The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_pageout.c 254622 2013-08-21 22:39:19Z jeff $");
   77 
   78 #include "opt_vm.h"
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/eventhandler.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/kthread.h>
   87 #include <sys/ktr.h>
   88 #include <sys/mount.h>
   89 #include <sys/racct.h>
   90 #include <sys/resourcevar.h>
   91 #include <sys/sched.h>
   92 #include <sys/signalvar.h>
   93 #include <sys/smp.h>
   94 #include <sys/vnode.h>
   95 #include <sys/vmmeter.h>
   96 #include <sys/rwlock.h>
   97 #include <sys/sx.h>
   98 #include <sys/sysctl.h>
   99 
  100 #include <vm/vm.h>
  101 #include <vm/vm_param.h>
  102 #include <vm/vm_object.h>
  103 #include <vm/vm_page.h>
  104 #include <vm/vm_map.h>
  105 #include <vm/vm_pageout.h>
  106 #include <vm/vm_pager.h>
  107 #include <vm/vm_phys.h>
  108 #include <vm/swap_pager.h>
  109 #include <vm/vm_extern.h>
  110 #include <vm/uma.h>
  111 
  112 /*
  113  * System initialization
  114  */
  115 
  116 /* the kernel process "vm_pageout"*/
  117 static void vm_pageout(void);
  118 static int vm_pageout_clean(vm_page_t);
  119 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
  120 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
  121 
  122 struct proc *pageproc;
  123 
  124 static struct kproc_desc page_kp = {
  125         "pagedaemon",
  126         vm_pageout,
  127         &pageproc
  128 };
  129 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
  130     &page_kp);
  131 
  132 #if !defined(NO_SWAPPING)
  133 /* the kernel process "vm_daemon"*/
  134 static void vm_daemon(void);
  135 static struct   proc *vmproc;
  136 
  137 static struct kproc_desc vm_kp = {
  138         "vmdaemon",
  139         vm_daemon,
  140         &vmproc
  141 };
  142 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
  143 #endif
  144 
  145 
  146 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  147 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  148 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  149 int vm_pageout_wakeup_thresh;
  150 
  151 #if !defined(NO_SWAPPING)
  152 static int vm_pageout_req_swapout;      /* XXX */
  153 static int vm_daemon_needed;
  154 static struct mtx vm_daemon_mtx;
  155 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  156 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  157 #endif
  158 static int vm_max_launder = 32;
  159 static int vm_pageout_update_period;
  160 static int defer_swap_pageouts;
  161 static int disable_swap_pageouts;
  162 static int lowmem_period = 10;
  163 static int lowmem_ticks;
  164 
  165 #if defined(NO_SWAPPING)
  166 static int vm_swap_enabled = 0;
  167 static int vm_swap_idle_enabled = 0;
  168 #else
  169 static int vm_swap_enabled = 1;
  170 static int vm_swap_idle_enabled = 0;
  171 #endif
  172 
  173 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
  174         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
  175         "free page threshold for waking up the pageout daemon");
  176 
  177 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  178         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  179 
  180 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
  181         CTLFLAG_RW, &vm_pageout_update_period, 0,
  182         "Maximum active LRU update period");
  183   
  184 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
  185         "Low memory callback period");
  186 
  187 #if defined(NO_SWAPPING)
  188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  189         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
  190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  191         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  192 #else
  193 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  194         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  195 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  196         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  197 #endif
  198 
  199 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  200         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  201 
  202 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  203         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  204 
  205 static int pageout_lock_miss;
  206 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  207         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  208 
  209 #define VM_PAGEOUT_PAGE_COUNT 16
  210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  211 
  212 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  213 SYSCTL_INT(_vm, OID_AUTO, max_wired,
  214         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
  215 
  216 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
  217 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
  218     vm_paddr_t);
  219 #if !defined(NO_SWAPPING)
  220 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  221 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  222 static void vm_req_vmdaemon(int req);
  223 #endif
  224 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
  225 
  226 /*
  227  * Initialize a dummy page for marking the caller's place in the specified
  228  * paging queue.  In principle, this function only needs to set the flag
  229  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
  230  * to one as safety precautions.
  231  */ 
  232 static void
  233 vm_pageout_init_marker(vm_page_t marker, u_short queue)
  234 {
  235 
  236         bzero(marker, sizeof(*marker));
  237         marker->flags = PG_MARKER;
  238         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
  239         marker->queue = queue;
  240         marker->hold_count = 1;
  241 }
  242 
  243 /*
  244  * vm_pageout_fallback_object_lock:
  245  * 
  246  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
  247  * known to have failed and page queue must be either PQ_ACTIVE or
  248  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
  249  * while locking the vm object.  Use marker page to detect page queue
  250  * changes and maintain notion of next page on page queue.  Return
  251  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  252  * locked on return.
  253  * 
  254  * This function depends on both the lock portion of struct vm_object
  255  * and normal struct vm_page being type stable.
  256  */
  257 static boolean_t
  258 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  259 {
  260         struct vm_page marker;
  261         struct vm_pagequeue *pq;
  262         boolean_t unchanged;
  263         u_short queue;
  264         vm_object_t object;
  265 
  266         queue = m->queue;
  267         vm_pageout_init_marker(&marker, queue);
  268         pq = vm_page_pagequeue(m);
  269         object = m->object;
  270         
  271         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  272         vm_pagequeue_unlock(pq);
  273         vm_page_unlock(m);
  274         VM_OBJECT_WLOCK(object);
  275         vm_page_lock(m);
  276         vm_pagequeue_lock(pq);
  277 
  278         /* Page queue might have changed. */
  279         *next = TAILQ_NEXT(&marker, plinks.q);
  280         unchanged = (m->queue == queue &&
  281                      m->object == object &&
  282                      &marker == TAILQ_NEXT(m, plinks.q));
  283         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  284         return (unchanged);
  285 }
  286 
  287 /*
  288  * Lock the page while holding the page queue lock.  Use marker page
  289  * to detect page queue changes and maintain notion of next page on
  290  * page queue.  Return TRUE if no changes were detected, FALSE
  291  * otherwise.  The page is locked on return. The page queue lock might
  292  * be dropped and reacquired.
  293  *
  294  * This function depends on normal struct vm_page being type stable.
  295  */
  296 static boolean_t
  297 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
  298 {
  299         struct vm_page marker;
  300         struct vm_pagequeue *pq;
  301         boolean_t unchanged;
  302         u_short queue;
  303 
  304         vm_page_lock_assert(m, MA_NOTOWNED);
  305         if (vm_page_trylock(m))
  306                 return (TRUE);
  307 
  308         queue = m->queue;
  309         vm_pageout_init_marker(&marker, queue);
  310         pq = vm_page_pagequeue(m);
  311 
  312         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  313         vm_pagequeue_unlock(pq);
  314         vm_page_lock(m);
  315         vm_pagequeue_lock(pq);
  316 
  317         /* Page queue might have changed. */
  318         *next = TAILQ_NEXT(&marker, plinks.q);
  319         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
  320         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  321         return (unchanged);
  322 }
  323 
  324 /*
  325  * vm_pageout_clean:
  326  *
  327  * Clean the page and remove it from the laundry.
  328  * 
  329  * We set the busy bit to cause potential page faults on this page to
  330  * block.  Note the careful timing, however, the busy bit isn't set till
  331  * late and we cannot do anything that will mess with the page.
  332  */
  333 static int
  334 vm_pageout_clean(vm_page_t m)
  335 {
  336         vm_object_t object;
  337         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
  338         int pageout_count;
  339         int ib, is, page_base;
  340         vm_pindex_t pindex = m->pindex;
  341 
  342         vm_page_lock_assert(m, MA_OWNED);
  343         object = m->object;
  344         VM_OBJECT_ASSERT_WLOCKED(object);
  345 
  346         /*
  347          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  348          * with the new swapper, but we could have serious problems paging
  349          * out other object types if there is insufficient memory.  
