The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD$");
   77 
   78 #include "opt_vm.h"
   79 #include "opt_kdtrace.h"
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/eventhandler.h>
   84 #include <sys/lock.h>
   85 #include <sys/mutex.h>
   86 #include <sys/proc.h>
   87 #include <sys/kthread.h>
   88 #include <sys/ktr.h>
   89 #include <sys/mount.h>
   90 #include <sys/racct.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/sched.h>
   93 #include <sys/sdt.h>
   94 #include <sys/signalvar.h>
   95 #include <sys/smp.h>
   96 #include <sys/time.h>
   97 #include <sys/vnode.h>
   98 #include <sys/vmmeter.h>
   99 #include <sys/rwlock.h>
  100 #include <sys/sx.h>
  101 #include <sys/sysctl.h>
  102 
  103 #include <vm/vm.h>
  104 #include <vm/vm_param.h>
  105 #include <vm/vm_object.h>
  106 #include <vm/vm_page.h>
  107 #include <vm/vm_map.h>
  108 #include <vm/vm_pageout.h>
  109 #include <vm/vm_pager.h>
  110 #include <vm/vm_phys.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 /*
  116  * System initialization
  117  */
  118 
  119 /* the kernel process "vm_pageout"*/
  120 static void vm_pageout(void);
  121 static void vm_pageout_init(void);
  122 static int vm_pageout_clean(vm_page_t);
  123 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
  124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
  125     int starting_page_shortage);
  126 
  127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
  128     NULL);
  129 
  130 struct proc *pageproc;
  131 
  132 static struct kproc_desc page_kp = {
  133         "pagedaemon",
  134         vm_pageout,
  135         &pageproc
  136 };
  137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
  138     &page_kp);
  139 
  140 SDT_PROVIDER_DEFINE(vm);
  141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
  142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
  143 
  144 #if !defined(NO_SWAPPING)
  145 /* the kernel process "vm_daemon"*/
  146 static void vm_daemon(void);
  147 static struct   proc *vmproc;
  148 
  149 static struct kproc_desc vm_kp = {
  150         "vmdaemon",
  151         vm_daemon,
  152         &vmproc
  153 };
  154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
  155 #endif
  156 
  157 
  158 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  159 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  160 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  161 int vm_pageout_wakeup_thresh;
  162 static int vm_pageout_oom_seq = 12;
  163 
  164 #if !defined(NO_SWAPPING)
  165 static int vm_pageout_req_swapout;      /* XXX */
  166 static int vm_daemon_needed;
  167 static struct mtx vm_daemon_mtx;
  168 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  169 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  170 #endif
  171 static int vm_max_launder = 32;
  172 static int vm_pageout_update_period;
  173 static int defer_swap_pageouts;
  174 static int disable_swap_pageouts;
  175 static int lowmem_period = 10;
  176 static time_t lowmem_uptime;
  177 
  178 #if defined(NO_SWAPPING)
  179 static int vm_swap_enabled = 0;
  180 static int vm_swap_idle_enabled = 0;
  181 #else
  182 static int vm_swap_enabled = 1;
  183 static int vm_swap_idle_enabled = 0;
  184 #endif
  185 
  186 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
  187         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
  188         "free page threshold for waking up the pageout daemon");
  189 
  190 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  191         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  192 
  193 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
  194         CTLFLAG_RW, &vm_pageout_update_period, 0,
  195         "Maximum active LRU update period");
  196   
  197 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
  198         "Low memory callback period");
  199 
  200 #if defined(NO_SWAPPING)
  201 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  202         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
  203 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  204         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  205 #else
  206 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  207         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  208 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  209         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  210 #endif
  211 
  212 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  213         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  214 
  215 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  216         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  217 
  218 static int pageout_lock_miss;
  219 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  220         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  221 
  222 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
  223         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
  224         "back-to-back calls to oom detector to start OOM");
  225 
  226 #define VM_PAGEOUT_PAGE_COUNT 16
  227 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  228 
  229 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  230 SYSCTL_INT(_vm, OID_AUTO, max_wired,
  231         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
  232 
  233 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
  234 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
  235     vm_paddr_t);
  236 #if !defined(NO_SWAPPING)
  237 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  238 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  239 static void vm_req_vmdaemon(int req);
  240 #endif
  241 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
  242 
  243 /*
  244  * Initialize a dummy page for marking the caller's place in the specified
  245  * paging queue.  In principle, this function only needs to set the flag
  246  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
  247  * to one as safety precautions.
  248  */ 
  249 static void
  250 vm_pageout_init_marker(vm_page_t marker, u_short queue)
  251 {
  252 
  253         bzero(marker, sizeof(*marker));
  254         marker->flags = PG_MARKER;
  255         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
  256         marker->queue = queue;
  257         marker->hold_count = 1;
  258 }
  259 
  260 /*
  261  * vm_pageout_fallback_object_lock:
  262  * 
  263  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
  264  * known to have failed and page queue must be either PQ_ACTIVE or
  265  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
  266  * while locking the vm object.  Use marker page to detect page queue
  267  * changes and maintain notion of next page on page queue.  Return
  268  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  269  * locked on return.
  270  * 
  271  * This function depends on both the lock portion of struct vm_object
  272  * and normal struct vm_page being type stable.
  273  */
  274 static boolean_t
  275 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  276 {
  277         struct vm_page marker;
  278         struct vm_pagequeue *pq;
  279         boolean_t unchanged;
  280         u_short queue;
  281         vm_object_t object;
  282 
  283         queue = m->queue;
  284         vm_pageout_init_marker(&marker, queue);
  285         pq = vm_page_pagequeue(m);
  286         object = m->object;
  287         
  288         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  289         vm_pagequeue_unlock(pq);
  290         vm_page_unlock(m);
  291         VM_OBJECT_WLOCK(object);
  292         vm_page_lock(m);
  293         vm_pagequeue_lock(pq);
  294 
  295         /*
  296          * The page's object might have changed, and/or the page might
  297          * have moved from its original position in the queue.  If the
  298          * page's object has changed, then the caller should abandon
  299          * processing the page because the wrong object lock was
  300          * acquired.  Use the marker's plinks.q, not the page's, to
  301          * determine if the page has been moved.  The state of the
  302          * page's plinks.q can be indeterminate; whereas, the marker's
  303          * plinks.q must be valid.
  304          */
  305         *next = TAILQ_NEXT(&marker, plinks.q);
  306         unchanged = m->object == object &&
  307             m == TAILQ_PREV(&marker, pglist, plinks.q);
  308         KASSERT(!unchanged || m->queue == queue,
  309             ("page %p queue %d %d", m, queue, m->queue));
  310         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  311         return (unchanged);
  312 }
  313 
  314 /*
  315  * Lock the page while holding the page queue lock.  Use marker page
  316  * to detect page queue changes and maintain notion of next page on
  317  * page queue.  Return TRUE if no changes were detected, FALSE
  318  * otherwise.  The page is locked on return. The page queue lock might
  319  * be dropped and reacquired.
  320  *
  321  * This function depends on normal struct vm_page being type stable.
  322  */
  323 static boolean_t
  324 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
  325 {
  326         struct vm_page marker;
  327         struct vm_pagequeue *pq;
  328         boolean_t unchanged;
  329         u_short queue;
  330 
  331         vm_page_lock_assert(m, MA_NOTOWNED);
  332         if (vm_page_trylock(m))
  333                 return (TRUE);
  334 
  335         queue = m->queue;
  336         vm_pageout_init_marker(&marker, queue);
  337         pq = vm_page_pagequeue(m);
  338 
  339         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  340         vm_pagequeue_unlock(pq);
  341         vm_page_lock(m);
  342         vm_pagequeue_lock(pq);
  343 
  344         /* Page queue might have changed. */
  345         *next = TAILQ_NEXT(&marker, plinks.q);
  346         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
  347         KASSERT(!unchanged || m->queue == queue,
  348             ("page %p queue %d %d", m, queue, m->queue));
  349         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  350         return (unchanged);
  351 }
  352 
  353 /*
  354  * vm_pageout_clean:
  355  *
  356  * Clean the page and remove it from the laundry.
  357  * 
  358  * We set the busy bit to cause potential page faults on this page to
  359  * block.  Note the careful timing, however, the busy bit isn't set till
  360  * late and we cannot do anything that will mess with the page.
  361  */
  362 static int
  363 vm_pageout_clean(vm_page_t m)
  364 {
  365         vm_object_t object;
  366         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
  367         int pageout_count;
  368         int ib, is, page_base;
  369         vm_pindex_t pindex = m->pindex;
  370 
  371         vm_page_lock_assert(m, MA_OWNED);
  372         object = m->object;
  373         VM_OBJECT_ASSERT_WLOCKED(object);
  374 
  375         /*
  376          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  377          * with the new swapper, but we could have serious problems paging
  378          * out other object types if there is insufficient memory.  
