16 or 32) is more robust under
942 * extreme memory and disk pressure because any unnecessary writes
943 * to disk can result in extreme performance degredation. However,
944 * systems with excessive dirty pages (especially when MAP_NOSYNC is
945 * used) will die horribly with limited laundering. If the pageout
946 * daemon cannot clean enough pages in the first pass, we let it go
947 * all out in succeeding passes.
948 */
949 if ((maxlaunder = vm_max_launder) <= 1)
950 maxlaunder = 1;
951 if (pass > 1)
952 maxlaunder = 10000;
953
954 /*
955 * Start scanning the inactive queue for pages we can move to the
956 * cache or free. The scan will stop when the target is reached or
957 * we have scanned the entire inactive queue. Note that m->act_count
958 * is not used to form decisions for the inactive queue, only for the
959 * active queue.
960 */
961 pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
962 maxscan = pq->pq_cnt;
963 vm_pagequeue_lock(pq);
964 queues_locked = TRUE;
965 for (m = TAILQ_FIRST(&pq->pq_pl);
966 m != NULL && maxscan-- > 0 && page_shortage > 0;
967 m = next) {
968 vm_pagequeue_assert_locked(pq);
969 KASSERT(queues_locked, ("unlocked queues"));
970 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
971
972 PCPU_INC(cnt.v_pdpages);
973 next = TAILQ_NEXT(m, plinks.q);
974
975 /*
976 * skip marker pages
977 */
978 if (m->flags & PG_MARKER)
979 continue;
980
981 KASSERT((m->flags & PG_FICTITIOUS) == 0,
982 ("Fictitious page %p cannot be in inactive queue", m));
983 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
984 ("Unmanaged page %p cannot be in inactive queue", m));
985
986 /*
987 * The page or object lock acquisitions fail if the
988 * page was removed from the queue or moved to a
989 * different position within the queue. In either
990 * case, addl_page_shortage should not be incremented.
991 */
992 if (!vm_pageout_page_lock(m, &next)) {
993 vm_page_unlock(m);
994 continue;
995 }
996 object = m->object;
997 if (!VM_OBJECT_TRYWLOCK(object) &&
998 !vm_pageout_fallback_object_lock(m, &next)) {
999 vm_page_unlock(m);
1000 VM_OBJECT_WUNLOCK(object);
1001 continue;
1002 }
1003
1004 /*
1005 * Don't mess with busy pages, keep them at at the
1006 * front of the queue, most likely they are being
1007 * paged out. Increment addl_page_shortage for busy
1008 * pages, because they may leave the inactive queue
1009 * shortly after page scan is finished.
1010 */
1011 if (vm_page_busied(m)) {
1012 vm_page_unlock(m);
1013 VM_OBJECT_WUNLOCK(object);
1014 addl_page_shortage++;
1015 continue;
1016 }
1017
1018 /*
1019 * We unlock the inactive page queue, invalidating the
1020 * 'next' pointer. Use our marker to remember our
1021 * place.
1022 */
1023 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1024 vm_pagequeue_unlock(pq);
1025 queues_locked = FALSE;
1026
1027 /*
1028 * We bump the activation count if the page has been
1029 * referenced while in the inactive queue. This makes
1030 * it less likely that the page will be added back to the
1031 * inactive queue prematurely again. Here we check the
1032 * page tables (or emulated bits, if any), given the upper
1033 * level VM system not knowing anything about existing
1034 * references.
1035 */
1036 act_delta = 0;
1037 if ((m->aflags & PGA_REFERENCED) != 0) {
1038 vm_page_aflag_clear(m, PGA_REFERENCED);
1039 act_delta = 1;
1040 }
1041 if (object->ref_count != 0) {
1042 act_delta += pmap_ts_referenced(m);
1043 } else {
1044 KASSERT(!pmap_page_is_mapped(m),
1045 ("vm_pageout_scan: page %p is mapped", m));
1046 }
1047
1048 /*
1049 * If the upper level VM system knows about any page
1050 * references, we reactivate the page or requeue it.