  350          *
  351          * Unfortunately, checking free memory here is far too late, so the
  352          * check has been moved up a procedural level.
  353          */
  354 
  355         /*
  356          * Can't clean the page if it's busy or held.
  357          */
  358         vm_page_assert_unbusied(m);
  359         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
  360         vm_page_unlock(m);
  361 
  362         mc[vm_pageout_page_count] = pb = ps = m;
  363         pageout_count = 1;
  364         page_base = vm_pageout_page_count;
  365         ib = 1;
  366         is = 1;
  367 
  368         /*
  369          * Scan object for clusterable pages.
  370          *
  371          * We can cluster ONLY if: ->> the page is NOT
  372          * clean, wired, busy, held, or mapped into a
  373          * buffer, and one of the following:
  374          * 1) The page is inactive, or a seldom used
  375          *    active page.
  376          * -or-
  377          * 2) we force the issue.
  378          *
  379          * During heavy mmap/modification loads the pageout
  380          * daemon can really fragment the underlying file
  381          * due to flushing pages out of order and not trying
  382          * align the clusters (which leave sporatic out-of-order
  383          * holes).  To solve this problem we do the reverse scan
  384          * first and attempt to align our cluster, then do a 
  385          * forward scan if room remains.
  386          */
  387 more:
  388         while (ib && pageout_count < vm_pageout_page_count) {
  389                 vm_page_t p;
  390 
  391                 if (ib > pindex) {
  392                         ib = 0;
  393                         break;
  394                 }
  395 
  396                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
  397                         ib = 0;
  398                         break;
  399                 }
  400                 vm_page_lock(p);
  401                 vm_page_test_dirty(p);
  402                 if (p->dirty == 0 ||
  403                     p->queue != PQ_INACTIVE ||
  404                     p->hold_count != 0) {       /* may be undergoing I/O */
  405                         vm_page_unlock(p);
  406                         ib = 0;
  407                         break;
  408                 }
  409                 vm_page_unlock(p);
  410                 mc[--page_base] = pb = p;
  411                 ++pageout_count;
  412                 ++ib;
  413                 /*
  414                  * alignment boundry, stop here and switch directions.  Do
  415                  * not clear ib.
  416                  */
  417                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  418                         break;
  419         }
  420 
  421         while (pageout_count < vm_pageout_page_count && 
  422             pindex + is < object->size) {
  423                 vm_page_t p;
  424 
  425                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
  426                         break;
  427                 vm_page_lock(p);
  428                 vm_page_test_dirty(p);
  429                 if (p->dirty == 0 ||
  430                     p->queue != PQ_INACTIVE ||
  431                     p->hold_count != 0) {       /* may be undergoing I/O */
  432                         vm_page_unlock(p);
  433                         break;
  434                 }
  435                 vm_page_unlock(p);
  436                 mc[page_base + pageout_count] = ps = p;
  437                 ++pageout_count;
  438                 ++is;
  439         }
  440 
  441         /*
  442          * If we exhausted our forward scan, continue with the reverse scan
  443          * when possible, even past a page boundry.  This catches boundry
  444          * conditions.
  445          */
  446         if (ib && pageout_count < vm_pageout_page_count)
  447                 goto more;
  448 
  449         /*
  450          * we allow reads during pageouts...
  451          */
  452         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
  453             NULL));
  454 }
  455 
  456 /*
  457  * vm_pageout_flush() - launder the given pages
  458  *
  459  *      The given pages are laundered.  Note that we setup for the start of
  460  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  461  *      reference count all in here rather then in the parent.  If we want
  462  *      the parent to do more sophisticated things we may have to change
  463  *      the ordering.
  464  *
  465  *      Returned runlen is the count of pages between mreq and first
  466  *      page after mreq with status VM_PAGER_AGAIN.
  467  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  468  *      for any page in runlen set.
  469  */
  470 int
  471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  472     boolean_t *eio)
  473 {
  474         vm_object_t object = mc[0]->object;
  475         int pageout_status[count];
  476         int numpagedout = 0;
  477         int i, runlen;
  478 
  479         VM_OBJECT_ASSERT_WLOCKED(object);
  480 
  481         /*
  482          * Initiate I/O.  Bump the vm_page_t->busy counter and
  483          * mark the pages read-only.
  484          *
  485          * We do not have to fixup the clean/dirty bits here... we can
  486          * allow the pager to do it after the I/O completes.
  487          *
  488          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  489          * edge case with file fragments.
  490          */
  491         for (i = 0; i < count; i++) {
  492                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  493                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  494                         mc[i], i, count));
  495                 vm_page_sbusy(mc[i]);
  496                 pmap_remove_write(mc[i]);
  497         }
  498         vm_object_pip_add(object, count);
  499 
  500         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  501 
  502         runlen = count - mreq;
  503         if (eio != NULL)
  504                 *eio = FALSE;
  505         for (i = 0; i < count; i++) {
  506                 vm_page_t mt = mc[i];
  507 
  508                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  509                     !pmap_page_is_write_mapped(mt),
  510                     ("vm_pageout_flush: page %p is not write protected", mt));
  511                 switch (pageout_status[i]) {
  512                 case VM_PAGER_OK:
  513                 case VM_PAGER_PEND:
  514                         numpagedout++;
  515                         break;
  516                 case VM_PAGER_BAD:
  517                         /*
  518                          * Page outside of range of object. Right now we
  519                          * essentially lose the changes by pretending it
  520                          * worked.
  521                          */
  522                         vm_page_undirty(mt);
  523                         break;
  524                 case VM_PAGER_ERROR:
  525                 case VM_PAGER_FAIL:
  526                         /*
  527                          * If page couldn't be paged out, then reactivate the
  528                          * page so it doesn't clog the inactive list.  (We
  529                          * will try paging out it again later).
  530                          */
  531                         vm_page_lock(mt);
  532                         vm_page_activate(mt);
  533                         vm_page_unlock(mt);
  534                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  535                                 *eio = TRUE;
  536                         break;
  537                 case VM_PAGER_AGAIN:
  538                         if (i >= mreq && i - mreq < runlen)
  539                                 runlen = i - mreq;
  540                         break;
  541                 }
  542 
  543                 /*
  544                  * If the operation is still going, leave the page busy to
  545                  * block all other accesses. Also, leave the paging in
  546                  * progress indicator set so that we don't attempt an object
  547                  * collapse.