  379          *
  380          * Unfortunately, checking free memory here is far too late, so the
  381          * check has been moved up a procedural level.
  382          */
  383 
  384         /*
  385          * Can't clean the page if it's busy or held.
  386          */
  387         vm_page_assert_unbusied(m);
  388         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
  389         vm_page_unlock(m);
  390 
  391         mc[vm_pageout_page_count] = pb = ps = m;
  392         pageout_count = 1;
  393         page_base = vm_pageout_page_count;
  394         ib = 1;
  395         is = 1;
  396 
  397         /*
  398          * Scan object for clusterable pages.
  399          *
  400          * We can cluster ONLY if: ->> the page is NOT
  401          * clean, wired, busy, held, or mapped into a
  402          * buffer, and one of the following:
  403          * 1) The page is inactive, or a seldom used
  404          *    active page.
  405          * -or-
  406          * 2) we force the issue.
  407          *
  408          * During heavy mmap/modification loads the pageout
  409          * daemon can really fragment the underlying file
  410          * due to flushing pages out of order and not trying
  411          * align the clusters (which leave sporatic out-of-order
  412          * holes).  To solve this problem we do the reverse scan
  413          * first and attempt to align our cluster, then do a 
  414          * forward scan if room remains.
  415          */
  416 more:
  417         while (ib && pageout_count < vm_pageout_page_count) {
  418                 vm_page_t p;
  419 
  420                 if (ib > pindex) {
  421                         ib = 0;
  422                         break;
  423                 }
  424 
  425                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
  426                         ib = 0;
  427                         break;
  428                 }
  429                 vm_page_test_dirty(p);
  430                 if (p->dirty == 0) {
  431                         ib = 0;
  432                         break;
  433                 }
  434                 vm_page_lock(p);
  435                 if (p->queue != PQ_INACTIVE ||
  436                     p->hold_count != 0) {       /* may be undergoing I/O */
  437                         vm_page_unlock(p);
  438                         ib = 0;
  439                         break;
  440                 }
  441                 vm_page_unlock(p);
  442                 mc[--page_base] = pb = p;
  443                 ++pageout_count;
  444                 ++ib;
  445                 /*
  446                  * alignment boundry, stop here and switch directions.  Do
  447                  * not clear ib.
  448                  */
  449                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  450                         break;
  451         }
  452 
  453         while (pageout_count < vm_pageout_page_count && 
  454             pindex + is < object->size) {
  455                 vm_page_t p;
  456 
  457                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
  458                         break;
  459                 vm_page_test_dirty(p);
  460                 if (p->dirty == 0)
  461                         break;
  462                 vm_page_lock(p);
  463                 if (p->queue != PQ_INACTIVE ||
  464                     p->hold_count != 0) {       /* may be undergoing I/O */
  465                         vm_page_unlock(p);
  466                         break;
  467                 }
  468                 vm_page_unlock(p);
  469                 mc[page_base + pageout_count] = ps = p;
  470                 ++pageout_count;
  471                 ++is;
  472         }
  473 
  474         /*
  475          * If we exhausted our forward scan, continue with the reverse scan
  476          * when possible, even past a page boundry.  This catches boundry
  477          * conditions.
  478          */
  479         if (ib && pageout_count < vm_pageout_page_count)
  480                 goto more;
  481 
  482         /*
  483          * we allow reads during pageouts...
  484          */
  485         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
  486             NULL));
  487 }
  488 
  489 /*
  490  * vm_pageout_flush() - launder the given pages
  491  *
  492  *      The given pages are laundered.  Note that we setup for the start of
  493  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  494  *      reference count all in here rather then in the parent.  If we want
  495  *      the parent to do more sophisticated things we may have to change
  496  *      the ordering.
  497  *
  498  *      Returned runlen is the count of pages between mreq and first
  499  *      page after mreq with status VM_PAGER_AGAIN.
  500  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  501  *      for any page in runlen set.
  502  */
  503 int
  504 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  505     boolean_t *eio)
  506 {
  507         vm_object_t object = mc[0]->object;
  508         int pageout_status[count];
  509         int numpagedout = 0;
  510         int i, runlen;
  511 
  512         VM_OBJECT_ASSERT_WLOCKED(object);
  513 
  514         /*
  515          * Initiate I/O.  Bump the vm_page_t->busy counter and
  516          * mark the pages read-only.
  517          *
  518          * We do not have to fixup the clean/dirty bits here... we can
  519          * allow the pager to do it after the I/O completes.
  520          *
  521          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  522          * edge case with file fragments.
  523          */
  524         for (i = 0; i < count; i++) {
  525                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  526                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  527                         mc[i], i, count));
  528                 vm_page_sbusy(mc[i]);
  529                 pmap_remove_write(mc[i]);
  530         }
  531         vm_object_pip_add(object, count);
  532 
  533         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  534 
  535         runlen = count - mreq;
  536         if (eio != NULL)
  537                 *eio = FALSE;
  538         for (i = 0; i < count; i++) {
  539                 vm_page_t mt = mc[i];
  540 
  541                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  542                     !pmap_page_is_write_mapped(mt),
  543                     ("vm_pageout_flush: page %p is not write protected", mt));
  544                 switch (pageout_status[i]) {
  545                 case VM_PAGER_OK:
  546                 case VM_PAGER_PEND:
  547                         numpagedout++;
  548                         break;
  549                 case VM_PAGER_BAD:
  550                         /*
  551                          * Page outside of range of object. Right now we
  552                          * essentially lose the changes by pretending it
  553                          * worked.
  554                          */
  555                         vm_page_undirty(mt);
  556                         break;
  557                 case VM_PAGER_ERROR:
  558                 case VM_PAGER_FAIL:
  559                         /*
  560                          * If page couldn't be paged out, then reactivate the
  561                          * page so it doesn't clog the inactive list.  (We
  562                          * will try paging out it again later).
  563                          */
  564                         vm_page_lock(mt);
  565                         vm_page_activate(mt);
  566                         vm_page_unlock(mt);
  567                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  568                                 *eio = TRUE;
  569                         break;
  570                 case VM_PAGER_AGAIN:
  571                         if (i >= mreq && i - mreq < runlen)
  572                                 runlen = i - mreq;
  573                         break;
  574                 }
  575 
  576                 /*
  577                  * If the operation is still going, leave the page busy to
  578                  * block all other accesses. Also, leave the paging in
  579                  * progress indicator set so that we don't attempt an object
  580                  * collapse.
  581                  */
  582                 if (pageout_status[i] != VM_PAGER_PEND) {
  583                         vm_object_pip_wakeup(object);
  584                         vm_page_sunbusy(mt);
  585                         if (vm_page_count_severe()) {
  586                                 vm_page_lock(mt);
  587                                 vm_page_try_to_cache(mt);
  588                                 vm_page_unlock(mt);
  589                         }
  590                 }
  591         }
  592         if (prunlen != NULL)
  593                 *prunlen = runlen;
  594         return (numpagedout);
  595 }
  596 
  597 static boolean_t
  598 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
  599     vm_paddr_t high)
  600 {
  601         struct mount *mp;
  602         struct vnode *vp;
  603         vm_object_t object;
  604         vm_paddr_t pa;
  605         vm_page_t m, m_tmp, next;
  606         int lockmode;
  607 
  608         vm_pagequeue_lock(pq);
  609         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
  610                 if ((m->flags & PG_MARKER) != 0)
  611                         continue;
  612                 pa = VM_PAGE_TO_PHYS(m);
  613                 if (pa < low || pa + PAGE_SIZE > high)
  614                         continue;
  615                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
  616                         vm_page_unlock(m);
  617                         continue;
  618                 }
  619                 object = m->object;
  620                 if ((!VM_OBJECT_TRYWLOCK(object) &&
  621                     (!vm_pageout_fallback_object_lock(m, &next) ||
  622                     m->hold_count != 0)) || vm_page_busied(m)) {
  623                         vm_page_unlock(m);
  624                         VM_OBJECT_WUNLOCK(object);
  625                         continue;
  626                 }
  627                 vm_page_test_dirty(m);
  628                 if (m->dirty == 0 && object->ref_count != 0)
  629                         pmap_remove_all(m);
  630                 if (m->dirty != 0) {
  631                         vm_page_unlock(m);
  632                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
  633                                 VM_OBJECT_WUNLOCK(object);
  634                                 continue;
  635                         }
  636                         if (object->type == OBJT_VNODE) {
  637                                 vm_pagequeue_unlock(pq);
  638                                 vp = object->handle;
  639                                 vm_object_reference_locked(object);
  640                                 VM_OBJECT_WUNLOCK(object);
  641                                 (void)vn_start_write(vp, &mp, V_WAIT);
  642                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
  643                                     LK_SHARED : LK_EXCLUSIVE;
  644                                 vn_lock(vp, lockmode | LK_RETRY);
  645                                 VM_OBJECT_WLOCK(object);
  646                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  647                                 VM_OBJECT_WUNLOCK(object);
  648                                 VOP_UNLOCK(vp, 0);
  649                                 vm_object_deallocate(object);
  650                                 vn_finished_write(mp);
  651                                 return (TRUE);
  652                         } else if (object->type == OBJT_SWAP ||
  653                             object->type == OBJT_DEFAULT) {
  654                                 vm_pagequeue_unlock(pq);
  655                                 m_tmp = m;
  656                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
  657                                     0, NULL, NULL);
  658                                 VM_OBJECT_WUNLOCK(object);
  659                                 return (TRUE);
  660                         }
  661                 } else {
  662                         /*
  663                          * Dequeue here to prevent lock recursion in
  664                          * vm_page_cache().