1051 */
1052 if (act_delta != 0) {
1053 if (object->ref_count) {
1054 vm_page_activate(m);
1055 m->act_count += act_delta + ACT_ADVANCE;
1056 } else {
1057 vm_pagequeue_lock(pq);
1058 queues_locked = TRUE;
1059 vm_page_requeue_locked(m);
1060 }
1061 VM_OBJECT_WUNLOCK(object);
1062 vm_page_unlock(m);
1063 goto relock_queues;
1064 }
1065
1066 if (m->hold_count != 0) {
1067 vm_page_unlock(m);
1068 VM_OBJECT_WUNLOCK(object);
1069
1070 /*
1071 * Held pages are essentially stuck in the
1072 * queue. So, they ought to be discounted
1073 * from the inactive count. See the
1074 * calculation of the page_shortage for the
1075 * loop over the active queue below.
1076 */
1077 addl_page_shortage++;
1078 goto relock_queues;
1079 }
1080
1081 /*
1082 * If the page appears to be clean at the machine-independent
1083 * layer, then remove all of its mappings from the pmap in
1084 * anticipation of placing it onto the cache queue. If,
1085 * however, any of the page's mappings allow write access,
1086 * then the page may still be modified until the last of those
1087 * mappings are removed.
1088 */
1089 vm_page_test_dirty(m);
1090 if (m->dirty == 0 && object->ref_count != 0)
1091 pmap_remove_all(m);
1092
1093 if (m->valid == 0) {
1094 /*
1095 * Invalid pages can be easily freed
1096 */
1097 vm_page_free(m);
1098 PCPU_INC(cnt.v_dfree);
1099 --page_shortage;
1100 } else if (m->dirty == 0) {
1101 /*
1102 * Clean pages can be placed onto the cache queue.
1103 * This effectively frees them.
1104 */
1105 vm_page_cache(m);
1106 --page_shortage;
1107 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1108 /*
1109 * Dirty pages need to be paged out, but flushing
1110 * a page is extremely expensive verses freeing
1111 * a clean page. Rather then artificially limiting
1112 * the number of pages we can flush, we instead give
1113 * dirty pages extra priority on the inactive queue
1114 * by forcing them to be cycled through the queue
1115 * twice before being flushed, after which the
1116 * (now clean) page will cycle through once more
1117 * before being freed. This significantly extends
1118 * the thrash point for a heavily loaded machine.
1119 */
1120 m->flags |= PG_WINATCFLS;
1121 vm_pagequeue_lock(pq);
1122 queues_locked = TRUE;
1123 vm_page_requeue_locked(m);
1124 } else if (maxlaunder > 0) {
1125 /*
1126 * We always want to try to flush some dirty pages if
1127 * we encounter them, to keep the system stable.
1128 * Normally this number is small, but under extreme
1129 * pressure where there are insufficient clean pages
1130 * on the inactive queue, we may have to go all out.
1131 */
1132 int swap_pageouts_ok;
1133 struct vnode *vp = NULL;
1134 struct mount *mp = NULL;
1135
1136 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1137 swap_pageouts_ok = 1;
1138 } else {
1139 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1140 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1141 vm_page_count_min());
1142
1143 }
1144
1145 /*
1146 * We don't bother paging objects that are "dead".
1147 * Those objects are in a "rundown" state.
1148 */
1149 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1150 vm_pagequeue_lock(pq);
1151 vm_page_unlock(m);
1152 VM_OBJECT_WUNLOCK(object);
1153 queues_locked = TRUE;
1154 vm_page_requeue_locked(m);
1155 goto relock_queues;
1156 }
1157
1158 /*
1159 * The object is already known NOT to be dead. It
1160 * is possible for the vget() to block the whole
1161 * pageout daemon, but the new low-memory handling
1162 * code should prevent it.
