The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD: releng/11.1/sys/vm/vm_pageout.c 320693 2017-07-05 19:24:53Z markj $");
   77 
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/eventhandler.h>
   84 #include <sys/lock.h>
   85 #include <sys/mutex.h>
   86 #include <sys/proc.h>
   87 #include <sys/kthread.h>
   88 #include <sys/ktr.h>
   89 #include <sys/mount.h>
   90 #include <sys/racct.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/sched.h>
   93 #include <sys/sdt.h>
   94 #include <sys/signalvar.h>
   95 #include <sys/smp.h>
   96 #include <sys/time.h>
   97 #include <sys/vnode.h>
   98 #include <sys/vmmeter.h>
   99 #include <sys/rwlock.h>
  100 #include <sys/sx.h>
  101 #include <sys/sysctl.h>
  102 
  103 #include <vm/vm.h>
  104 #include <vm/vm_param.h>
  105 #include <vm/vm_object.h>
  106 #include <vm/vm_page.h>
  107 #include <vm/vm_map.h>
  108 #include <vm/vm_pageout.h>
  109 #include <vm/vm_pager.h>
  110 #include <vm/vm_phys.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 /*
  116  * System initialization
  117  */
  118 
  119 /* the kernel process "vm_pageout"*/
  120 static void vm_pageout(void);
  121 static void vm_pageout_init(void);
  122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
  123 static int vm_pageout_cluster(vm_page_t m);
  124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass);
  125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
  126     int starting_page_shortage);
  127 
  128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
  129     NULL);
  130 
  131 struct proc *pageproc;
  132 
  133 static struct kproc_desc page_kp = {
  134         "pagedaemon",
  135         vm_pageout,
  136         &pageproc
  137 };
  138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
  139     &page_kp);
  140 
  141 SDT_PROVIDER_DEFINE(vm);
  142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
  143 
  144 #if !defined(NO_SWAPPING)
  145 /* the kernel process "vm_daemon"*/
  146 static void vm_daemon(void);
  147 static struct   proc *vmproc;
  148 
  149 static struct kproc_desc vm_kp = {
  150         "vmdaemon",
  151         vm_daemon,
  152         &vmproc
  153 };
  154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
  155 #endif
  156 
  157 /* Pagedaemon activity rates, in subdivisions of one second. */
  158 #define VM_LAUNDER_RATE         10
  159 #define VM_INACT_SCAN_RATE      2
  160 
  161 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  162 u_int vm_pageout_wakeup_thresh;
  163 static int vm_pageout_oom_seq = 12;
  164 bool vm_pageout_wanted;         /* Event on which pageout daemon sleeps */
  165 bool vm_pages_needed;           /* Are threads waiting for free pages? */
  166 
  167 /* Pending request for dirty page laundering. */
  168 static enum {
  169         VM_LAUNDRY_IDLE,
  170         VM_LAUNDRY_BACKGROUND,
  171         VM_LAUNDRY_SHORTFALL
  172 } vm_laundry_request = VM_LAUNDRY_IDLE;
  173 
  174 #if !defined(NO_SWAPPING)
  175 static int vm_pageout_req_swapout;      /* XXX */
  176 static int vm_daemon_needed;
  177 static struct mtx vm_daemon_mtx;
  178 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  179 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  180 #endif
  181 static int vm_pageout_update_period;
  182 static int disable_swap_pageouts;
  183 static int lowmem_period = 10;
  184 static time_t lowmem_uptime;
  185 
  186 #if defined(NO_SWAPPING)
  187 static int vm_swap_enabled = 0;
  188 static int vm_swap_idle_enabled = 0;
  189 #else
  190 static int vm_swap_enabled = 1;
  191 static int vm_swap_idle_enabled = 0;
  192 #endif
  193 
  194 static int vm_panic_on_oom = 0;
  195 
  196 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
  197         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
  198         "panic on out of memory instead of killing the largest process");
  199 
  200 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
  201         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
  202         "free page threshold for waking up the pageout daemon");
  203 
  204 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
  205         CTLFLAG_RW, &vm_pageout_update_period, 0,
  206         "Maximum active LRU update period");
  207   
  208 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
  209         "Low memory callback period");
  210 
  211 #if defined(NO_SWAPPING)
  212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  213         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
  214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  215         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  216 #else
  217 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  218         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  219 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  220         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  221 #endif
  222 
  223 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  224         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  225 
  226 static int pageout_lock_miss;
  227 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  228         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  229 