  665                          */
  666                         vm_page_dequeue_locked(m);
  667                         vm_page_cache(m);
  668                         vm_page_unlock(m);
  669                 }
  670                 VM_OBJECT_WUNLOCK(object);
  671         }
  672         vm_pagequeue_unlock(pq);
  673         return (FALSE);
  674 }
  675 
  676 /*
  677  * Increase the number of cached pages.  The specified value, "tries",
  678  * determines which categories of pages are cached:
  679  *
  680  *  0: All clean, inactive pages within the specified physical address range
  681  *     are cached.  Will not sleep.
  682  *  1: The vm_lowmem handlers are called.  All inactive pages within
  683  *     the specified physical address range are cached.  May sleep.
  684  *  2: The vm_lowmem handlers are called.  All inactive and active pages
  685  *     within the specified physical address range are cached.  May sleep.
  686  */
  687 void
  688 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
  689 {
  690         int actl, actmax, inactl, inactmax, dom, initial_dom;
  691         static int start_dom = 0;
  692 
  693         if (tries > 0) {
  694                 /*
  695                  * Decrease registered cache sizes.  The vm_lowmem handlers
  696                  * may acquire locks and/or sleep, so they can only be invoked
  697                  * when "tries" is greater than zero.
  698                  */
  699                 SDT_PROBE0(vm, , , vm__lowmem_cache);
  700                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
  701 
  702                 /*
  703                  * We do this explicitly after the caches have been drained
  704                  * above.
  705                  */
  706                 uma_reclaim();
  707         }
  708 
  709         /*
  710          * Make the next scan start on the next domain.
  711          */
  712         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
  713 
  714         inactl = 0;
  715         inactmax = cnt.v_inactive_count;
  716         actl = 0;
  717         actmax = tries < 2 ? 0 : cnt.v_active_count;
  718         dom = initial_dom;
  719 
  720         /*
  721          * Scan domains in round-robin order, first inactive queues,
  722          * then active.  Since domain usually owns large physically
  723          * contiguous chunk of memory, it makes sense to completely
  724          * exhaust one domain before switching to next, while growing
  725          * the pool of contiguous physical pages.
  726          *
  727          * Do not even start launder a domain which cannot contain
  728          * the specified address range, as indicated by segments
  729          * constituting the domain.
  730          */
  731 again_inact:
  732         if (inactl < inactmax) {
  733                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
  734                     low, high) &&
  735                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
  736                     tries, low, high)) {
  737                         inactl++;
  738                         goto again_inact;
  739                 }
  740                 if (++dom == vm_ndomains)
  741                         dom = 0;
  742                 if (dom != initial_dom)
  743                         goto again_inact;
  744         }
  745 again_act:
  746         if (actl < actmax) {
  747                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
  748                     low, high) &&
  749                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
  750                       tries, low, high)) {
  751                         actl++;
  752                         goto again_act;
  753                 }
  754                 if (++dom == vm_ndomains)
  755                         dom = 0;
  756                 if (dom != initial_dom)
  757                         goto again_act;
  758         }
  759 }
  760 
  761 #if !defined(NO_SWAPPING)
  762 /*
  763  *      vm_pageout_object_deactivate_pages
  764  *
  765  *      Deactivate enough pages to satisfy the inactive target
  766  *      requirements.
  767  *
  768  *      The object and map must be locked.
  769  */
  770 static void
  771 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
  772     long desired)
  773 {
  774         vm_object_t backing_object, object;
  775         vm_page_t p;
  776         int act_delta, remove_mode;
  777 
  778         VM_OBJECT_ASSERT_LOCKED(first_object);
  779         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
  780                 return;
  781         for (object = first_object;; object = backing_object) {
  782                 if (pmap_resident_count(pmap) <= desired)
  783                         goto unlock_return;
  784                 VM_OBJECT_ASSERT_LOCKED(object);
  785                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
  786                     object->paging_in_progress != 0)
  787                         goto unlock_return;
  788 
  789                 remove_mode = 0;
  790                 if (object->shadow_count > 1)
  791                         remove_mode = 1;
  792                 /*
  793                  * Scan the object's entire memory queue.
  794                  */
  795                 TAILQ_FOREACH(p, &object->memq, listq) {
  796                         if (pmap_resident_count(pmap) <= desired)
  797                                 goto unlock_return;
  798                         if (vm_page_busied(p))
  799                                 continue;
  800                         PCPU_INC(cnt.v_pdpages);
  801                         vm_page_lock(p);
  802                         if (p->wire_count != 0 || p->hold_count != 0 ||
  803                             !pmap_page_exists_quick(pmap, p)) {
  804                                 vm_page_unlock(p);
  805                                 continue;
  806                         }
  807                         act_delta = pmap_ts_referenced(p);
  808                         if ((p->aflags & PGA_REFERENCED) != 0) {
  809                                 if (act_delta == 0)
  810                                         act_delta = 1;
  811                                 vm_page_aflag_clear(p, PGA_REFERENCED);
  812                         }
  813                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
  814                                 vm_page_activate(p);
  815                                 p->act_count += act_delta;
  816                         } else if (p->queue == PQ_ACTIVE) {
  817                                 if (act_delta == 0) {
  818                                         p->act_count -= min(p->act_count,
  819                                             ACT_DECLINE);
  820                                         if (!remove_mode && p->act_count == 0) {
  821                                                 pmap_remove_all(p);
  822                                                 vm_page_deactivate(p);
  823                                         } else
  824                                                 vm_page_requeue(p);
  825                                 } else {
  826                                         vm_page_activate(p);
  827                                         if (p->act_count < ACT_MAX -
  828                                             ACT_ADVANCE)
  829                                                 p->act_count += ACT_ADVANCE;
  830                                         vm_page_requeue(p);
  831                                 }
  832                         } else if (p->queue == PQ_INACTIVE)
  833                                 pmap_remove_all(p);
  834                         vm_page_unlock(p);
  835                 }
  836                 if ((backing_object = object->backing_object) == NULL)
  837                         goto unlock_return;
  838                 VM_OBJECT_RLOCK(backing_object);
  839                 if (object != first_object)
  840                         VM_OBJECT_RUNLOCK(object);
  841         }
  842 unlock_return:
  843         if (object != first_object)
  844                 VM_OBJECT_RUNLOCK(object);
  845 }
  846 
  847 /*
  848  * deactivate some number of pages in a map, try to do it fairly, but
  849  * that is really hard to do.
  850  */
  851 static void
  852 vm_pageout_map_deactivate_pages(map, desired)
  853         vm_map_t map;
  854         long desired;
  855 {
  856         vm_map_entry_t tmpe;
  857         vm_object_t obj, bigobj;
  858         int nothingwired;
  859 
  860         if (!vm_map_trylock(map))
  861                 return;
  862 
  863         bigobj = NULL;
  864         nothingwired = TRUE;
  865 
  866         /*
  867          * first, search out the biggest object, and try to free pages from
  868          * that.