1163 *
1164 * The previous code skipped locked vnodes and, worse,
1165 * reordered pages in the queue. This results in
1166 * completely non-deterministic operation and, on a
1167 * busy system, can lead to extremely non-optimal
1168 * pageouts. For example, it can cause clean pages
1169 * to be freed and dirty pages to be moved to the end
1170 * of the queue. Since dirty pages are also moved to
1171 * the end of the queue once-cleaned, this gives
1172 * way too large a weighting to defering the freeing
1173 * of dirty pages.
1174 *
1175 * We can't wait forever for the vnode lock, we might
1176 * deadlock due to a vn_read() getting stuck in
1177 * vm_wait while holding this vnode. We skip the
1178 * vnode if we can't get it in a reasonable amount
1179 * of time.
1180 */
1181 if (object->type == OBJT_VNODE) {
1182 vm_page_unlock(m);
1183 vp = object->handle;
1184 if (vp->v_type == VREG &&
1185 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1186 mp = NULL;
1187 ++pageout_lock_miss;
1188 if (object->flags & OBJ_MIGHTBEDIRTY)
1189 vnodes_skipped++;
1190 goto unlock_and_continue;
1191 }
1192 KASSERT(mp != NULL,
1193 ("vp %p with NULL v_mount", vp));
1194 vm_object_reference_locked(object);
1195 VM_OBJECT_WUNLOCK(object);
1196 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1197 curthread)) {
1198 VM_OBJECT_WLOCK(object);
1199 ++pageout_lock_miss;
1200 if (object->flags & OBJ_MIGHTBEDIRTY)
1201 vnodes_skipped++;
1202 vp = NULL;
1203 goto unlock_and_continue;
1204 }
1205 VM_OBJECT_WLOCK(object);
1206 vm_page_lock(m);
1207 vm_pagequeue_lock(pq);
1208 queues_locked = TRUE;
1209 /*
1210 * The page might have been moved to another
1211 * queue during potential blocking in vget()
1212 * above. The page might have been freed and
1213 * reused for another vnode.
1214 */
1215 if (m->queue != PQ_INACTIVE ||
1216 m->object != object ||
1217 TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1218 vm_page_unlock(m);
1219 if (object->flags & OBJ_MIGHTBEDIRTY)
1220 vnodes_skipped++;
1221 goto unlock_and_continue;
1222 }
1223
1224 /*
1225 * The page may have been busied during the
1226 * blocking in vget(). We don't move the
1227 * page back onto the end of the queue so that
1228 * statistics are more correct if we don't.
1229 */
1230 if (vm_page_busied(m)) {
1231 vm_page_unlock(m);
1232 goto unlock_and_continue;
1233 }
1234
1235 /*
1236 * If the page has become held it might
1237 * be undergoing I/O, so skip it
1238 */
1239 if (m->hold_count) {
1240 vm_page_unlock(m);
1241 vm_page_requeue_locked(m);
1242 if (object->flags & OBJ_MIGHTBEDIRTY)
1243 vnodes_skipped++;
1244 goto unlock_and_continue;
1245 }
1246 vm_pagequeue_unlock(pq);
1247 queues_locked = FALSE;
1248 }
1249
1250 /*
1251 * If a page is dirty, then it is either being washed
1252 * (but not yet cleaned) or it is still in the
1253 * laundry. If it is still in the laundry, then we
1254 * start the cleaning operation.
1255 *
1256 * decrement page_shortage on success to account for
1257 * the (future) cleaned page. Otherwise we could wind
1258 * up laundering or cleaning too many pages.