  230 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
  231         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
  232         "back-to-back calls to oom detector to start OOM");
  233 
  234 static int act_scan_laundry_weight = 3;
  235 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RW,
  236     &act_scan_laundry_weight, 0,
  237     "weight given to clean vs. dirty pages in active queue scans");
  238 
  239 static u_int vm_background_launder_target;
  240 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RW,
  241     &vm_background_launder_target, 0,
  242     "background laundering target, in pages");
  243 
  244 static u_int vm_background_launder_rate = 4096;
  245 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RW,
  246     &vm_background_launder_rate, 0,
  247     "background laundering rate, in kilobytes per second");
  248 
  249 static u_int vm_background_launder_max = 20 * 1024;
  250 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RW,
  251     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
  252 
  253 #define VM_PAGEOUT_PAGE_COUNT 16
  254 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  255 
  256 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  257 SYSCTL_INT(_vm, OID_AUTO, max_wired,
  258         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
  259 
  260 static u_int isqrt(u_int num);
  261 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
  262 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
  263     bool in_shortfall);
  264 static void vm_pageout_laundry_worker(void *arg);
  265 #if !defined(NO_SWAPPING)
  266 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  267 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  268 static void vm_req_vmdaemon(int req);
  269 #endif
  270 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
  271 
  272 /*
  273  * Initialize a dummy page for marking the caller's place in the specified
  274  * paging queue.  In principle, this function only needs to set the flag
  275  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
  276  * to one as safety precautions.
  277  */ 
  278 static void
  279 vm_pageout_init_marker(vm_page_t marker, u_short queue)
  280 {
  281 
  282         bzero(marker, sizeof(*marker));
  283         marker->flags = PG_MARKER;
  284         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
  285         marker->queue = queue;
  286         marker->hold_count = 1;
  287 }
  288 
  289 /*
  290  * vm_pageout_fallback_object_lock:
  291  * 
  292  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
  293  * known to have failed and page queue must be either PQ_ACTIVE or
  294  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
  295  * while locking the vm object.  Use marker page to detect page queue
  296  * changes and maintain notion of next page on page queue.  Return
  297  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  298  * locked on return.
  299  * 
  300  * This function depends on both the lock portion of struct vm_object
  301  * and normal struct vm_page being type stable.
  302  */
  303 static boolean_t
  304 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  305 {
  306         struct vm_page marker;
  307         struct vm_pagequeue *pq;
  308         boolean_t unchanged;
  309         u_short queue;
  310         vm_object_t object;
  311 
  312         queue = m->queue;
  313         vm_pageout_init_marker(&marker, queue);
  314         pq = vm_page_pagequeue(m);
  315         object = m->object;
  316         
  317         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  318         vm_pagequeue_unlock(pq);
  319         vm_page_unlock(m);
  320         VM_OBJECT_WLOCK(object);
  321         vm_page_lock(m);
  322         vm_pagequeue_lock(pq);
  323 
  324         /*
  325          * The page's object might have changed, and/or the page might
  326          * have moved from its original position in the queue.  If the
  327          * page's object has changed, then the caller should abandon
  328          * processing the page because the wrong object lock was
  329          * acquired.  Use the marker's plinks.q, not the page's, to
  330          * determine if the page has been moved.  The state of the
  331          * page's plinks.q can be indeterminate; whereas, the marker's
  332          * plinks.q must be valid.
  333          */
  334         *next = TAILQ_NEXT(&marker, plinks.q);
  335         unchanged = m->object == object &&
  336             m == TAILQ_PREV(&marker, pglist, plinks.q);
  337         KASSERT(!unchanged || m->queue == queue,
  338             ("page %p queue %d %d", m, queue, m->queue));
  339         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  340         return (unchanged);
  341 }
  342 
  343 /*
  344  * Lock the page while holding the page queue lock.  Use marker page
  345  * to detect page queue changes and maintain notion of next page on
  346  * page queue.  Return TRUE if no changes were detected, FALSE
  347  * otherwise.  The page is locked on return. The page queue lock might
  348  * be dropped and reacquired.