  869          */
  870         tmpe = map->header.next;
  871         while (tmpe != &map->header) {
  872                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  873                         obj = tmpe->object.vm_object;
  874                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
  875                                 if (obj->shadow_count <= 1 &&
  876                                     (bigobj == NULL ||
  877                                      bigobj->resident_page_count < obj->resident_page_count)) {
  878                                         if (bigobj != NULL)
  879                                                 VM_OBJECT_RUNLOCK(bigobj);
  880                                         bigobj = obj;
  881                                 } else
  882                                         VM_OBJECT_RUNLOCK(obj);
  883                         }
  884                 }
  885                 if (tmpe->wired_count > 0)
  886                         nothingwired = FALSE;
  887                 tmpe = tmpe->next;
  888         }
  889 
  890         if (bigobj != NULL) {
  891                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  892                 VM_OBJECT_RUNLOCK(bigobj);
  893         }
  894         /*
  895          * Next, hunt around for other pages to deactivate.  We actually
  896          * do this search sort of wrong -- .text first is not the best idea.
  897          */
  898         tmpe = map->header.next;
  899         while (tmpe != &map->header) {
  900                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  901                         break;
  902                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  903                         obj = tmpe->object.vm_object;
  904                         if (obj != NULL) {
  905                                 VM_OBJECT_RLOCK(obj);
  906                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  907                                 VM_OBJECT_RUNLOCK(obj);
  908                         }
  909                 }
  910                 tmpe = tmpe->next;
  911         }
  912 
  913 #ifdef __ia64__
  914         /*
  915          * Remove all non-wired, managed mappings if a process is swapped out.
  916          * This will free page table pages.
  917          */
  918         if (desired == 0)
  919                 pmap_remove_pages(map->pmap);
  920 #else
  921         /*
  922          * Remove all mappings if a process is swapped out, this will free page
  923          * table pages.
  924          */
  925         if (desired == 0 && nothingwired) {
  926                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  927                     vm_map_max(map));
  928         }
  929 #endif
  930 
  931         vm_map_unlock(map);
  932 }
  933 #endif          /* !defined(NO_SWAPPING) */
  934 
  935 /*
  936  *      vm_pageout_scan does the dirty work for the pageout daemon.
  937  *
  938  *      pass 0 - Update active LRU/deactivate pages
  939  *      pass 1 - Move inactive to cache or free
  940  *      pass 2 - Launder dirty pages
  941  */
  942 static void
  943 vm_pageout_scan(struct vm_domain *vmd, int pass)
  944 {
  945         vm_page_t m, next;
  946         struct vm_pagequeue *pq;
  947         vm_object_t object;
  948         long min_scan;
  949         int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
  950         int vnodes_skipped = 0;
  951         int maxlaunder, scan_tick, scanned, starting_page_shortage;
  952         int lockmode;
  953         boolean_t queue_locked;
  954 
  955         /*
  956          * If we need to reclaim memory ask kernel caches to return
  957          * some.  We rate limit to avoid thrashing.
  958          */
  959         if (vmd == &vm_dom[0] && pass > 0 &&
  960             (time_uptime - lowmem_uptime) >= lowmem_period) {
  961                 /*
  962                  * Decrease registered cache sizes.
  963                  */
  964                 SDT_PROBE0(vm, , , vm__lowmem_scan);
  965                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
  966                 /*
  967                  * We do this explicitly after the caches have been
  968                  * drained above.
  969                  */
  970                 uma_reclaim();
  971                 lowmem_uptime = time_uptime;
  972         }
  973 
  974         /*
  975          * The addl_page_shortage is the number of temporarily
  976          * stuck pages in the inactive queue.  In other words, the
  977          * number of pages from the inactive count that should be
  978          * discounted in setting the target for the active queue scan.
  979          */
  980         addl_page_shortage = 0;
  981 
  982         /*
  983          * Calculate the number of pages we want to either free or move
  984          * to the cache.
  985          */
  986         if (pass > 0) {
  987                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
  988                 page_shortage = vm_paging_target() + deficit;
  989         } else
  990                 page_shortage = deficit = 0;
  991         starting_page_shortage = page_shortage;
  992 
  993         /*
  994          * maxlaunder limits the number of dirty pages we flush per scan.
  995          * For most systems a smaller value (16 or 32) is more robust under
  996          * extreme memory and disk pressure because any unnecessary writes
  997          * to disk can result in extreme performance degredation.  However,
  998          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  999          * used) will die horribly with limited laundering.  If the pageout
 1000          * daemon cannot clean enough pages in the first pass, we let it go
 1001          * all out in succeeding passes.
 1002          */
 1003         if ((maxlaunder = vm_max_launder) <= 1)
 1004                 maxlaunder = 1;
 1005         if (pass > 1)
 1006                 maxlaunder = 10000;
 1007 
 1008         /*
 1009          * Start scanning the inactive queue for pages we can move to the
 1010          * cache or free.  The scan will stop when the target is reached or
 1011          * we have scanned the entire inactive queue.  Note that m->act_count
 1012          * is not used to form decisions for the inactive queue, only for the
 1013          * active queue.
 1014          */
 1015         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
 1016         maxscan = pq->pq_cnt;
 1017         vm_pagequeue_lock(pq);
 1018         queue_locked = TRUE;
 1019         for (m = TAILQ_FIRST(&pq->pq_pl);
 1020              m != NULL && maxscan-- > 0 && page_shortage > 0;
 1021              m = next) {
 1022                 vm_pagequeue_assert_locked(pq);
 1023                 KASSERT(queue_locked, ("unlocked inactive queue"));
 1024                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
 1025 
 1026                 PCPU_INC(cnt.v_pdpages);
 1027                 next = TAILQ_NEXT(m, plinks.q);
 1028 
 1029                 /*
 1030                  * skip marker pages
 1031                  */
 1032                 if (m->flags & PG_MARKER)
 1033                         continue;
 1034 
 1035                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1036                     ("Fictitious page %p cannot be in inactive queue", m));
 1037                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1038                     ("Unmanaged page %p cannot be in inactive queue", m));
 1039 
 1040                 /*
 1041                  * The page or object lock acquisitions fail if the
 1042                  * page was removed from the queue or moved to a
 1043                  * different position within the queue.  In either
 1044                  * case, addl_page_shortage should not be incremented.
 1045                  */
 1046                 if (!vm_pageout_page_lock(m, &next)) {
 1047                         vm_page_unlock(m);
 1048                         continue;
 1049                 }
 1050                 object = m->object;
 1051                 if (!VM_OBJECT_TRYWLOCK(object) &&
 1052                     !vm_pageout_fallback_object_lock(m, &next)) {
 1053                         vm_page_unlock(m);
 1054                         VM_OBJECT_WUNLOCK(object);
 1055                         continue;
 1056                 }
 1057 
 1058                 /*
 1059                  * Don't mess with busy pages, keep them at at the
 1060                  * front of the queue, most likely they are being
 1061                  * paged out.  Increment addl_page_shortage for busy
 1062                  * pages, because they may leave the inactive queue
 1063                  * shortly after page scan is finished.
 1064                  */
 1065                 if (vm_page_busied(m)) {
 1066                         vm_page_unlock(m);
 1067                         VM_OBJECT_WUNLOCK(object);
 1068                         addl_page_shortage++;
 1069                         continue;
 1070                 }
 1071 
 1072                 /*
 1073                  * We unlock the inactive page queue, invalidating the
 1074                  * 'next' pointer.  Use our marker to remember our
 1075                  * place.
 1076                  */
 1077                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
 1078                 vm_pagequeue_unlock(pq);
 1079                 queue_locked = FALSE;
 1080 
 1081                 /*
 1082                  * We bump the activation count if the page has been
 1083                  * referenced while in the inactive queue.  This makes
 1084                  * it less likely that the page will be added back to the
 1085                  * inactive queue prematurely again.  Here we check the 
 1086                  * page tables (or emulated bits, if any), given the upper 
 1087                  * level VM system not knowing anything about existing 
 1088                  * references.
 1089                  */
 1090                 act_delta = 0;
 1091                 if ((m->aflags & PGA_REFERENCED) != 0) {
 1092                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1093                         act_delta = 1;
 1094                 }
 1095                 if (object->ref_count != 0) {
 1096                         act_delta += pmap_ts_referenced(m);
 1097                 } else {
 1098                         KASSERT(!pmap_page_is_mapped(m),
 1099                             ("vm_pageout_scan: page %p is mapped", m));
 1100                 }
 1101 
 1102                 /*
 1103                  * If the upper level VM system knows about any page 
 1104                  * references, we reactivate the page or requeue it.