1259 */
1260 if (vm_pageout_clean(m) != 0) {
1261 --page_shortage;
1262 --maxlaunder;
1263 }
1264 unlock_and_continue:
1265 vm_page_lock_assert(m, MA_NOTOWNED);
1266 VM_OBJECT_WUNLOCK(object);
1267 if (mp != NULL) {
1268 if (queues_locked) {
1269 vm_pagequeue_unlock(pq);
1270 queues_locked = FALSE;
1271 }
1272 if (vp != NULL)
1273 vput(vp);
1274 vm_object_deallocate(object);
1275 vn_finished_write(mp);
1276 }
1277 vm_page_lock_assert(m, MA_NOTOWNED);
1278 goto relock_queues;
1279 }
1280 vm_page_unlock(m);
1281 VM_OBJECT_WUNLOCK(object);
1282 relock_queues:
1283 if (!queues_locked) {
1284 vm_pagequeue_lock(pq);
1285 queues_locked = TRUE;
1286 }
1287 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1288 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1289 }
1290 vm_pagequeue_unlock(pq);
1291
1292 /*
1293 * Compute the number of pages we want to try to move from the
1294 * active queue to the inactive queue.
1295 */
1296 pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1297 vm_pagequeue_lock(pq);
1298 pcount = pq->pq_cnt;
1299 page_shortage = vm_paging_target() +
1300 cnt.v_inactive_target - cnt.v_inactive_count;
1301 page_shortage += addl_page_shortage;
1302 /*
1303 * If we're just idle polling attempt to visit every
1304 * active page within 'update_period' seconds.
1305 */
1306 if (pass == 0 && vm_pageout_update_period != 0) {
1307 pcount /= vm_pageout_update_period;
1308 page_shortage = pcount;
1309 }
1310
1311 /*
1312 * Scan the active queue for things we can deactivate. We nominally
1313 * track the per-page activity counter and use it to locate
1314 * deactivation candidates.
1315 */
1316 m = TAILQ_FIRST(&pq->pq_pl);
1317 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1318
1319 KASSERT(m->queue == PQ_ACTIVE,
1320 ("vm_pageout_scan: page %p isn't active", m));
1321
1322 next = TAILQ_NEXT(m, plinks.q);
1323 if ((m->flags & PG_MARKER) != 0) {
1324 m = next;
1325 continue;
1326 }
1327 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1328 ("Fictitious page %p cannot be in active queue", m));
1329 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1330 ("Unmanaged page %p cannot be in active queue", m));
1331 if (!vm_pageout_page_lock(m, &next)) {
1332 vm_page_unlock(m);
1333 m = next;
1334 continue;
1335 }
1336
1337 /*
1338 * The count for pagedaemon pages is done after checking the
1339 * page for eligibility...
1340 */
1341 PCPU_INC(cnt.v_pdpages);
1342
1343 /*
1344 * Check to see "how much" the page has been used.
1345 */
1346 act_delta = 0;
1347 if (m->aflags & PGA_REFERENCED) {
1348 vm_page_aflag_clear(m, PGA_REFERENCED);
1349 act_delta += 1;
1350 }
1351 /*
1352 * Unlocked object ref count check. Two races are possible.
1353 * 1) The ref was transitioning to zero and we saw non-zero,
1354 * the pmap bits will be checked unnecessarily.
1355 * 2) The ref was transitioning to one and we saw zero.
1356 * The page lock prevents a new reference to this page so
1357 * we need not check the reference bits.
1358 */
1359 if (m->object->ref_count != 0)
1360 act_delta += pmap_ts_referenced(m);
1361
1362 /*
1363 * Advance or decay the act_count based on recent usage.
1364 */
1365 if (act_delta) {
1366 m->act_count += ACT_ADVANCE + act_delta;
1367 if (m->act_count > ACT_MAX)
1368 m->act_count = ACT_MAX;
1369 } else {
1370 m->act_count -= min(m->act_count, ACT_DECLINE);
1371 act_delta = m->act_count;
1372 }
1373
1374 /*
1375 * Move this page to the tail of the active or inactive
1376 * queue depending on usage.
1377 */
1378 if (act_delta == 0) {
1379 /* Dequeue to avoid later lock recursion. */
1380 vm_page_dequeue_locked(m);
1381 vm_page_deactivate(m);
1382 page_shortage--;
1383 } else
1384 vm_page_requeue_locked(m);
1385 vm_page_unlock(m);
1386 m = next;
1387 }
1388 vm_pagequeue_unlock(pq);
1389 #if !defined(NO_SWAPPING)
1390 /*
1391 * Idle process swapout -- run once per second.