  349  *
  350  * This function depends on normal struct vm_page being type stable.
  351  */
  352 static boolean_t
  353 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
  354 {
  355         struct vm_page marker;
  356         struct vm_pagequeue *pq;
  357         boolean_t unchanged;
  358         u_short queue;
  359 
  360         vm_page_lock_assert(m, MA_NOTOWNED);
  361         if (vm_page_trylock(m))
  362                 return (TRUE);
  363 
  364         queue = m->queue;
  365         vm_pageout_init_marker(&marker, queue);
  366         pq = vm_page_pagequeue(m);
  367 
  368         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
  369         vm_pagequeue_unlock(pq);
  370         vm_page_lock(m);
  371         vm_pagequeue_lock(pq);
  372 
  373         /* Page queue might have changed. */
  374         *next = TAILQ_NEXT(&marker, plinks.q);
  375         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
  376         KASSERT(!unchanged || m->queue == queue,
  377             ("page %p queue %d %d", m, queue, m->queue));
  378         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
  379         return (unchanged);
  380 }
  381 
  382 /*
  383  * Scan for pages at adjacent offsets within the given page's object that are
  384  * eligible for laundering, form a cluster of these pages and the given page,
  385  * and launder that cluster.
  386  */
  387 static int
  388 vm_pageout_cluster(vm_page_t m)
  389 {
  390         vm_object_t object;
  391         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
  392         vm_pindex_t pindex;
  393         int ib, is, page_base, pageout_count;
  394 
  395         vm_page_assert_locked(m);
  396         object = m->object;
  397         VM_OBJECT_ASSERT_WLOCKED(object);
  398         pindex = m->pindex;
  399 
  400         /*
  401          * We can't clean the page if it is busy or held.
  402          */
  403         vm_page_assert_unbusied(m);
  404         KASSERT(m->hold_count == 0, ("page %p is held", m));
  405         vm_page_unlock(m);
  406 
  407         mc[vm_pageout_page_count] = pb = ps = m;
  408         pageout_count = 1;
  409         page_base = vm_pageout_page_count;
  410         ib = 1;
  411         is = 1;
  412 
  413         /*
  414          * We can cluster only if the page is not clean, busy, or held, and
  415          * the page is in the laundry queue.
  416          *
  417          * During heavy mmap/modification loads the pageout
  418          * daemon can really fragment the underlying file
  419          * due to flushing pages out of order and not trying to
  420          * align the clusters (which leaves sporadic out-of-order
  421          * holes).  To solve this problem we do the reverse scan
  422          * first and attempt to align our cluster, then do a 
  423          * forward scan if room remains.
  424          */
  425 more:
  426         while (ib != 0 && pageout_count < vm_pageout_page_count) {
  427                 if (ib > pindex) {
  428                         ib = 0;
  429                         break;
  430                 }
  431                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
  432                         ib = 0;
  433                         break;
  434                 }
  435                 vm_page_test_dirty(p);
  436                 if (p->dirty == 0) {
  437                         ib = 0;
  438                         break;
  439                 }
  440                 vm_page_lock(p);
  441                 if (!vm_page_in_laundry(p) ||
  442                     p->hold_count != 0) {       /* may be undergoing I/O */
  443                         vm_page_unlock(p);
  444                         ib = 0;
  445                         break;
  446                 }
  447                 vm_page_unlock(p);
  448                 mc[--page_base] = pb = p;
  449                 ++pageout_count;
  450                 ++ib;
  451 
  452                 /*
  453                  * We are at an alignment boundary.  Stop here, and switch
  454                  * directions.  Do not clear ib.
  455                  */
  456                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  457                         break;
  458         }
  459         while (pageout_count < vm_pageout_page_count && 
  460             pindex + is < object->size) {
  461                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
  462                         break;
  463                 vm_page_test_dirty(p);
  464                 if (p->dirty == 0)
  465                         break;
  466                 vm_page_lock(p);
  467                 if (!vm_page_in_laundry(p) ||
  468                     p->hold_count != 0) {       /* may be undergoing I/O */
  469                         vm_page_unlock(p);
  470                         break;
  471                 }
  472                 vm_page_unlock(p);
  473                 mc[page_base + pageout_count] = ps = p;
  474                 ++pageout_count;
  475                 ++is;
  476         }
  477 
  478         /*
  479          * If we exhausted our forward scan, continue with the reverse scan
  480          * when possible, even past an alignment boundary.  This catches
  481          * boundary conditions.