 1105                  */
 1106                 if (act_delta != 0) {
 1107                         if (object->ref_count) {
 1108                                 vm_page_activate(m);
 1109                                 m->act_count += act_delta + ACT_ADVANCE;
 1110                         } else {
 1111                                 vm_pagequeue_lock(pq);
 1112                                 queue_locked = TRUE;
 1113                                 vm_page_requeue_locked(m);
 1114                         }
 1115                         VM_OBJECT_WUNLOCK(object);
 1116                         vm_page_unlock(m);
 1117                         goto relock_queue;
 1118                 }
 1119 
 1120                 if (m->hold_count != 0) {
 1121                         vm_page_unlock(m);
 1122                         VM_OBJECT_WUNLOCK(object);
 1123 
 1124                         /*
 1125                          * Held pages are essentially stuck in the
 1126                          * queue.  So, they ought to be discounted
 1127                          * from the inactive count.  See the
 1128                          * calculation of the page_shortage for the
 1129                          * loop over the active queue below.
 1130                          */
 1131                         addl_page_shortage++;
 1132                         goto relock_queue;
 1133                 }
 1134 
 1135                 /*
 1136                  * If the page appears to be clean at the machine-independent
 1137                  * layer, then remove all of its mappings from the pmap in
 1138                  * anticipation of placing it onto the cache queue.  If,
 1139                  * however, any of the page's mappings allow write access,
 1140                  * then the page may still be modified until the last of those
 1141                  * mappings are removed.
 1142                  */
 1143                 if (object->ref_count != 0) {
 1144                         vm_page_test_dirty(m);
 1145                         if (m->dirty == 0)
 1146                                 pmap_remove_all(m);
 1147                 }
 1148 
 1149                 if (m->valid == 0) {
 1150                         /*
 1151                          * Invalid pages can be easily freed
 1152                          */
 1153                         vm_page_free(m);
 1154                         PCPU_INC(cnt.v_dfree);
 1155                         --page_shortage;
 1156                 } else if (m->dirty == 0) {
 1157                         /*
 1158                          * Clean pages can be placed onto the cache queue.
 1159                          * This effectively frees them.
 1160                          */
 1161                         vm_page_cache(m);
 1162                         --page_shortage;
 1163                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
 1164                         /*
 1165                          * Dirty pages need to be paged out, but flushing
 1166                          * a page is extremely expensive verses freeing
 1167                          * a clean page.  Rather then artificially limiting
 1168                          * the number of pages we can flush, we instead give
 1169                          * dirty pages extra priority on the inactive queue
 1170                          * by forcing them to be cycled through the queue
 1171                          * twice before being flushed, after which the
 1172                          * (now clean) page will cycle through once more
 1173                          * before being freed.  This significantly extends
 1174                          * the thrash point for a heavily loaded machine.
 1175                          */
 1176                         m->flags |= PG_WINATCFLS;
 1177                         vm_pagequeue_lock(pq);
 1178                         queue_locked = TRUE;
 1179                         vm_page_requeue_locked(m);
 1180                 } else if (maxlaunder > 0) {
 1181                         /*
 1182                          * We always want to try to flush some dirty pages if
 1183                          * we encounter them, to keep the system stable.
 1184                          * Normally this number is small, but under extreme
 1185                          * pressure where there are insufficient clean pages
 1186                          * on the inactive queue, we may have to go all out.
 1187                          */
 1188                         int swap_pageouts_ok;
 1189                         struct vnode *vp = NULL;
 1190                         struct mount *mp = NULL;
 1191 
 1192                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
 1193                                 swap_pageouts_ok = 1;
 1194                         } else {
 1195                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
 1196                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
 1197                                 vm_page_count_min());
 1198                                                                                 
 1199                         }
 1200 
 1201                         /*
 1202                          * We don't bother paging objects that are "dead".  
 1203                          * Those objects are in a "rundown" state.
 1204                          */
 1205                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
 1206                                 vm_pagequeue_lock(pq);
 1207                                 vm_page_unlock(m);
 1208                                 VM_OBJECT_WUNLOCK(object);
 1209                                 queue_locked = TRUE;
 1210                                 vm_page_requeue_locked(m);
 1211                                 goto relock_queue;
 1212                         }
 1213 
 1214                         /*
 1215                          * The object is already known NOT to be dead.   It
 1216                          * is possible for the vget() to block the whole
 1217                          * pageout daemon, but the new low-memory handling
 1218                          * code should prevent it.
 1219                          *
 1220                          * The previous code skipped locked vnodes and, worse,
 1221                          * reordered pages in the queue.  This results in
 1222                          * completely non-deterministic operation and, on a
 1223                          * busy system, can lead to extremely non-optimal
 1224                          * pageouts.  For example, it can cause clean pages
 1225                          * to be freed and dirty pages to be moved to the end
 1226                          * of the queue.  Since dirty pages are also moved to
 1227                          * the end of the queue once-cleaned, this gives
 1228                          * way too large a weighting to defering the freeing
 1229                          * of dirty pages.
 1230                          *
 1231                          * We can't wait forever for the vnode lock, we might
 1232                          * deadlock due to a vn_read() getting stuck in
 1233                          * vm_wait while holding this vnode.  We skip the 
 1234                          * vnode if we can't get it in a reasonable amount
 1235                          * of time.
 1236                          */
 1237                         if (object->type == OBJT_VNODE) {
 1238                                 vm_page_unlock(m);
 1239                                 vp = object->handle;
 1240                                 if (vp->v_type == VREG &&
 1241                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 1242                                         mp = NULL;
 1243                                         ++pageout_lock_miss;
 1244                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1245                                                 vnodes_skipped++;
 1246                                         goto unlock_and_continue;
 1247                                 }
 1248                                 KASSERT(mp != NULL,
 1249                                     ("vp %p with NULL v_mount", vp));
 1250                                 vm_object_reference_locked(object);
 1251                                 VM_OBJECT_WUNLOCK(object);
 1252                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
 1253                                     LK_SHARED : LK_EXCLUSIVE;
 1254                                 if (vget(vp, lockmode | LK_TIMELOCK,
 1255                                     curthread)) {
 1256                                         VM_OBJECT_WLOCK(object);
 1257                                         ++pageout_lock_miss;
 1258                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1259                                                 vnodes_skipped++;
 1260                                         vp = NULL;
 1261                                         goto unlock_and_continue;
 1262                                 }
 1263                                 VM_OBJECT_WLOCK(object);
 1264                                 vm_page_lock(m);
 1265                                 vm_pagequeue_lock(pq);
 1266                                 queue_locked = TRUE;
 1267                                 /*
 1268                                  * The page might have been moved to another
 1269                                  * queue during potential blocking in vget()
 1270                                  * above.  The page might have been freed and
 1271                                  * reused for another vnode.
 1272                                  */
 1273                                 if (m->queue != PQ_INACTIVE ||
 1274                                     m->object != object ||
 1275                                     TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
 1276                                         vm_page_unlock(m);
 1277                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1278                                                 vnodes_skipped++;
 1279                                         goto unlock_and_continue;
 1280                                 }
 1281         
 1282                                 /*
 1283                                  * The page may have been busied during the
 1284                                  * blocking in vget().  We don't move the
 1285                                  * page back onto the end of the queue so that
 1286                                  * statistics are more correct if we don't.
 1287                                  */
 1288                                 if (vm_page_busied(m)) {
 1289                                         vm_page_unlock(m);
 1290                                         addl_page_shortage++;
 1291                                         goto unlock_and_continue;
 1292                                 }
 1293 
 1294                                 /*
 1295                                  * If the page has become held it might
 1296                                  * be undergoing I/O, so skip it
 1297                                  */
 1298                                 if (m->hold_count != 0) {
 1299                                         vm_page_unlock(m);
 1300                                         addl_page_shortage++;
 1301                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1302                                                 vnodes_skipped++;
 1303                                         goto unlock_and_continue;
 1304                                 }
 1305                                 vm_pagequeue_unlock(pq);
 1306                                 queue_locked = FALSE;
 1307                         }
 1308 
 1309                         /*
 1310                          * If a page is dirty, then it is either being washed
 1311                          * (but not yet cleaned) or it is still in the
 1312                          * laundry.  If it is still in the laundry, then we
 1313                          * start the cleaning operation. 
 1314                          *
 1315                          * decrement page_shortage on success to account for
 1316                          * the (future) cleaned page.  Otherwise we could wind
 1317                          * up laundering or cleaning too many pages.