1392 */
1393 if (vm_swap_idle_enabled) {
1394 static long lsec;
1395 if (time_second != lsec) {
1396 vm_req_vmdaemon(VM_SWAP_IDLE);
1397 lsec = time_second;
1398 }
1399 }
1400 #endif
1401
1402 /*
1403 * If we didn't get enough free pages, and we have skipped a vnode
1404 * in a writeable object, wakeup the sync daemon. And kick swapout
1405 * if we did not get enough free pages.
1406 */
1407 if (vm_paging_target() > 0) {
1408 if (vnodes_skipped && vm_page_count_min())
1409 (void) speedup_syncer();
1410 #if !defined(NO_SWAPPING)
1411 if (vm_swap_enabled && vm_page_count_target())
1412 vm_req_vmdaemon(VM_SWAP_NORMAL);
1413 #endif
1414 }
1415
1416 /*
1417 * If we are critically low on one of RAM or swap and low on
1418 * the other, kill the largest process. However, we avoid
1419 * doing this on the first pass in order to give ourselves a
1420 * chance to flush out dirty vnode-backed pages and to allow
1421 * active pages to be moved to the inactive queue and reclaimed.
1422 */
1423 vm_pageout_mightbe_oom(vmd, pass);
1424 }
1425
1426 static int vm_pageout_oom_vote;
1427
1428 /*
1429 * The pagedaemon threads randlomly select one to perform the
1430 * OOM. Trying to kill processes before all pagedaemons
1431 * failed to reach free target is premature.
1432 */
1433 static void
1434 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1435 {
1436 int old_vote;
1437
1438 if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1439 (swap_pager_full && vm_paging_target() > 0))) {
1440 if (vmd->vmd_oom) {
1441 vmd->vmd_oom = FALSE;
1442 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1443 }
1444 return;
1445 }
1446
1447 if (vmd->vmd_oom)
1448 return;
1449
1450 vmd->vmd_oom = TRUE;
1451 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1452 if (old_vote != vm_ndomains - 1)
1453 return;
1454
1455 /*
1456 * The current pagedaemon thread is the last in the quorum to
1457 * start OOM. Initiate the selection and signaling of the
1458 * victim.
1459 */
1460 vm_pageout_oom(VM_OOM_MEM);
1461
1462 /*
1463 * After one round of OOM terror, recall our vote. On the
1464 * next pass, current pagedaemon would vote again if the low
1465 * memory condition is still there, due to vmd_oom being
1466 * false.
1467 */
1468 vmd->vmd_oom = FALSE;
1469 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1470 }
1471
1472 void
1473 vm_pageout_oom(int shortage)
1474 {
1475 struct proc *p, *bigproc;
1476 vm_offset_t size, bigsize;
1477 struct thread *td;
1478 struct vmspace *vm;
1479
1480 /*
1481 * We keep the process bigproc locked once we find it to keep anyone
1482 * from messing with it; however, there is a possibility of
1483 * deadlock if process B is bigproc and one of it's child processes
1484 * attempts to propagate a signal to B while we are waiting for A's
1485 * lock while walking this list. To avoid this, we don't block on
1486 * the process lock but just skip a process if it is already locked.
1487 */
1488 bigproc = NULL;
1489 bigsize = 0;
1490 sx_slock(&allproc_lock);
1491 FOREACH_PROC_IN_SYSTEM(p) {
1492 int breakout;
1493
1494 if (PROC_TRYLOCK(p) == 0)
1495 continue;
1496 /*
1497 * If this is a system, protected or killed process, skip it.
1498 */
1499 if (p->p_state != PRS_NORMAL ||
1500 (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1501 (p->p_pid == 1) || P_KILLED(p) ||
1502 ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1503 PROC_UNLOCK(p);
1504 continue;
1505 }
1506 /*
1507 * If the process is in a non-running type state,
1508 * don't touch it. Check all the threads individually.