  548                  */
  549                 if (pageout_status[i] != VM_PAGER_PEND) {
  550                         vm_object_pip_wakeup(object);
  551                         vm_page_sunbusy(mt);
  552                         if (vm_page_count_severe()) {
  553                                 vm_page_lock(mt);
  554                                 vm_page_try_to_cache(mt);
  555                                 vm_page_unlock(mt);
  556                         }
  557                 }
  558         }
  559         if (prunlen != NULL)
  560                 *prunlen = runlen;
  561         return (numpagedout);
  562 }
  563 
  564 static boolean_t
  565 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
  566     vm_paddr_t high)
  567 {
  568         struct mount *mp;
  569         struct vnode *vp;
  570         vm_object_t object;
  571         vm_paddr_t pa;
  572         vm_page_t m, m_tmp, next;
  573 
  574         vm_pagequeue_lock(pq);
  575         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
  576                 if ((m->flags & PG_MARKER) != 0)
  577                         continue;
  578                 pa = VM_PAGE_TO_PHYS(m);
  579                 if (pa < low || pa + PAGE_SIZE > high)
  580                         continue;
  581                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
  582                         vm_page_unlock(m);
  583                         continue;
  584                 }
  585                 object = m->object;
  586                 if ((!VM_OBJECT_TRYWLOCK(object) &&
  587                     (!vm_pageout_fallback_object_lock(m, &next) ||
  588                     m->hold_count != 0)) || vm_page_busied(m)) {
  589                         vm_page_unlock(m);
  590                         VM_OBJECT_WUNLOCK(object);
  591                         continue;
  592                 }
  593                 vm_page_test_dirty(m);
  594                 if (m->dirty == 0 && object->ref_count != 0)
  595                         pmap_remove_all(m);
  596                 if (m->dirty != 0) {
  597                         vm_page_unlock(m);
  598                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
  599                                 VM_OBJECT_WUNLOCK(object);
  600                                 continue;
  601                         }
  602                         if (object->type == OBJT_VNODE) {
  603                                 vm_pagequeue_unlock(pq);
  604                                 vp = object->handle;
  605                                 vm_object_reference_locked(object);
  606                                 VM_OBJECT_WUNLOCK(object);
  607                                 (void)vn_start_write(vp, &mp, V_WAIT);
  608                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  609                                 VM_OBJECT_WLOCK(object);
  610                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  611                                 VM_OBJECT_WUNLOCK(object);
  612                                 VOP_UNLOCK(vp, 0);
  613                                 vm_object_deallocate(object);
  614                                 vn_finished_write(mp);
  615                                 return (TRUE);
  616                         } else if (object->type == OBJT_SWAP ||
  617                             object->type == OBJT_DEFAULT) {
  618                                 vm_pagequeue_unlock(pq);
  619                                 m_tmp = m;
  620                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
  621                                     0, NULL, NULL);
  622                                 VM_OBJECT_WUNLOCK(object);
  623                                 return (TRUE);
  624                         }
  625                 } else {
  626                         /*
  627                          * Dequeue here to prevent lock recursion in
  628                          * vm_page_cache().
  629                          */
  630                         vm_page_dequeue_locked(m);
  631                         vm_page_cache(m);
  632                         vm_page_unlock(m);
  633                 }
  634                 VM_OBJECT_WUNLOCK(object);
  635         }
  636         vm_pagequeue_unlock(pq);
  637         return (FALSE);
  638 }
  639 
  640 /*
  641  * Increase the number of cached pages.  The specified value, "tries",
  642  * determines which categories of pages are cached:
  643  *
  644  *  0: All clean, inactive pages within the specified physical address range
  645  *     are cached.  Will not sleep.
  646  *  1: The vm_lowmem handlers are called.  All inactive pages within
  647  *     the specified physical address range are cached.  May sleep.
  648  *  2: The vm_lowmem handlers are called.  All inactive and active pages
  649  *     within the specified physical address range are cached.  May sleep.
  650  */
  651 void
  652 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
  653 {
  654         int actl, actmax, inactl, inactmax, dom, initial_dom;
  655         static int start_dom = 0;
  656 
  657         if (tries > 0) {
  658                 /*
  659                  * Decrease registered cache sizes.  The vm_lowmem handlers
  660                  * may acquire locks and/or sleep, so they can only be invoked
  661                  * when "tries" is greater than zero.
  662                  */
  663                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
  664 
  665                 /*
  666                  * We do this explicitly after the caches have been drained
  667                  * above.
  668                  */
  669                 uma_reclaim();
  670         }
  671 
  672         /*
  673          * Make the next scan start on the next domain.
  674          */
  675         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
  676 
  677         inactl = 0;
  678         inactmax = cnt.v_inactive_count;
  679         actl = 0;
  680         actmax = tries < 2 ? 0 : cnt.v_active_count;
  681         dom = initial_dom;
  682 
  683         /*
  684          * Scan domains in round-robin order, first inactive queues,
  685          * then active.  Since domain usually owns large physically
  686          * contiguous chunk of memory, it makes sense to completely
  687          * exhaust one domain before switching to next, while growing
  688          * the pool of contiguous physical pages.
  689          *
  690          * Do not even start launder a domain which cannot contain
  691          * the specified address range, as indicated by segments
  692          * constituting the domain.
  693          */
  694 again:
  695         if (inactl < inactmax) {
  696                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
  697                     low, high) &&
  698                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
  699                     tries, low, high)) {
  700                         inactl++;
  701                         goto again;
  702                 }
  703                 if (++dom == vm_ndomains)
  704                         dom = 0;
  705                 if (dom != initial_dom)
  706                         goto again;
  707         }
  708         if (actl < actmax) {
  709                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
  710                     low, high) &&
  711                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
  712                       tries, low, high)) {
  713                         actl++;
  714                         goto again;
  715                 }
  716                 if (++dom == vm_ndomains)
  717                         dom = 0;
  718                 if (dom != initial_dom)
  719                         goto again;
  720         }
  721 }
  722 
  723 #if !defined(NO_SWAPPING)
  724 /*
  725  *      vm_pageout_object_deactivate_pages
  726  *
  727  *      Deactivate enough pages to satisfy the inactive target
  728  *      requirements.
  729  *
  730  *      The object and map must be locked.
  731  */
  732 static void
  733 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
  734     long desired)
  735 {
  736         vm_object_t backing_object, object;
  737         vm_page_t p;
  738         int act_delta, remove_mode;
  739 
  740         VM_OBJECT_ASSERT_LOCKED(first_object);
  741         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
  742                 return;
  743         for (object = first_object;; object = backing_object) {
  744                 if (pmap_resident_count(pmap) <= desired)
  745                         goto unlock_return;
  746                 VM_OBJECT_ASSERT_LOCKED(object);
  747                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
  748                     object->paging_in_progress != 0)
  749                         goto unlock_return;
  750 
  751                 remove_mode = 0;
  752                 if (object->shadow_count > 1)
  753                         remove_mode = 1;
  754                 /*
  755                  * Scan the object's entire memory queue.
  756                  */
  757                 TAILQ_FOREACH(p, &object->memq, listq) {
  758                         if (pmap_resident_count(pmap) <= desired)
  759                                 goto unlock_return;
  760                         if (vm_page_busied(p))
  761                                 continue;
  762                         PCPU_INC(cnt.v_pdpages);
  763                         vm_page_lock(p);
  764                         if (p->wire_count != 0 || p->hold_count != 0 ||
  765                             !pmap_page_exists_quick(pmap, p)) {
  766                                 vm_page_unlock(p);
  767                                 continue;
  768                         }
  769                         act_delta = pmap_ts_referenced(p);
  770                         if ((p->aflags & PGA_REFERENCED) != 0) {
  771                                 if (act_delta == 0)
  772                                         act_delta = 1;
  773                                 vm_page_aflag_clear(p, PGA_REFERENCED);
  774                         }
  775                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
  776                                 vm_page_activate(p);
  777                                 p->act_count += act_delta;
  778                         } else if (p->queue == PQ_ACTIVE) {
  779                                 if (act_delta == 0) {
  780                                         p->act_count -= min(p->act_count,
  781                                             ACT_DECLINE);
  782                                         if (!remove_mode && p->act_count == 0) {
  783                                                 pmap_remove_all(p);
  784                                                 vm_page_deactivate(p);
  785                                         } else
  786                                                 vm_page_requeue(p);
  787                                 } else {
  788                                         vm_page_activate(p);
  789                                         if (p->act_count < ACT_MAX -
  790                                             ACT_ADVANCE)
  791                                                 p->act_count += ACT_ADVANCE;
  792                                         vm_page_requeue(p);
  793                                 }
  794                         } else if (p->queue == PQ_INACTIVE)
  795                                 pmap_remove_all(p);
  796                         vm_page_unlock(p);
  797                 }
  798                 if ((backing_object = object->backing_object) == NULL)
  799                         goto unlock_return;
  800                 VM_OBJECT_RLOCK(backing_object);
  801                 if (object != first_object)
  802                         VM_OBJECT_RUNLOCK(object);
  803         }
  804 unlock_return:
  805         if (object != first_object)
  806                 VM_OBJECT_RUNLOCK(object);
  807 }
  808 
  809 /*
  810  * deactivate some number of pages in a map, try to do it fairly, but
  811  * that is really hard to do.