 1318                          */
 1319                         if (vm_pageout_clean(m) != 0) {
 1320                                 --page_shortage;
 1321                                 --maxlaunder;
 1322                         }
 1323 unlock_and_continue:
 1324                         vm_page_lock_assert(m, MA_NOTOWNED);
 1325                         VM_OBJECT_WUNLOCK(object);
 1326                         if (mp != NULL) {
 1327                                 if (queue_locked) {
 1328                                         vm_pagequeue_unlock(pq);
 1329                                         queue_locked = FALSE;
 1330                                 }
 1331                                 if (vp != NULL)
 1332                                         vput(vp);
 1333                                 vm_object_deallocate(object);
 1334                                 vn_finished_write(mp);
 1335                         }
 1336                         vm_page_lock_assert(m, MA_NOTOWNED);
 1337                         goto relock_queue;
 1338                 }
 1339                 vm_page_unlock(m);
 1340                 VM_OBJECT_WUNLOCK(object);
 1341 relock_queue:
 1342                 if (!queue_locked) {
 1343                         vm_pagequeue_lock(pq);
 1344                         queue_locked = TRUE;
 1345                 }
 1346                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
 1347                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
 1348         }
 1349         vm_pagequeue_unlock(pq);
 1350 
 1351 #if !defined(NO_SWAPPING)
 1352         /*
 1353          * Wakeup the swapout daemon if we didn't cache or free the targeted
 1354          * number of pages. 
 1355          */
 1356         if (vm_swap_enabled && page_shortage > 0)
 1357                 vm_req_vmdaemon(VM_SWAP_NORMAL);
 1358 #endif
 1359 
 1360         /*
 1361          * Wakeup the sync daemon if we skipped a vnode in a writeable object
 1362          * and we didn't cache or free enough pages.
 1363          */
 1364         if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
 1365             cnt.v_free_min)
 1366                 (void)speedup_syncer();
 1367 
 1368         /*
 1369          * If the inactive queue scan fails repeatedly to meet its
 1370          * target, kill the largest process.
 1371          */
 1372         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
 1373 
 1374         /*
 1375          * Compute the number of pages we want to try to move from the
 1376          * active queue to the inactive queue.
 1377          */
 1378         page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
 1379             vm_paging_target() + deficit + addl_page_shortage;
 1380 
 1381         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
 1382         vm_pagequeue_lock(pq);
 1383         maxscan = pq->pq_cnt;
 1384 
 1385         /*
 1386          * If we're just idle polling attempt to visit every
 1387          * active page within 'update_period' seconds.
 1388          */
 1389         scan_tick = ticks;
 1390         if (vm_pageout_update_period != 0) {
 1391                 min_scan = pq->pq_cnt;
 1392                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
 1393                 min_scan /= hz * vm_pageout_update_period;
 1394         } else
 1395                 min_scan = 0;
 1396         if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
 1397                 vmd->vmd_last_active_scan = scan_tick;
 1398 
 1399         /*
 1400          * Scan the active queue for pages that can be deactivated.  Update
 1401          * the per-page activity counter and use it to identify deactivation
 1402          * candidates.  Held pages may be deactivated.
 1403          */
 1404         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
 1405             min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
 1406             scanned++) {
 1407                 KASSERT(m->queue == PQ_ACTIVE,
 1408                     ("vm_pageout_scan: page %p isn't active", m));
 1409                 next = TAILQ_NEXT(m, plinks.q);
 1410                 if ((m->flags & PG_MARKER) != 0)
 1411                         continue;
 1412                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1413                     ("Fictitious page %p cannot be in active queue", m));
 1414                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1415                     ("Unmanaged page %p cannot be in active queue", m));
 1416                 if (!vm_pageout_page_lock(m, &next)) {
 1417                         vm_page_unlock(m);
 1418                         continue;
 1419                 }
 1420 
 1421                 /*
 1422                  * The count for page daemon pages is updated after checking
 1423                  * the page for eligibility.
 1424                  */
 1425                 PCPU_INC(cnt.v_pdpages);
 1426 
 1427                 /*
 1428                  * Check to see "how much" the page has been used.
 1429                  */
 1430                 act_delta = 0;
 1431                 if (m->aflags & PGA_REFERENCED) {
 1432                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1433                         act_delta += 1;
 1434                 }
 1435                 /*
 1436                  * Perform an unsynchronized object ref count check.  While
 1437                  * the page lock ensures that the page is not reallocated to
 1438                  * another object, in particular, one with unmanaged mappings
 1439                  * that cannot support pmap_ts_referenced(), two races are,
 1440                  * nonetheless, possible:
 1441                  * 1) The count was transitioning to zero, but we saw a non-
 1442                  *    zero value.  pmap_ts_referenced() will return zero
 1443                  *    because the page is not mapped.
 1444                  * 2) The count was transitioning to one, but we saw zero. 
 1445                  *    This race delays the detection of a new reference.  At
 1446                  *    worst, we will deactivate and reactivate the page.
 1447                  */
 1448                 if (m->object->ref_count != 0)
 1449                         act_delta += pmap_ts_referenced(m);
 1450 
 1451                 /*
 1452                  * Advance or decay the act_count based on recent usage.
 1453                  */
 1454                 if (act_delta) {
 1455                         m->act_count += ACT_ADVANCE + act_delta;
 1456                         if (m->act_count > ACT_MAX)
 1457                                 m->act_count = ACT_MAX;
 1458                 } else {
 1459                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1460                         act_delta = m->act_count;
 1461                 }
 1462 
 1463                 /*
 1464                  * Move this page to the tail of the active or inactive
 1465                  * queue depending on usage.
 1466                  */
 1467                 if (act_delta == 0) {
 1468                         /* Dequeue to avoid later lock recursion. */
 1469                         vm_page_dequeue_locked(m);
 1470                         vm_page_deactivate(m);
 1471                         page_shortage--;
 1472                 } else
 1473                         vm_page_requeue_locked(m);
 1474                 vm_page_unlock(m);
 1475         }
 1476         vm_pagequeue_unlock(pq);
 1477 #if !defined(NO_SWAPPING)
 1478         /*
 1479          * Idle process swapout -- run once per second.
 1480          */
 1481         if (vm_swap_idle_enabled) {
 1482                 static long lsec;
 1483                 if (time_second != lsec) {
 1484                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1485                         lsec = time_second;
 1486                 }
 1487         }
 1488 #endif
 1489 }
 1490 
 1491 static int vm_pageout_oom_vote;
 1492 
 1493 /*
 1494  * The pagedaemon threads randlomly select one to perform the
 1495  * OOM.  Trying to kill processes before all pagedaemons
 1496  * failed to reach free target is premature.
 1497  */
 1498 static void
 1499 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
 1500     int starting_page_shortage)
 1501 {
 1502         int old_vote;
 1503 
 1504         if (starting_page_shortage <= 0 || starting_page_shortage !=
 1505             page_shortage)
 1506                 vmd->vmd_oom_seq = 0;
 1507         else
 1508                 vmd->vmd_oom_seq++;
 1509         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
 1510                 if (vmd->vmd_oom) {
 1511                         vmd->vmd_oom = FALSE;
 1512                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1513                 }
 1514                 return;
 1515         }
 1516 
 1517         /*
 1518          * Do not follow the call sequence until OOM condition is
 1519          * cleared.
 1520          */
 1521         vmd->vmd_oom_seq = 0;
 1522 
 1523         if (vmd->vmd_oom)
 1524                 return;
 1525 
 1526         vmd->vmd_oom = TRUE;
 1527         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
 1528         if (old_vote != vm_ndomains - 1)
 1529                 return;
 1530 
 1531         /*
 1532          * The current pagedaemon thread is the last in the quorum to
 1533          * start OOM.  Initiate the selection and signaling of the
 1534          * victim.
 1535          */
 1536         vm_pageout_oom(VM_OOM_MEM);
 1537 
 1538         /*
 1539          * After one round of OOM terror, recall our vote.  On the
 1540          * next pass, current pagedaemon would vote again if the low
 1541          * memory condition is still there, due to vmd_oom being
 1542          * false.
 1543          */
 1544         vmd->vmd_oom = FALSE;
 1545         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1546 }
 1547 
 1548 /*
 1549  * The OOM killer is the page daemon's action of last resort when
 1550  * memory allocation requests have been stalled for a prolonged period
 1551  * of time because it cannot reclaim memory.  This function computes
 1552  * the approximate number of physical pages that could be reclaimed if
 1553  * the specified address space is destroyed.
 1554  *
 1555  * Private, anonymous memory owned by the address space is the
 1556  * principal resource that we expect to recover after an OOM kill.
 1557  * Since the physical pages mapped by the address space's COW entries
 1558  * are typically shared pages, they are unlikely to be released and so
 1559  * they are not counted.
 1560  *
 1561  * To get to the point where the page daemon runs the OOM killer, its
 1562  * efforts to write-back vnode-backed pages may have stalled.  This
 1563  * could be caused by a memory allocation deadlock in the write path
 1564  * that might be resolved by an OOM kill.  Therefore, physical pages
 1565  * belonging to vnode-backed objects are counted, because they might
 1566  * be freed without being written out first if the address space holds
 1567  * the last reference to an unlinked vnode.