1509 */
1510 breakout = 0;
1511 FOREACH_THREAD_IN_PROC(p, td) {
1512 thread_lock(td);
1513 if (!TD_ON_RUNQ(td) &&
1514 !TD_IS_RUNNING(td) &&
1515 !TD_IS_SLEEPING(td) &&
1516 !TD_IS_SUSPENDED(td)) {
1517 thread_unlock(td);
1518 breakout = 1;
1519 break;
1520 }
1521 thread_unlock(td);
1522 }
1523 if (breakout) {
1524 PROC_UNLOCK(p);
1525 continue;
1526 }
1527 /*
1528 * get the process size
1529 */
1530 vm = vmspace_acquire_ref(p);
1531 if (vm == NULL) {
1532 PROC_UNLOCK(p);
1533 continue;
1534 }
1535 if (!vm_map_trylock_read(&vm->vm_map)) {
1536 vmspace_free(vm);
1537 PROC_UNLOCK(p);
1538 continue;
1539 }
1540 size = vmspace_swap_count(vm);
1541 vm_map_unlock_read(&vm->vm_map);
1542 if (shortage == VM_OOM_MEM)
1543 size += vmspace_resident_count(vm);
1544 vmspace_free(vm);
1545 /*
1546 * if the this process is bigger than the biggest one
1547 * remember it.
1548 */
1549 if (size > bigsize) {
1550 if (bigproc != NULL)
1551 PROC_UNLOCK(bigproc);
1552 bigproc = p;
1553 bigsize = size;
1554 } else
1555 PROC_UNLOCK(p);
1556 }
1557 sx_sunlock(&allproc_lock);
1558 if (bigproc != NULL) {
1559 killproc(bigproc, "out of swap space");
1560 sched_nice(bigproc, PRIO_MIN);
1561 PROC_UNLOCK(bigproc);
1562 wakeup(&cnt.v_free_count);
1563 }
1564 }
1565
1566 static void
1567 vm_pageout_worker(void *arg)
1568 {
1569 struct vm_domain *domain;
1570 int domidx;
1571
1572 domidx = (uintptr_t)arg;
1573 domain = &vm_dom[domidx];
1574
1575 /*
1576 * XXXKIB It could be useful to bind pageout daemon threads to
1577 * the cores belonging to the domain, from which vm_page_array
1578 * is allocated.
1579 */
1580
1581 KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1582 vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1583
1584 /*
1585 * The pageout daemon worker is never done, so loop forever.
1586 */
1587 while (TRUE) {
1588 /*
1589 * If we have enough free memory, wakeup waiters. Do
1590 * not clear vm_pages_needed until we reach our target,
1591 * otherwise we may be woken up over and over again and
1592 * waste a lot of cpu.
1593 */
1594 mtx_lock(&vm_page_queue_free_mtx);
1595 if (vm_pages_needed && !vm_page_count_min()) {
1596 if (!vm_paging_needed())
1597 vm_pages_needed = 0;
1598 wakeup(&cnt.v_free_count);
1599 }
1600 if (vm_pages_needed) {
1601 /*
1602 * Still not done, take a second pass without waiting
1603 * (unlimited dirty cleaning), otherwise sleep a bit
1604 * and try again.
1605 */
1606 if (domain->vmd_pass > 1)
1607 msleep(&vm_pages_needed,
1608 &vm_page_queue_free_mtx, PVM, "psleep",
1609 hz / 2);
1610 } else {
1611 /*
1612 * Good enough, sleep until required to refresh
1613 * stats.
1614 */
1615 domain->vmd_pass = 0;
1616 msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1617 PVM, "psleep", hz);
1618
1619 }
1620 if (vm_pages_needed) {
1621 cnt.v_pdwakeups++;
1622 domain->vmd_pass++;
1623 }
1624 mtx_unlock(&vm_page_queue_free_mtx);
1625 vm_pageout_scan(domain, domain->vmd_pass);
1626 }
1627 }
1628
1629 /*
1630 * vm_pageout is the high level pageout daemon.