  812  */
  813 static void
  814 vm_pageout_map_deactivate_pages(map, desired)
  815         vm_map_t map;
  816         long desired;
  817 {
  818         vm_map_entry_t tmpe;
  819         vm_object_t obj, bigobj;
  820         int nothingwired;
  821 
  822         if (!vm_map_trylock(map))
  823                 return;
  824 
  825         bigobj = NULL;
  826         nothingwired = TRUE;
  827 
  828         /*
  829          * first, search out the biggest object, and try to free pages from
  830          * that.
  831          */
  832         tmpe = map->header.next;
  833         while (tmpe != &map->header) {
  834                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  835                         obj = tmpe->object.vm_object;
  836                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
  837                                 if (obj->shadow_count <= 1 &&
  838                                     (bigobj == NULL ||
  839                                      bigobj->resident_page_count < obj->resident_page_count)) {
  840                                         if (bigobj != NULL)
  841                                                 VM_OBJECT_RUNLOCK(bigobj);
  842                                         bigobj = obj;
  843                                 } else
  844                                         VM_OBJECT_RUNLOCK(obj);
  845                         }
  846                 }
  847                 if (tmpe->wired_count > 0)
  848                         nothingwired = FALSE;
  849                 tmpe = tmpe->next;
  850         }
  851 
  852         if (bigobj != NULL) {
  853                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  854                 VM_OBJECT_RUNLOCK(bigobj);
  855         }
  856         /*
  857          * Next, hunt around for other pages to deactivate.  We actually
  858          * do this search sort of wrong -- .text first is not the best idea.
  859          */
  860         tmpe = map->header.next;
  861         while (tmpe != &map->header) {
  862                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  863                         break;
  864                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  865                         obj = tmpe->object.vm_object;
  866                         if (obj != NULL) {
  867                                 VM_OBJECT_RLOCK(obj);
  868                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  869                                 VM_OBJECT_RUNLOCK(obj);
  870                         }
  871                 }
  872                 tmpe = tmpe->next;
  873         }
  874 
  875         /*
  876          * Remove all mappings if a process is swapped out, this will free page
  877          * table pages.
  878          */
  879         if (desired == 0 && nothingwired) {
  880                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  881                     vm_map_max(map));
  882         }
  883         vm_map_unlock(map);
  884 }
  885 #endif          /* !defined(NO_SWAPPING) */
  886 
  887 /*
  888  *      vm_pageout_scan does the dirty work for the pageout daemon.
  889  *
  890  *      pass 0 - Update active LRU/deactivate pages
  891  *      pass 1 - Move inactive to cache or free
  892  *      pass 2 - Launder dirty pages
  893  */
  894 static void
  895 vm_pageout_scan(struct vm_domain *vmd, int pass)
  896 {
  897         vm_page_t m, next;
  898         struct vm_pagequeue *pq;
  899         int page_shortage, maxscan, pcount;
  900         int addl_page_shortage;
  901         vm_object_t object;
  902         int act_delta;
  903         int vnodes_skipped = 0;
  904         int maxlaunder;
  905         boolean_t queues_locked;
  906 
  907         /*
  908          * If we need to reclaim memory ask kernel caches to return
  909          * some.  We rate limit to avoid thrashing.
  910          */
  911         if (vmd == &vm_dom[0] && pass > 0 &&
  912             lowmem_ticks + (lowmem_period * hz) < ticks) {
  913                 /*
  914                  * Decrease registered cache sizes.
  915                  */
  916                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
  917                 /*
  918                  * We do this explicitly after the caches have been
  919                  * drained above.
  920                  */
  921                 uma_reclaim();
  922                 lowmem_ticks = ticks;
  923         }
  924 
  925         /*
  926          * The addl_page_shortage is the number of temporarily
  927          * stuck pages in the inactive queue.  In other words, the
  928          * number of pages from the inactive count that should be
  929          * discounted in setting the target for the active queue scan.
  930          */
  931         addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
  932 
  933         /*
  934          * Calculate the number of pages we want to either free or move
  935          * to the cache.
  936          */
  937         page_shortage = vm_paging_target() + addl_page_shortage;
  938 
  939         /*
  940          * maxlaunder limits the number of dirty pages we flush per scan.
  941          * For most systems a smaller value (16 or 32) is more robust under
  942          * extreme memory and disk pressure because any unnecessary writes
  943          * to disk can result in extreme performance degredation.  However,
  944          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  945          * used) will die horribly with limited laundering.  If the pageout
  946          * daemon cannot clean enough pages in the first pass, we let it go
  947          * all out in succeeding passes.
  948          */
  949         if ((maxlaunder = vm_max_launder) <= 1)
  950                 maxlaunder = 1;
  951         if (pass > 1)
  952                 maxlaunder = 10000;
  953 
  954         /*
  955          * Start scanning the inactive queue for pages we can move to the
  956          * cache or free.  The scan will stop when the target is reached or
  957          * we have scanned the entire inactive queue.  Note that m->act_count
  958          * is not used to form decisions for the inactive queue, only for the
  959          * active queue.
  960          */
  961         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
  962         maxscan = pq->pq_cnt;
  963         vm_pagequeue_lock(pq);
  964         queues_locked = TRUE;
  965         for (m = TAILQ_FIRST(&pq->pq_pl);
  966              m != NULL && maxscan-- > 0 && page_shortage > 0;
  967              m = next) {
  968                 vm_pagequeue_assert_locked(pq);
  969                 KASSERT(queues_locked, ("unlocked queues"));
  970                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
  971 
  972                 PCPU_INC(cnt.v_pdpages);
  973                 next = TAILQ_NEXT(m, plinks.q);
  974 
  975                 /*
  976                  * skip marker pages
  977                  */
  978                 if (m->flags & PG_MARKER)
  979                         continue;
  980 
  981                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
  982                     ("Fictitious page %p cannot be in inactive queue", m));
  983                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
  984                     ("Unmanaged page %p cannot be in inactive queue", m));
  985 
  986                 /*
  987                  * The page or object lock acquisitions fail if the
  988                  * page was removed from the queue or moved to a
  989                  * different position within the queue.  In either
  990                  * case, addl_page_shortage should not be incremented.
  991                  */
  992                 if (!vm_pageout_page_lock(m, &next)) {
  993                         vm_page_unlock(m);
  994                         continue;
  995                 }
  996                 object = m->object;
  997                 if (!VM_OBJECT_TRYWLOCK(object) &&
  998                     !vm_pageout_fallback_object_lock(m, &next)) {
  999                         vm_page_unlock(m);
 1000                         VM_OBJECT_WUNLOCK(object);
 1001                         continue;
 1002                 }
 1003 
 1004                 /*
 1005                  * Don't mess with busy pages, keep them at at the
 1006                  * front of the queue, most likely they are being
 1007                  * paged out.  Increment addl_page_shortage for busy
 1008                  * pages, because they may leave the inactive queue
 1009                  * shortly after page scan is finished.
 1010                  */
 1011                 if (vm_page_busied(m)) {
 1012                         vm_page_unlock(m);
 1013                         VM_OBJECT_WUNLOCK(object);
 1014                         addl_page_shortage++;
 1015                         continue;
 1016                 }
 1017 
 1018                 /*
 1019                  * We unlock the inactive page queue, invalidating the
 1020                  * 'next' pointer.  Use our marker to remember our
 1021                  * place.
 1022                  */
 1023                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
 1024                 vm_pagequeue_unlock(pq);
 1025                 queues_locked = FALSE;
 1026 
 1027                 /*
 1028                  * We bump the activation count if the page has been
 1029                  * referenced while in the inactive queue.  This makes
 1030                  * it less likely that the page will be added back to the
 1031                  * inactive queue prematurely again.  Here we check the 
 1032                  * page tables (or emulated bits, if any), given the upper 
 1033                  * level VM system not knowing anything about existing 
 1034                  * references.