 1568  *
 1569  * Similarly, physical pages belonging to OBJT_PHYS objects are
 1570  * counted because the address space might hold the last reference to
 1571  * the object.
 1572  */
 1573 static long
 1574 vm_pageout_oom_pagecount(struct vmspace *vmspace)
 1575 {
 1576         vm_map_t map;
 1577         vm_map_entry_t entry;
 1578         vm_object_t obj;
 1579         long res;
 1580 
 1581         map = &vmspace->vm_map;
 1582         KASSERT(!map->system_map, ("system map"));
 1583         sx_assert(&map->lock, SA_LOCKED);
 1584         res = 0;
 1585         for (entry = map->header.next; entry != &map->header;
 1586             entry = entry->next) {
 1587                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1588                         continue;
 1589                 obj = entry->object.vm_object;
 1590                 if (obj == NULL)
 1591                         continue;
 1592                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
 1593                     obj->ref_count != 1)
 1594                         continue;
 1595                 switch (obj->type) {
 1596                 case OBJT_DEFAULT:
 1597                 case OBJT_SWAP:
 1598                 case OBJT_PHYS:
 1599                 case OBJT_VNODE:
 1600                         res += obj->resident_page_count;
 1601                         break;
 1602                 }
 1603         }
 1604         return (res);
 1605 }
 1606 
 1607 void
 1608 vm_pageout_oom(int shortage)
 1609 {
 1610         struct proc *p, *bigproc;
 1611         vm_offset_t size, bigsize;
 1612         struct thread *td;
 1613         struct vmspace *vm;
 1614         bool breakout;
 1615 
 1616         /*
 1617          * We keep the process bigproc locked once we find it to keep anyone
 1618          * from messing with it; however, there is a possibility of
 1619          * deadlock if process B is bigproc and one of it's child processes
 1620          * attempts to propagate a signal to B while we are waiting for A's
 1621          * lock while walking this list.  To avoid this, we don't block on
 1622          * the process lock but just skip a process if it is already locked.
 1623          */
 1624         bigproc = NULL;
 1625         bigsize = 0;
 1626         sx_slock(&allproc_lock);
 1627         FOREACH_PROC_IN_SYSTEM(p) {
 1628                 PROC_LOCK(p);
 1629 
 1630                 /*
 1631                  * If this is a system, protected or killed process, skip it.
 1632                  */
 1633                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
 1634                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
 1635                     p->p_pid == 1 || P_KILLED(p) ||
 1636                     (p->p_pid < 48 && swap_pager_avail != 0)) {
 1637                         PROC_UNLOCK(p);
 1638                         continue;
 1639                 }
 1640                 /*
 1641                  * If the process is in a non-running type state,
 1642                  * don't touch it.  Check all the threads individually.
 1643                  */
 1644                 breakout = false;
 1645                 FOREACH_THREAD_IN_PROC(p, td) {
 1646                         thread_lock(td);
 1647                         if (!TD_ON_RUNQ(td) &&
 1648                             !TD_IS_RUNNING(td) &&
 1649                             !TD_IS_SLEEPING(td) &&
 1650                             !TD_IS_SUSPENDED(td) &&
 1651                             !TD_IS_SWAPPED(td)) {
 1652                                 thread_unlock(td);
 1653                                 breakout = true;
 1654                                 break;
 1655                         }
 1656                         thread_unlock(td);
 1657                 }
 1658                 if (breakout) {
 1659                         PROC_UNLOCK(p);
 1660                         continue;
 1661                 }
 1662                 /*
 1663                  * get the process size
 1664                  */
 1665                 vm = vmspace_acquire_ref(p);
 1666                 if (vm == NULL) {
 1667                         PROC_UNLOCK(p);
 1668                         continue;
 1669                 }
 1670                 _PHOLD(p);
 1671                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1672                         _PRELE(p);
 1673                         PROC_UNLOCK(p);
 1674                         vmspace_free(vm);
 1675                         continue;
 1676                 }
 1677                 PROC_UNLOCK(p);
 1678                 size = vmspace_swap_count(vm);
 1679                 if (shortage == VM_OOM_MEM)
 1680                         size += vm_pageout_oom_pagecount(vm);
 1681                 vm_map_unlock_read(&vm->vm_map);
 1682                 vmspace_free(vm);
 1683 
 1684                 /*
 1685                  * If this process is bigger than the biggest one,
 1686                  * remember it.
 1687                  */
 1688                 if (size > bigsize) {
 1689                         if (bigproc != NULL)
 1690                                 PRELE(bigproc);
 1691                         bigproc = p;
 1692                         bigsize = size;
 1693                 } else {
 1694                         PRELE(p);
 1695                 }
 1696         }
 1697         sx_sunlock(&allproc_lock);
 1698         if (bigproc != NULL) {
 1699                 PROC_LOCK(bigproc);
 1700                 killproc(bigproc, "out of swap space");
 1701                 sched_nice(bigproc, PRIO_MIN);
 1702                 _PRELE(bigproc);
 1703                 PROC_UNLOCK(bigproc);
 1704                 wakeup(&cnt.v_free_count);
 1705         }
 1706 }
 1707 
 1708 static void
 1709 vm_pageout_worker(void *arg)
 1710 {
 1711         struct vm_domain *domain;
 1712         int domidx;
 1713 
 1714         domidx = (uintptr_t)arg;
 1715         domain = &vm_dom[domidx];
 1716 
 1717         /*
 1718          * XXXKIB It could be useful to bind pageout daemon threads to
 1719          * the cores belonging to the domain, from which vm_page_array
 1720          * is allocated.
 1721          */
 1722 
 1723         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
 1724         domain->vmd_last_active_scan = ticks;
 1725         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
 1726 
 1727         /*
 1728          * The pageout daemon worker is never done, so loop forever.
 1729          */
 1730         while (TRUE) {
 1731                 /*
 1732                  * If we have enough free memory, wakeup waiters.  Do
 1733                  * not clear vm_pages_needed until we reach our target,
 1734                  * otherwise we may be woken up over and over again and
 1735                  * waste a lot of cpu.
 1736                  */
 1737                 mtx_lock(&vm_page_queue_free_mtx);
 1738                 if (vm_pages_needed && !vm_page_count_min()) {
 1739                         if (!vm_paging_needed())
 1740                                 vm_pages_needed = 0;
 1741                         wakeup(&cnt.v_free_count);
 1742                 }
 1743                 if (vm_pages_needed) {
 1744                         /*
 1745                          * We're still not done.  Either vm_pages_needed was
 1746                          * set by another thread during the previous scan
 1747                          * (typically, this happens during a level 0 scan) or
 1748                          * vm_pages_needed was already set and the scan failed
 1749                          * to free enough pages.  If we haven't yet performed
 1750                          * a level >= 2 scan (unlimited dirty cleaning), then
 1751                          * upgrade the level and scan again now.  Otherwise,
 1752                          * sleep a bit and try again later.  While sleeping,
 1753                          * vm_pages_needed can be cleared.
 1754                          */
 1755                         if (domain->vmd_pass > 1)
 1756                                 msleep(&vm_pages_needed,
 1757                                     &vm_page_queue_free_mtx, PVM, "psleep",
 1758                                     hz / 2);
 1759                 } else {
 1760                         /*
 1761                          * Good enough, sleep until required to refresh
 1762                          * stats.
 1763                          */
 1764                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
 1765                             PVM, "psleep", hz);
 1766                 }
 1767                 if (vm_pages_needed) {
 1768                         cnt.v_pdwakeups++;
 1769                         domain->vmd_pass++;
 1770                 } else
 1771                         domain->vmd_pass = 0;
 1772                 mtx_unlock(&vm_page_queue_free_mtx);
 1773                 vm_pageout_scan(domain, domain->vmd_pass);
 1774         }
 1775 }
 1776 
 1777 /*
 1778  *      vm_pageout_init initialises basic pageout daemon settings.
 1779  */
 1780 static void
 1781 vm_pageout_init(void)
 1782 {
 1783         /*
 1784          * Initialize some paging parameters.
 1785          */
 1786         cnt.v_interrupt_free_min = 2;
 1787         if (cnt.v_page_count < 2000)
 1788                 vm_pageout_page_count = 8;
 1789 
 1790         /*
 1791          * v_free_reserved needs to include enough for the largest
 1792          * swap pager structures plus enough for any pv_entry structs
 1793          * when paging. 