1631 */
1632 static void
1633 vm_pageout(void)
1634 {
1635 #if MAXMEMDOM > 1
1636 int error, i;
1637 #endif
1638
1639 /*
1640 * Initialize some paging parameters.
1641 */
1642 cnt.v_interrupt_free_min = 2;
1643 if (cnt.v_page_count < 2000)
1644 vm_pageout_page_count = 8;
1645
1646 /*
1647 * v_free_reserved needs to include enough for the largest
1648 * swap pager structures plus enough for any pv_entry structs
1649 * when paging.
1650 */
1651 if (cnt.v_page_count > 1024)
1652 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1653 else
1654 cnt.v_free_min = 4;
1655 cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1656 cnt.v_interrupt_free_min;
1657 cnt.v_free_reserved = vm_pageout_page_count +
1658 cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1659 cnt.v_free_severe = cnt.v_free_min / 2;
1660 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1661 cnt.v_free_min += cnt.v_free_reserved;
1662 cnt.v_free_severe += cnt.v_free_reserved;
1663 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1664 if (cnt.v_inactive_target > cnt.v_free_count / 3)
1665 cnt.v_inactive_target = cnt.v_free_count / 3;
1666
1667 /*
1668 * Set the default wakeup threshold to be 10% above the minimum
1669 * page limit. This keeps the steady state out of shortfall.
1670 */
1671 vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1672
1673 /*
1674 * Set interval in seconds for active scan. We want to visit each
1675 * page at least once every ten minutes. This is to prevent worst
1676 * case paging behaviors with stale active LRU.
1677 */
1678 if (vm_pageout_update_period == 0)
1679 vm_pageout_update_period = 600;
1680
1681 /* XXX does not really belong here */
1682 if (vm_page_max_wired == 0)
1683 vm_page_max_wired = cnt.v_free_count / 3;
1684
1685 swap_pager_swap_init();
1686 #if MAXMEMDOM > 1
1687 for (i = 1; i < vm_ndomains; i++) {
1688 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1689 curproc, NULL, 0, 0, "dom%d", i);
1690 if (error != 0) {
1691 panic("starting pageout for domain %d, error %d\n",
1692 i, error);
1693 }
1694 }
1695 #endif
1696 vm_pageout_worker((uintptr_t)0);
1697 }
1698
1699 /*
1700 * Unless the free page queue lock is held by the caller, this function
1701 * should be regarded as advisory. Specifically, the caller should
1702 * not msleep() on &cnt.v_free_count following this function unless
1703 * the free page queue lock is held until the msleep() is performed.
1704 */
1705 void
1706 pagedaemon_wakeup(void)
1707 {
1708
1709 if (!vm_pages_needed && curthread->td_proc != pageproc) {
1710 vm_pages_needed = 1;
1711 wakeup(&vm_pages_needed);
1712 }
1713 }
1714
1715 #if !defined(NO_SWAPPING)
1716 static void
1717 vm_req_vmdaemon(int req)
1718 {
1719 static int lastrun = 0;
1720
1721 mtx_lock(&vm_daemon_mtx);
1722 vm_pageout_req_swapout |= req;
1723 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1724 wakeup(&vm_daemon_needed);
1725 lastrun = ticks;
1726 }
1727 mtx_unlock(&vm_daemon_mtx);
1728 }
1729
1730 static void
1731 vm_daemon(void)
1732 {
1733 struct rlimit rsslim;
1734 struct proc *p;
1735 struct thread *td;
1736 struct vmspace *vm;
1737 int breakout, swapout_flags, tryagain, attempts;
1738 #ifdef RACCT
1739 uint64_t rsize, ravailable;
1740 #endif
1741
1742 while (TRUE) {
1743 mtx_lock(&vm_daemon_mtx);
1744 #ifdef RACCT
1745 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1746 #else
1747 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1748 #endif
1749 swapout_flags = vm_pageout_req_swapout;
1750 vm_pageout_req_swapout = 0;
1751 mtx_unlock(&vm_daemon_mtx);
1752 if (swapout_flags)
1753 swapout_procs(swapout_flags);
1754
1755 /*
1756 * scan the processes for exceeding their rlimits or if
1757 * process is swapped out -- deactivate pages
1758 */
1759 tryagain = 0;
1760 attempts = 0;
1761 again:
1762 attempts++;
1763 sx_slock(&allproc_lock);
1764 FOREACH_PROC_IN_SYSTEM(p) {
1765 vm_pindex_t limit, size;
1766
1767 /*
1768 * if this is a system process or if we have already
1769 * looked at this process, skip it.