 1035                  */
 1036                 act_delta = 0;
 1037                 if ((m->aflags & PGA_REFERENCED) != 0) {
 1038                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1039                         act_delta = 1;
 1040                 }
 1041                 if (object->ref_count != 0) {
 1042                         act_delta += pmap_ts_referenced(m);
 1043                 } else {
 1044                         KASSERT(!pmap_page_is_mapped(m),
 1045                             ("vm_pageout_scan: page %p is mapped", m));
 1046                 }
 1047 
 1048                 /*
 1049                  * If the upper level VM system knows about any page 
 1050                  * references, we reactivate the page or requeue it.
 1051                  */
 1052                 if (act_delta != 0) {
 1053                         if (object->ref_count) {
 1054                                 vm_page_activate(m);
 1055                                 m->act_count += act_delta + ACT_ADVANCE;
 1056                         } else {
 1057                                 vm_pagequeue_lock(pq);
 1058                                 queues_locked = TRUE;
 1059                                 vm_page_requeue_locked(m);
 1060                         }
 1061                         VM_OBJECT_WUNLOCK(object);
 1062                         vm_page_unlock(m);
 1063                         goto relock_queues;
 1064                 }
 1065 
 1066                 if (m->hold_count != 0) {
 1067                         vm_page_unlock(m);
 1068                         VM_OBJECT_WUNLOCK(object);
 1069 
 1070                         /*
 1071                          * Held pages are essentially stuck in the
 1072                          * queue.  So, they ought to be discounted
 1073                          * from the inactive count.  See the
 1074                          * calculation of the page_shortage for the
 1075                          * loop over the active queue below.
 1076                          */
 1077                         addl_page_shortage++;
 1078                         goto relock_queues;
 1079                 }
 1080 
 1081                 /*
 1082                  * If the page appears to be clean at the machine-independent
 1083                  * layer, then remove all of its mappings from the pmap in
 1084                  * anticipation of placing it onto the cache queue.  If,
 1085                  * however, any of the page's mappings allow write access,
 1086                  * then the page may still be modified until the last of those
 1087                  * mappings are removed.
 1088                  */
 1089                 vm_page_test_dirty(m);
 1090                 if (m->dirty == 0 && object->ref_count != 0)
 1091                         pmap_remove_all(m);
 1092 
 1093                 if (m->valid == 0) {
 1094                         /*
 1095                          * Invalid pages can be easily freed
 1096                          */
 1097                         vm_page_free(m);
 1098                         PCPU_INC(cnt.v_dfree);
 1099                         --page_shortage;
 1100                 } else if (m->dirty == 0) {
 1101                         /*
 1102                          * Clean pages can be placed onto the cache queue.
 1103                          * This effectively frees them.
 1104                          */
 1105                         vm_page_cache(m);
 1106                         --page_shortage;
 1107                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
 1108                         /*
 1109                          * Dirty pages need to be paged out, but flushing
 1110                          * a page is extremely expensive verses freeing
 1111                          * a clean page.  Rather then artificially limiting
 1112                          * the number of pages we can flush, we instead give
 1113                          * dirty pages extra priority on the inactive queue
 1114                          * by forcing them to be cycled through the queue
 1115                          * twice before being flushed, after which the
 1116                          * (now clean) page will cycle through once more
 1117                          * before being freed.  This significantly extends
 1118                          * the thrash point for a heavily loaded machine.
 1119                          */
 1120                         m->flags |= PG_WINATCFLS;
 1121                         vm_pagequeue_lock(pq);
 1122                         queues_locked = TRUE;
 1123                         vm_page_requeue_locked(m);
 1124                 } else if (maxlaunder > 0) {
 1125                         /*
 1126                          * We always want to try to flush some dirty pages if
 1127                          * we encounter them, to keep the system stable.
 1128                          * Normally this number is small, but under extreme
 1129                          * pressure where there are insufficient clean pages
 1130                          * on the inactive queue, we may have to go all out.
 1131                          */
 1132                         int swap_pageouts_ok;
 1133                         struct vnode *vp = NULL;
 1134                         struct mount *mp = NULL;
 1135 
 1136                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
 1137                                 swap_pageouts_ok = 1;
 1138                         } else {
 1139                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
 1140                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
 1141                                 vm_page_count_min());
 1142                                                                                 
 1143                         }
 1144 
 1145                         /*
 1146                          * We don't bother paging objects that are "dead".  
 1147                          * Those objects are in a "rundown" state.
 1148                          */
 1149                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
 1150                                 vm_pagequeue_lock(pq);
 1151                                 vm_page_unlock(m);
 1152                                 VM_OBJECT_WUNLOCK(object);
 1153                                 queues_locked = TRUE;
 1154                                 vm_page_requeue_locked(m);
 1155                                 goto relock_queues;
 1156                         }
 1157 
 1158                         /*
 1159                          * The object is already known NOT to be dead.   It
 1160                          * is possible for the vget() to block the whole
 1161                          * pageout daemon, but the new low-memory handling
 1162                          * code should prevent it.
 1163                          *
 1164                          * The previous code skipped locked vnodes and, worse,
 1165                          * reordered pages in the queue.  This results in
 1166                          * completely non-deterministic operation and, on a
 1167                          * busy system, can lead to extremely non-optimal
 1168                          * pageouts.  For example, it can cause clean pages
 1169                          * to be freed and dirty pages to be moved to the end
 1170                          * of the queue.  Since dirty pages are also moved to
 1171                          * the end of the queue once-cleaned, this gives
 1172                          * way too large a weighting to defering the freeing
 1173                          * of dirty pages.
 1174                          *
 1175                          * We can't wait forever for the vnode lock, we might
 1176                          * deadlock due to a vn_read() getting stuck in
 1177                          * vm_wait while holding this vnode.  We skip the 
 1178                          * vnode if we can't get it in a reasonable amount
 1179                          * of time.
 1180                          */
 1181                         if (object->type == OBJT_VNODE) {
 1182                                 vm_page_unlock(m);
 1183                                 vp = object->handle;
 1184                                 if (vp->v_type == VREG &&
 1185                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 1186                                         mp = NULL;
 1187                                         ++pageout_lock_miss;
 1188                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1189                                                 vnodes_skipped++;
 1190                                         goto unlock_and_continue;
 1191                                 }
 1192                                 KASSERT(mp != NULL,
 1193                                     ("vp %p with NULL v_mount", vp));
 1194                                 vm_object_reference_locked(object);
 1195                                 VM_OBJECT_WUNLOCK(object);
 1196                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
 1197                                     curthread)) {
 1198                                         VM_OBJECT_WLOCK(object);
 1199                                         ++pageout_lock_miss;
 1200                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1201                                                 vnodes_skipped++;
 1202                                         vp = NULL;
 1203                                         goto unlock_and_continue;
 1204                                 }
 1205                                 VM_OBJECT_WLOCK(object);
 1206                                 vm_page_lock(m);
 1207                                 vm_pagequeue_lock(pq);
 1208                                 queues_locked = TRUE;
 1209                                 /*
 1210                                  * The page might have been moved to another
 1211                                  * queue during potential blocking in vget()
 1212                                  * above.  The page might have been freed and
 1213                                  * reused for another vnode.
 1214                                  */
 1215                                 if (m->queue != PQ_INACTIVE ||
 1216                                     m->object != object ||
 1217                                     TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
 1218                                         vm_page_unlock(m);
 1219                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1220                                                 vnodes_skipped++;
 1221                                         goto unlock_and_continue;
 1222                                 }
 1223         
 1224                                 /*
 1225                                  * The page may have been busied during the
 1226                                  * blocking in vget().  We don't move the
 1227                                  * page back onto the end of the queue so that
 1228                                  * statistics are more correct if we don't.