  482          */
  483         if (ib != 0 && pageout_count < vm_pageout_page_count)
  484                 goto more;
  485 
  486         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
  487             NULL));
  488 }
  489 
  490 /*
  491  * vm_pageout_flush() - launder the given pages
  492  *
  493  *      The given pages are laundered.  Note that we setup for the start of
  494  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  495  *      reference count all in here rather then in the parent.  If we want
  496  *      the parent to do more sophisticated things we may have to change
  497  *      the ordering.
  498  *
  499  *      Returned runlen is the count of pages between mreq and first
  500  *      page after mreq with status VM_PAGER_AGAIN.
  501  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  502  *      for any page in runlen set.
  503  */
  504 int
  505 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  506     boolean_t *eio)
  507 {
  508         vm_object_t object = mc[0]->object;
  509         int pageout_status[count];
  510         int numpagedout = 0;
  511         int i, runlen;
  512 
  513         VM_OBJECT_ASSERT_WLOCKED(object);
  514 
  515         /*
  516          * Initiate I/O.  Bump the vm_page_t->busy counter and
  517          * mark the pages read-only.
  518          *
  519          * We do not have to fixup the clean/dirty bits here... we can
  520          * allow the pager to do it after the I/O completes.
  521          *
  522          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  523          * edge case with file fragments.
  524          */
  525         for (i = 0; i < count; i++) {
  526                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  527                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  528                         mc[i], i, count));
  529                 vm_page_sbusy(mc[i]);
  530                 pmap_remove_write(mc[i]);
  531         }
  532         vm_object_pip_add(object, count);
  533 
  534         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  535 
  536         runlen = count - mreq;
  537         if (eio != NULL)
  538                 *eio = FALSE;
  539         for (i = 0; i < count; i++) {
  540                 vm_page_t mt = mc[i];
  541 
  542                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  543                     !pmap_page_is_write_mapped(mt),
  544                     ("vm_pageout_flush: page %p is not write protected", mt));
  545                 switch (pageout_status[i]) {
  546                 case VM_PAGER_OK:
  547                         vm_page_lock(mt);
  548                         if (vm_page_in_laundry(mt))
  549                                 vm_page_deactivate_noreuse(mt);
  550                         vm_page_unlock(mt);
  551                         /* FALLTHROUGH */
  552                 case VM_PAGER_PEND:
  553                         numpagedout++;
  554                         break;
  555                 case VM_PAGER_BAD:
  556                         /*
  557                          * The page is outside the object's range.  We pretend
  558                          * that the page out worked and clean the page, so the
  559                          * changes will be lost if the page is reclaimed by
  560                          * the page daemon.
  561                          */
  562                         vm_page_undirty(mt);
  563                         vm_page_lock(mt);
  564                         if (vm_page_in_laundry(mt))
  565                                 vm_page_deactivate_noreuse(mt);
  566                         vm_page_unlock(mt);
  567                         break;
  568                 case VM_PAGER_ERROR:
  569                 case VM_PAGER_FAIL:
  570                         /*
  571                          * If the page couldn't be paged out, then reactivate
  572                          * it so that it doesn't clog the laundry and inactive
  573                          * queues.  (We will try paging it out again later).
  574                          */
  575                         vm_page_lock(mt);
  576                         vm_page_activate(mt);
  577                         vm_page_unlock(mt);
  578                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  579                                 *eio = TRUE;
  580                         break;
  581                 case VM_PAGER_AGAIN:
  582                         if (i >= mreq && i - mreq < runlen)
  583                                 runlen = i - mreq;
  584                         break;
  585                 }
  586 
  587                 /*
  588                  * If the operation is still going, leave the page busy to
  589                  * block all other accesses. Also, leave the paging in
  590                  * progress indicator set so that we don't attempt an object
  591                  * collapse.