1770 */
1771 PROC_LOCK(p);
1772 if (p->p_state != PRS_NORMAL ||
1773 p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1774 PROC_UNLOCK(p);
1775 continue;
1776 }
1777 /*
1778 * if the process is in a non-running type state,
1779 * don't touch it.
1780 */
1781 breakout = 0;
1782 FOREACH_THREAD_IN_PROC(p, td) {
1783 thread_lock(td);
1784 if (!TD_ON_RUNQ(td) &&
1785 !TD_IS_RUNNING(td) &&
1786 !TD_IS_SLEEPING(td) &&
1787 !TD_IS_SUSPENDED(td)) {
1788 thread_unlock(td);
1789 breakout = 1;
1790 break;
1791 }
1792 thread_unlock(td);
1793 }
1794 if (breakout) {
1795 PROC_UNLOCK(p);
1796 continue;
1797 }
1798 /*
1799 * get a limit
1800 */
1801 lim_rlimit(p, RLIMIT_RSS, &rsslim);
1802 limit = OFF_TO_IDX(
1803 qmin(rsslim.rlim_cur, rsslim.rlim_max));
1804
1805 /*
1806 * let processes that are swapped out really be
1807 * swapped out set the limit to nothing (will force a
1808 * swap-out.)
1809 */
1810 if ((p->p_flag & P_INMEM) == 0)
1811 limit = 0; /* XXX */
1812 vm = vmspace_acquire_ref(p);
1813 PROC_UNLOCK(p);
1814 if (vm == NULL)
1815 continue;
1816
1817 size = vmspace_resident_count(vm);
1818 if (size >= limit) {
1819 vm_pageout_map_deactivate_pages(
1820 &vm->vm_map, limit);
1821 }
1822 #ifdef RACCT
1823 rsize = IDX_TO_OFF(size);
1824 PROC_LOCK(p);
1825 racct_set(p, RACCT_RSS, rsize);
1826 ravailable = racct_get_available(p, RACCT_RSS);
1827 PROC_UNLOCK(p);
1828 if (rsize > ravailable) {
1829 /*
1830 * Don't be overly aggressive; this might be
1831 * an innocent process, and the limit could've
1832 * been exceeded by some memory hog. Don't
1833 * try to deactivate more than 1/4th of process'
1834 * resident set size.
1835 */
1836 if (attempts <= 8) {
1837 if (ravailable < rsize - (rsize / 4))
1838 ravailable = rsize - (rsize / 4);
1839 }
1840 vm_pageout_map_deactivate_pages(
1841 &vm->vm_map, OFF_TO_IDX(ravailable));
1842 /* Update RSS usage after paging out. */
1843 size = vmspace_resident_count(vm);
1844 rsize = IDX_TO_OFF(size);
1845 PROC_LOCK(p);
1846 racct_set(p, RACCT_RSS, rsize);
1847 PROC_UNLOCK(p);
1848 if (rsize > ravailable)
1849 tryagain = 1;
1850 }
1851 #endif
1852 vmspace_free(vm);
1853 }
1854 sx_sunlock(&allproc_lock);
1855 if (tryagain != 0 && attempts <= 10)
1856 goto again;
1857 }
1858 }
1859 #endif /* !defined(NO_SWAPPING) */
Cache object: d4637c9d7987729c3cd86346e5e4a015
|