 1229                                  */
 1230                                 if (vm_page_busied(m)) {
 1231                                         vm_page_unlock(m);
 1232                                         goto unlock_and_continue;
 1233                                 }
 1234 
 1235                                 /*
 1236                                  * If the page has become held it might
 1237                                  * be undergoing I/O, so skip it
 1238                                  */
 1239                                 if (m->hold_count) {
 1240                                         vm_page_unlock(m);
 1241                                         vm_page_requeue_locked(m);
 1242                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1243                                                 vnodes_skipped++;
 1244                                         goto unlock_and_continue;
 1245                                 }
 1246                                 vm_pagequeue_unlock(pq);
 1247                                 queues_locked = FALSE;
 1248                         }
 1249 
 1250                         /*
 1251                          * If a page is dirty, then it is either being washed
 1252                          * (but not yet cleaned) or it is still in the
 1253                          * laundry.  If it is still in the laundry, then we
 1254                          * start the cleaning operation. 
 1255                          *
 1256                          * decrement page_shortage on success to account for
 1257                          * the (future) cleaned page.  Otherwise we could wind
 1258                          * up laundering or cleaning too many pages.
 1259                          */
 1260                         if (vm_pageout_clean(m) != 0) {
 1261                                 --page_shortage;
 1262                                 --maxlaunder;
 1263                         }
 1264 unlock_and_continue:
 1265                         vm_page_lock_assert(m, MA_NOTOWNED);
 1266                         VM_OBJECT_WUNLOCK(object);
 1267                         if (mp != NULL) {
 1268                                 if (queues_locked) {
 1269                                         vm_pagequeue_unlock(pq);
 1270                                         queues_locked = FALSE;
 1271                                 }
 1272                                 if (vp != NULL)
 1273                                         vput(vp);
 1274                                 vm_object_deallocate(object);
 1275                                 vn_finished_write(mp);
 1276                         }
 1277                         vm_page_lock_assert(m, MA_NOTOWNED);
 1278                         goto relock_queues;
 1279                 }
 1280                 vm_page_unlock(m);
 1281                 VM_OBJECT_WUNLOCK(object);
 1282 relock_queues:
 1283                 if (!queues_locked) {
 1284                         vm_pagequeue_lock(pq);
 1285                         queues_locked = TRUE;
 1286                 }
 1287                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
 1288                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
 1289         }
 1290         vm_pagequeue_unlock(pq);
 1291 
 1292         /*
 1293          * Compute the number of pages we want to try to move from the
 1294          * active queue to the inactive queue.
 1295          */
 1296         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
 1297         vm_pagequeue_lock(pq);
 1298         pcount = pq->pq_cnt;
 1299         page_shortage = vm_paging_target() +
 1300             cnt.v_inactive_target - cnt.v_inactive_count;
 1301         page_shortage += addl_page_shortage;
 1302         /*
 1303          * If we're just idle polling attempt to visit every
 1304          * active page within 'update_period' seconds.
 1305          */
 1306          if (pass == 0 && vm_pageout_update_period != 0) {
 1307                 pcount /= vm_pageout_update_period;
 1308                 page_shortage = pcount;
 1309         }
 1310 
 1311         /*
 1312          * Scan the active queue for things we can deactivate. We nominally
 1313          * track the per-page activity counter and use it to locate
 1314          * deactivation candidates.
 1315          */
 1316         m = TAILQ_FIRST(&pq->pq_pl);
 1317         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
 1318 
 1319                 KASSERT(m->queue == PQ_ACTIVE,
 1320                     ("vm_pageout_scan: page %p isn't active", m));
 1321 
 1322                 next = TAILQ_NEXT(m, plinks.q);
 1323                 if ((m->flags & PG_MARKER) != 0) {
 1324                         m = next;
 1325                         continue;
 1326                 }
 1327                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1328                     ("Fictitious page %p cannot be in active queue", m));
 1329                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1330                     ("Unmanaged page %p cannot be in active queue", m));
 1331                 if (!vm_pageout_page_lock(m, &next)) {
 1332                         vm_page_unlock(m);
 1333                         m = next;
 1334                         continue;
 1335                 }
 1336 
 1337                 /*
 1338                  * The count for pagedaemon pages is done after checking the
 1339                  * page for eligibility...
 1340                  */
 1341                 PCPU_INC(cnt.v_pdpages);
 1342 
 1343                 /*
 1344                  * Check to see "how much" the page has been used.
 1345                  */
 1346                 act_delta = 0;
 1347                 if (m->aflags & PGA_REFERENCED) {
 1348                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1349                         act_delta += 1;
 1350                 }
 1351                 /*
 1352                  * Unlocked object ref count check.  Two races are possible.
 1353                  * 1) The ref was transitioning to zero and we saw non-zero,
 1354                  *    the pmap bits will be checked unnecessarily.
 1355                  * 2) The ref was transitioning to one and we saw zero. 
 1356                  *    The page lock prevents a new reference to this page so
 1357                  *    we need not check the reference bits.
 1358                  */
 1359                 if (m->object->ref_count != 0)
 1360                         act_delta += pmap_ts_referenced(m);
 1361 
 1362                 /*
 1363                  * Advance or decay the act_count based on recent usage.
 1364                  */
 1365                 if (act_delta) {
 1366                         m->act_count += ACT_ADVANCE + act_delta;
 1367                         if (m->act_count > ACT_MAX)
 1368                                 m->act_count = ACT_MAX;
 1369                 } else {
 1370                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1371                         act_delta = m->act_count;
 1372                 }
 1373 
 1374                 /*
 1375                  * Move this page to the tail of the active or inactive
 1376                  * queue depending on usage.
 1377                  */
 1378                 if (act_delta == 0) {
 1379                         /* Dequeue to avoid later lock recursion. */
 1380                         vm_page_dequeue_locked(m);
 1381                         vm_page_deactivate(m);
 1382                         page_shortage--;
 1383                 } else
 1384                         vm_page_requeue_locked(m);
 1385                 vm_page_unlock(m);
 1386                 m = next;
 1387         }
 1388         vm_pagequeue_unlock(pq);
 1389 #if !defined(NO_SWAPPING)
 1390         /*
 1391          * Idle process swapout -- run once per second.
 1392          */
 1393         if (vm_swap_idle_enabled) {
 1394                 static long lsec;
 1395                 if (time_second != lsec) {
 1396                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1397                         lsec = time_second;
 1398                 }
 1399         }
 1400 #endif
 1401                 
 1402         /*
 1403          * If we didn't get enough free pages, and we have skipped a vnode
 1404          * in a writeable object, wakeup the sync daemon.  And kick swapout
 1405          * if we did not get enough free pages.
 1406          */
 1407         if (vm_paging_target() > 0) {
 1408                 if (vnodes_skipped && vm_page_count_min())
 1409                         (void) speedup_syncer();
 1410 #if !defined(NO_SWAPPING)
 1411                 if (vm_swap_enabled && vm_page_count_target())
 1412                         vm_req_vmdaemon(VM_SWAP_NORMAL);
 1413 #endif
 1414         }
 1415 
 1416         /*
 1417          * If we are critically low on one of RAM or swap and low on
 1418          * the other, kill the largest process.  However, we avoid
 1419          * doing this on the first pass in order to give ourselves a
 1420          * chance to flush out dirty vnode-backed pages and to allow
 1421          * active pages to be moved to the inactive queue and reclaimed.
 1422          */
 1423         vm_pageout_mightbe_oom(vmd, pass);
 1424 }
 1425 
 1426 static int vm_pageout_oom_vote;
 1427 
 1428 /*
 1429  * The pagedaemon threads randlomly select one to perform the
 1430  * OOM.  Trying to kill processes before all pagedaemons
 1431  * failed to reach free target is premature.