 1794          */
 1795         if (cnt.v_page_count > 1024)
 1796                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1797         else
 1798                 cnt.v_free_min = 4;
 1799         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1800             cnt.v_interrupt_free_min;
 1801         cnt.v_free_reserved = vm_pageout_page_count +
 1802             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
 1803         cnt.v_free_severe = cnt.v_free_min / 2;
 1804         cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1805         cnt.v_free_min += cnt.v_free_reserved;
 1806         cnt.v_free_severe += cnt.v_free_reserved;
 1807         cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1808         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1809                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1810 
 1811         /*
 1812          * Set the default wakeup threshold to be 10% above the minimum
 1813          * page limit.  This keeps the steady state out of shortfall.
 1814          */
 1815         vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
 1816 
 1817         /*
 1818          * Set interval in seconds for active scan.  We want to visit each
 1819          * page at least once every ten minutes.  This is to prevent worst
 1820          * case paging behaviors with stale active LRU.
 1821          */
 1822         if (vm_pageout_update_period == 0)
 1823                 vm_pageout_update_period = 600;
 1824 
 1825         /* XXX does not really belong here */
 1826         if (vm_page_max_wired == 0)
 1827                 vm_page_max_wired = cnt.v_free_count / 3;
 1828 }
 1829 
 1830 /*
 1831  *     vm_pageout is the high level pageout daemon.
 1832  */
 1833 static void
 1834 vm_pageout(void)
 1835 {
 1836         int error;
 1837 #if MAXMEMDOM > 1
 1838         int i;
 1839 #endif
 1840 
 1841         swap_pager_swap_init();
 1842 #if MAXMEMDOM > 1
 1843         for (i = 1; i < vm_ndomains; i++) {
 1844                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
 1845                     curproc, NULL, 0, 0, "dom%d", i);
 1846                 if (error != 0) {
 1847                         panic("starting pageout for domain %d, error %d\n",
 1848                             i, error);
 1849                 }
 1850         }
 1851 #endif
 1852         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
 1853             0, 0, "uma");
 1854         if (error != 0)
 1855                 panic("starting uma_reclaim helper, error %d\n", error);
 1856         vm_pageout_worker((void *)(uintptr_t)0);
 1857 }
 1858 
 1859 /*
 1860  * Unless the free page queue lock is held by the caller, this function
 1861  * should be regarded as advisory.  Specifically, the caller should
 1862  * not msleep() on &cnt.v_free_count following this function unless
 1863  * the free page queue lock is held until the msleep() is performed.
 1864  */
 1865 void
 1866 pagedaemon_wakeup(void)
 1867 {
 1868 
 1869         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1870                 vm_pages_needed = 1;
 1871                 wakeup(&vm_pages_needed);
 1872         }
 1873 }
 1874 
 1875 #if !defined(NO_SWAPPING)
 1876 static void
 1877 vm_req_vmdaemon(int req)
 1878 {
 1879         static int lastrun = 0;
 1880 
 1881         mtx_lock(&vm_daemon_mtx);
 1882         vm_pageout_req_swapout |= req;
 1883         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1884                 wakeup(&vm_daemon_needed);
 1885                 lastrun = ticks;
 1886         }
 1887         mtx_unlock(&vm_daemon_mtx);
 1888 }
 1889 
 1890 static void
 1891 vm_daemon(void)
 1892 {
 1893         struct rlimit rsslim;
 1894         struct proc *p;
 1895         struct thread *td;
 1896         struct vmspace *vm;
 1897         int breakout, swapout_flags, tryagain, attempts;
 1898 #ifdef RACCT
 1899         uint64_t rsize, ravailable;
 1900 #endif
 1901 
 1902         while (TRUE) {
 1903                 mtx_lock(&vm_daemon_mtx);
 1904                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
 1905 #ifdef RACCT
 1906                     racct_enable ? hz : 0
 1907 #else
 1908                     0
 1909 #endif
 1910                 );
 1911                 swapout_flags = vm_pageout_req_swapout;
 1912                 vm_pageout_req_swapout = 0;
 1913                 mtx_unlock(&vm_daemon_mtx);
 1914                 if (swapout_flags)
 1915                         swapout_procs(swapout_flags);
 1916 
 1917                 /*
 1918                  * scan the processes for exceeding their rlimits or if
 1919                  * process is swapped out -- deactivate pages
 1920                  */
 1921                 tryagain = 0;
 1922                 attempts = 0;
 1923 again:
 1924                 attempts++;
 1925                 sx_slock(&allproc_lock);
 1926                 FOREACH_PROC_IN_SYSTEM(p) {
 1927                         vm_pindex_t limit, size;
 1928 
 1929                         /*
 1930                          * if this is a system process or if we have already
 1931                          * looked at this process, skip it.
 1932                          */
 1933                         PROC_LOCK(p);
 1934                         if (p->p_state != PRS_NORMAL ||
 1935                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
 1936                                 PROC_UNLOCK(p);
 1937                                 continue;
 1938                         }
 1939                         /*
 1940                          * if the process is in a non-running type state,
 1941                          * don't touch it.
 1942                          */
 1943                         breakout = 0;
 1944                         FOREACH_THREAD_IN_PROC(p, td) {
 1945                                 thread_lock(td);
 1946                                 if (!TD_ON_RUNQ(td) &&
 1947                                     !TD_IS_RUNNING(td) &&
 1948                                     !TD_IS_SLEEPING(td) &&
 1949                                     !TD_IS_SUSPENDED(td)) {
 1950                                         thread_unlock(td);
 1951                                         breakout = 1;
 1952                                         break;
 1953                                 }
 1954                                 thread_unlock(td);
 1955                         }
 1956                         if (breakout) {
 1957                                 PROC_UNLOCK(p);
 1958                                 continue;
 1959                         }
 1960                         /*
 1961                          * get a limit
 1962                          */
 1963                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1964                         limit = OFF_TO_IDX(
 1965                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1966 
 1967                         /*
 1968                          * let processes that are swapped out really be
 1969                          * swapped out set the limit to nothing (will force a
 1970                          * swap-out.)
 1971                          */
 1972                         if ((p->p_flag & P_INMEM) == 0)
 1973                                 limit = 0;      /* XXX */
 1974                         vm = vmspace_acquire_ref(p);
 1975                         PROC_UNLOCK(p);
 1976                         if (vm == NULL)
 1977                                 continue;
 1978 
 1979                         size = vmspace_resident_count(vm);
 1980                         if (size >= limit) {
 1981                                 vm_pageout_map_deactivate_pages(
 1982                                     &vm->vm_map, limit);
 1983                                 size = vmspace_resident_count(vm);
 1984                         }
 1985 #ifdef RACCT
 1986                         if (racct_enable) {
 1987                                 rsize = IDX_TO_OFF(size);
 1988                                 PROC_LOCK(p);
 1989                                 if (p->p_state == PRS_NORMAL)
 1990                                         racct_set(p, RACCT_RSS, rsize);
 1991                                 ravailable = racct_get_available(p, RACCT_RSS);
 1992                                 PROC_UNLOCK(p);
 1993                                 if (rsize > ravailable) {
 1994                                         /*
 1995                                          * Don't be overly aggressive; this
 1996                                          * might be an innocent process,
 1997                                          * and the limit could've been exceeded
 1998                                          * by some memory hog.  Don't try
 1999                                          * to deactivate more than 1/4th
 2000                                          * of process' resident set size.
 2001                                          */
 2002                                         if (attempts <= 8) {
 2003                                                 if (ravailable < rsize -
 2004                                                     (rsize / 4)) {
 2005                                                         ravailable = rsize -
 2006                                                             (rsize / 4);
 2007                                                 }
 2008                                         }
 2009                                         vm_pageout_map_deactivate_pages(
 2010                                             &vm->vm_map,
 2011                                             OFF_TO_IDX(ravailable));
 2012                                         /* Update RSS usage after paging out. */
 2013                                         size = vmspace_resident_count(vm);
 2014                                         rsize = IDX_TO_OFF(size);
 2015                                         PROC_LOCK(p);
 2016                                         if (p->p_state == PRS_NORMAL)
 2017                                                 racct_set(p, RACCT_RSS, rsize);
 2018                                         PROC_UNLOCK(p);
 2019                                         if (rsize > ravailable)
 2020                                                 tryagain = 1;
 2021                                 }
 2022                         }
 2023 #endif
 2024                         vmspace_free(vm);
 2025                 }
 2026                 sx_sunlock(&allproc_lock);
 2027                 if (tryagain != 0 && attempts <= 10)
 2028                         goto again;
 2029         }
 2030 }
 2031 #endif                  /* !defined(NO_SWAPPING) */

Cache object: a17cea8b9b500d3058f9c187cc24597f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.