 1432  */
 1433 static void
 1434 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
 1435 {
 1436         int old_vote;
 1437 
 1438         if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
 1439             (swap_pager_full && vm_paging_target() > 0))) {
 1440                 if (vmd->vmd_oom) {
 1441                         vmd->vmd_oom = FALSE;
 1442                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1443                 }
 1444                 return;
 1445         }
 1446 
 1447         if (vmd->vmd_oom)
 1448                 return;
 1449 
 1450         vmd->vmd_oom = TRUE;
 1451         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
 1452         if (old_vote != vm_ndomains - 1)
 1453                 return;
 1454 
 1455         /*
 1456          * The current pagedaemon thread is the last in the quorum to
 1457          * start OOM.  Initiate the selection and signaling of the
 1458          * victim.
 1459          */
 1460         vm_pageout_oom(VM_OOM_MEM);
 1461 
 1462         /*
 1463          * After one round of OOM terror, recall our vote.  On the
 1464          * next pass, current pagedaemon would vote again if the low
 1465          * memory condition is still there, due to vmd_oom being
 1466          * false.
 1467          */
 1468         vmd->vmd_oom = FALSE;
 1469         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1470 }
 1471 
 1472 void
 1473 vm_pageout_oom(int shortage)
 1474 {
 1475         struct proc *p, *bigproc;
 1476         vm_offset_t size, bigsize;
 1477         struct thread *td;
 1478         struct vmspace *vm;
 1479 
 1480         /*
 1481          * We keep the process bigproc locked once we find it to keep anyone
 1482          * from messing with it; however, there is a possibility of
 1483          * deadlock if process B is bigproc and one of it's child processes
 1484          * attempts to propagate a signal to B while we are waiting for A's
 1485          * lock while walking this list.  To avoid this, we don't block on
 1486          * the process lock but just skip a process if it is already locked.
 1487          */
 1488         bigproc = NULL;
 1489         bigsize = 0;
 1490         sx_slock(&allproc_lock);
 1491         FOREACH_PROC_IN_SYSTEM(p) {
 1492                 int breakout;
 1493 
 1494                 if (PROC_TRYLOCK(p) == 0)
 1495                         continue;
 1496                 /*
 1497                  * If this is a system, protected or killed process, skip it.
 1498                  */
 1499                 if (p->p_state != PRS_NORMAL ||
 1500                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
 1501                     (p->p_pid == 1) || P_KILLED(p) ||
 1502                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
 1503                         PROC_UNLOCK(p);
 1504                         continue;
 1505                 }
 1506                 /*
 1507                  * If the process is in a non-running type state,
 1508                  * don't touch it.  Check all the threads individually.
 1509                  */
 1510                 breakout = 0;
 1511                 FOREACH_THREAD_IN_PROC(p, td) {
 1512                         thread_lock(td);
 1513                         if (!TD_ON_RUNQ(td) &&
 1514                             !TD_IS_RUNNING(td) &&
 1515                             !TD_IS_SLEEPING(td) &&
 1516                             !TD_IS_SUSPENDED(td)) {
 1517                                 thread_unlock(td);
 1518                                 breakout = 1;
 1519                                 break;
 1520                         }
 1521                         thread_unlock(td);
 1522                 }
 1523                 if (breakout) {
 1524                         PROC_UNLOCK(p);
 1525                         continue;
 1526                 }
 1527                 /*
 1528                  * get the process size
 1529                  */
 1530                 vm = vmspace_acquire_ref(p);
 1531                 if (vm == NULL) {
 1532                         PROC_UNLOCK(p);
 1533                         continue;
 1534                 }
 1535                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1536                         vmspace_free(vm);
 1537                         PROC_UNLOCK(p);
 1538                         continue;
 1539                 }
 1540                 size = vmspace_swap_count(vm);
 1541                 vm_map_unlock_read(&vm->vm_map);
 1542                 if (shortage == VM_OOM_MEM)
 1543                         size += vmspace_resident_count(vm);
 1544                 vmspace_free(vm);
 1545                 /*
 1546                  * if the this process is bigger than the biggest one
 1547                  * remember it.
 1548                  */
 1549                 if (size > bigsize) {
 1550                         if (bigproc != NULL)
 1551                                 PROC_UNLOCK(bigproc);
 1552                         bigproc = p;
 1553                         bigsize = size;
 1554                 } else
 1555                         PROC_UNLOCK(p);
 1556         }
 1557         sx_sunlock(&allproc_lock);
 1558         if (bigproc != NULL) {
 1559                 killproc(bigproc, "out of swap space");
 1560                 sched_nice(bigproc, PRIO_MIN);
 1561                 PROC_UNLOCK(bigproc);
 1562                 wakeup(&cnt.v_free_count);
 1563         }
 1564 }
 1565 
 1566 static void
 1567 vm_pageout_worker(void *arg)
 1568 {
 1569         struct vm_domain *domain;
 1570         int domidx;
 1571 
 1572         domidx = (uintptr_t)arg;
 1573         domain = &vm_dom[domidx];
 1574 
 1575         /*
 1576          * XXXKIB It could be useful to bind pageout daemon threads to
 1577          * the cores belonging to the domain, from which vm_page_array
 1578          * is allocated.
 1579          */
 1580 
 1581         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
 1582         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
 1583 
 1584         /*
 1585          * The pageout daemon worker is never done, so loop forever.
 1586          */
 1587         while (TRUE) {
 1588                 /*
 1589                  * If we have enough free memory, wakeup waiters.  Do
 1590                  * not clear vm_pages_needed until we reach our target,
 1591                  * otherwise we may be woken up over and over again and
 1592                  * waste a lot of cpu.
 1593                  */
 1594                 mtx_lock(&vm_page_queue_free_mtx);
 1595                 if (vm_pages_needed && !vm_page_count_min()) {
 1596                         if (!vm_paging_needed())
 1597                                 vm_pages_needed = 0;
 1598                         wakeup(&cnt.v_free_count);
 1599                 }
 1600                 if (vm_pages_needed) {
 1601                         /*
 1602                          * Still not done, take a second pass without waiting
 1603                          * (unlimited dirty cleaning), otherwise sleep a bit
 1604                          * and try again.
 1605                          */
 1606                         if (domain->vmd_pass > 1)
 1607                                 msleep(&vm_pages_needed,
 1608                                     &vm_page_queue_free_mtx, PVM, "psleep",
 1609                                     hz / 2);
 1610                 } else {
 1611                         /*
 1612                          * Good enough, sleep until required to refresh
 1613                          * stats.
 1614                          */
 1615                         domain->vmd_pass = 0;
 1616                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
 1617                             PVM, "psleep", hz);
 1618 
 1619                 }
 1620                 if (vm_pages_needed) {
 1621                         cnt.v_pdwakeups++;
 1622                         domain->vmd_pass++;
 1623                 }
 1624                 mtx_unlock(&vm_page_queue_free_mtx);
 1625                 vm_pageout_scan(domain, domain->vmd_pass);
 1626         }
 1627 }
 1628 
 1629 /*
 1630  *      vm_pageout is the high level pageout daemon.
 1631  */
 1632 static void
 1633 vm_pageout(void)
 1634 {
 1635 #if MAXMEMDOM > 1
 1636         int error, i;
 1637 #endif
 1638 
 1639         /*
 1640          * Initialize some paging parameters.
 1641          */
 1642         cnt.v_interrupt_free_min = 2;
 1643         if (cnt.v_page_count < 2000)
 1644                 vm_pageout_page_count = 8;
 1645 
 1646         /*
 1647          * v_free_reserved needs to include enough for the largest
 1648          * swap pager structures plus enough for any pv_entry structs
 1649          * when paging. 
 1650          */
 1651         if (cnt.v_page_count > 1024)
 1652                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1653         else
 1654                 cnt.v_free_min = 4;
 1655         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1656             cnt.v_interrupt_free_min;
 1657         cnt.v_free_reserved = vm_pageout_page_count +
 1658             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
 1659         cnt.v_free_severe = cnt.v_free_min / 2;
 1660         cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1661         cnt.v_free_min += cnt.v_free_reserved;
 1662         cnt.v_free_severe += cnt.v_free_reserved;
 1663         cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1664         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1665                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1666 
 1667         /*
 1668          * Set the default wakeup threshold to be 10% above the minimum
 1669          * page limit.  This keeps the steady state out of shortfall.
 1670          */
 1671         vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
 1672 
 1673         /*
 1674          * Set interval in seconds for active scan.  We want to visit each
 1675          * page at least once every ten minutes.  This is to prevent worst
 1676          * case paging behaviors with stale active LRU.
 1677          */
 1678         if (vm_pageout_update_period == 0)
 1679                 vm_pageout_update_period = 600;
 1680 
 1681         /* XXX does not really belong here */
 1682         if (vm_page_max_wired == 0)
 1683                 vm_page_max_wired = cnt.v_free_count / 3;
 1684 
 1685         swap_pager_swap_init();
 1686 #if MAXMEMDOM > 1
 1687         for (i = 1; i < vm_ndomains; i++) {
 1688                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
 1689                     curproc, NULL, 0, 0, "dom%d", i);
 1690                 if (error != 0) {
 1691                         panic("starting pageout for domain %d, error %d\n",
 1692                             i, error);
 1693                 }
 1694         }
 1695 #endif
 1696         vm_pageout_worker((uintptr_t)0);
 1697 }
 1698 
 1699 /*
 1700  * Unless the free page queue lock is held by the caller, this function
 1701  * should be regarded as advisory.  Specifically, the caller should
 1702  * not msleep() on &cnt.v_free_count following this function unless
 1703  * the free page queue lock is held until the msleep() is performed.
 1704  */
 1705 void
 1706 pagedaemon_wakeup(void)
 1707 {
 1708 
 1709         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1710                 vm_pages_needed = 1;
 1711                 wakeup(&vm_pages_needed);
 1712         }
 1713 }
 1714 
 1715 #if !defined(NO_SWAPPING)
 1716 static void
 1717 vm_req_vmdaemon(int req)
 1718 {
 1719         static int lastrun = 0;
 1720 
 1721         mtx_lock(&vm_daemon_mtx);
 1722         vm_pageout_req_swapout |= req;
 1723         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1724                 wakeup(&vm_daemon_needed);
 1725                 lastrun = ticks;
 1726         }
 1727         mtx_unlock(&vm_daemon_mtx);
 1728 }
 1729 
 1730 static void
 1731 vm_daemon(void)
 1732 {
 1733         struct rlimit rsslim;
 1734         struct proc *p;
 1735         struct thread *td;
 1736         struct vmspace *vm;
 1737         int breakout, swapout_flags, tryagain, attempts;
 1738 #ifdef RACCT
 1739         uint64_t rsize, ravailable;
 1740 #endif
 1741 
 1742         while (TRUE) {
 1743                 mtx_lock(&vm_daemon_mtx);
 1744 #ifdef RACCT
 1745                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
 1746 #else
 1747                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
 1748 #endif
 1749                 swapout_flags = vm_pageout_req_swapout;
 1750                 vm_pageout_req_swapout = 0;
 1751                 mtx_unlock(&vm_daemon_mtx);
 1752                 if (swapout_flags)
 1753                         swapout_procs(swapout_flags);
 1754 
 1755                 /*
 1756                  * scan the processes for exceeding their rlimits or if
 1757                  * process is swapped out -- deactivate pages
 1758                  */
 1759                 tryagain = 0;
 1760                 attempts = 0;
 1761 again:
 1762                 attempts++;
 1763                 sx_slock(&allproc_lock);
 1764                 FOREACH_PROC_IN_SYSTEM(p) {
 1765                         vm_pindex_t limit, size;
 1766 
 1767                         /*
 1768                          * if this is a system process or if we have already
 1769                          * looked at this process, skip it.
 1770                          */
 1771                         PROC_LOCK(p);
 1772                         if (p->p_state != PRS_NORMAL ||
 1773                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
 1774                                 PROC_UNLOCK(p);
 1775                                 continue;
 1776                         }
 1777                         /*
 1778                          * if the process is in a non-running type state,
 1779                          * don't touch it.
 1780                          */
 1781                         breakout = 0;
 1782                         FOREACH_THREAD_IN_PROC(p, td) {
 1783                                 thread_lock(td);
 1784                                 if (!TD_ON_RUNQ(td) &&
 1785                                     !TD_IS_RUNNING(td) &&
 1786                                     !TD_IS_SLEEPING(td) &&
 1787                                     !TD_IS_SUSPENDED(td)) {
 1788                                         thread_unlock(td);
 1789                                         breakout = 1;
 1790                                         break;
 1791                                 }
 1792                                 thread_unlock(td);
 1793                         }
 1794                         if (breakout) {
 1795                                 PROC_UNLOCK(p);
 1796                                 continue;
 1797                         }
 1798                         /*
 1799                          * get a limit
 1800                          */
 1801                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1802                         limit = OFF_TO_IDX(
 1803                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1804 
 1805                         /*
 1806                          * let processes that are swapped out really be
 1807                          * swapped out set the limit to nothing (will force a
 1808                          * swap-out.)
 1809                          */
 1810                         if ((p->p_flag & P_INMEM) == 0)
 1811                                 limit = 0;      /* XXX */
 1812                         vm = vmspace_acquire_ref(p);
 1813                         PROC_UNLOCK(p);
 1814                         if (vm == NULL)
 1815                                 continue;
 1816 
 1817                         size = vmspace_resident_count(vm);
 1818                         if (size >= limit) {
 1819                                 vm_pageout_map_deactivate_pages(
 1820                                     &vm->vm_map, limit);
 1821                         }
 1822 #ifdef RACCT
 1823                         rsize = IDX_TO_OFF(size);
 1824                         PROC_LOCK(p);
 1825                         racct_set(p, RACCT_RSS, rsize);
 1826                         ravailable = racct_get_available(p, RACCT_RSS);
 1827                         PROC_UNLOCK(p);
 1828                         if (rsize > ravailable) {
 1829                                 /*
 1830                                  * Don't be overly aggressive; this might be
 1831                                  * an innocent process, and the limit could've
 1832                                  * been exceeded by some memory hog.  Don't
 1833                                  * try to deactivate more than 1/4th of process'
 1834                                  * resident set size.
 1835                                  */
 1836                                 if (attempts <= 8) {
 1837                                         if (ravailable < rsize - (rsize / 4))
 1838                                                 ravailable = rsize - (rsize / 4);
 1839                                 }
 1840                                 vm_pageout_map_deactivate_pages(
 1841                                     &vm->vm_map, OFF_TO_IDX(ravailable));
 1842                                 /* Update RSS usage after paging out. */
 1843                                 size = vmspace_resident_count(vm);
 1844                                 rsize = IDX_TO_OFF(size);
 1845                                 PROC_LOCK(p);
 1846                                 racct_set(p, RACCT_RSS, rsize);
 1847                                 PROC_UNLOCK(p);
 1848                                 if (rsize > ravailable)
 1849                                         tryagain = 1;
 1850                         }
 1851 #endif
 1852                         vmspace_free(vm);
 1853                 }
 1854                 sx_sunlock(&allproc_lock);
 1855                 if (tryagain != 0 && attempts <= 10)
 1856                         goto again;
 1857         }
 1858 }
 1859 #endif                  /* !defined(NO_SWAPPING) */

Cache object: d4637c9d7987729c3cd86346e5e4a015


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.