  592                  */
  593                 if (pageout_status[i] != VM_PAGER_PEND) {
  594                         vm_object_pip_wakeup(object);
  595                         vm_page_sunbusy(mt);
  596                 }
  597         }
  598         if (prunlen != NULL)
  599                 *prunlen = runlen;
  600         return (numpagedout);
  601 }
  602 
  603 #if !defined(NO_SWAPPING)
  604 /*
  605  *      vm_pageout_object_deactivate_pages
  606  *
  607  *      Deactivate enough pages to satisfy the inactive target
  608  *      requirements.
  609  *
  610  *      The object and map must be locked.
  611  */
  612 static void
  613 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
  614     long desired)
  615 {
  616         vm_object_t backing_object, object;
  617         vm_page_t p;
  618         int act_delta, remove_mode;
  619 
  620         VM_OBJECT_ASSERT_LOCKED(first_object);
  621         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
  622                 return;
  623         for (object = first_object;; object = backing_object) {
  624                 if (pmap_resident_count(pmap) <= desired)
  625                         goto unlock_return;
  626                 VM_OBJECT_ASSERT_LOCKED(object);
  627                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
  628                     object->paging_in_progress != 0)
  629                         goto unlock_return;
  630 
  631                 remove_mode = 0;
  632                 if (object->shadow_count > 1)
  633                         remove_mode = 1;
  634                 /*
  635                  * Scan the object's entire memory queue.
  636                  */
  637                 TAILQ_FOREACH(p, &object->memq, listq) {
  638                         if (pmap_resident_count(pmap) <= desired)
  639                                 goto unlock_return;
  640                         if (vm_page_busied(p))
  641                                 continue;
  642                         PCPU_INC(cnt.v_pdpages);
  643                         vm_page_lock(p);
  644                         if (p->wire_count != 0 || p->hold_count != 0 ||
  645                             !pmap_page_exists_quick(pmap, p)) {
  646                                 vm_page_unlock(p);
  647                                 continue;
  648                         }
  649                         act_delta = pmap_ts_referenced(p);
  650                         if ((p->aflags & PGA_REFERENCED) != 0) {
  651                                 if (act_delta == 0)
  652                                         act_delta = 1;
  653                                 vm_page_aflag_clear(p, PGA_REFERENCED);
  654                         }
  655                         if (!vm_page_active(p) && act_delta != 0) {
  656                                 vm_page_activate(p);
  657                                 p->act_count += act_delta;
  658                         } else if (vm_page_active(p)) {
  659                                 if (act_delta == 0) {
  660                                         p->act_count -= min(p->act_count,
  661                                             ACT_DECLINE);
  662                                         if (!remove_mode && p->act_count == 0) {
  663                                                 pmap_remove_all(p);
  664                                                 vm_page_deactivate(p);
  665                                         } else
  666                                                 vm_page_requeue(p);
  667                                 } else {
  668                                         vm_page_activate(p);
  669                                         if (p->act_count < ACT_MAX -
  670                                             ACT_ADVANCE)
  671                                                 p->act_count += ACT_ADVANCE;
  672                                         vm_page_requeue(p);
  673                                 }
  674                         } else if (vm_page_inactive(p))
  675                                 pmap_remove_all(p);
  676                         vm_page_unlock(p);
  677                 }
  678                 if ((backing_object = object->backing_object) == NULL)
  679                         goto unlock_return;
  680                 VM_OBJECT_RLOCK(backing_object);
  681                 if (object != first_object)
  682                         VM_OBJECT_RUNLOCK(object);
  683         }
  684 unlock_return:
  685         if (object != first_object)
  686                 VM_OBJECT_RUNLOCK(object);
  687 }
  688 
  689 /*
  690  * deactivate some number of pages in a map, try to do it fairly, but
  691  * that is really hard to do.
  692  */
  693 static void
  694 vm_pageout_map_deactivate_pages(map, desired)
  695         vm_map_t map;
  696         long desired;
  697 {
  698         vm_map_entry_t tmpe;
  699         vm_object_t obj, bigobj;
  700         int nothingwired;
  701 
  702         if (!vm_map_trylock(map))
  703                 return;
  704 
  705         bigobj = NULL;
  706         nothingwired = TRUE;
  707 
  708         /*
  709          * first, search out the biggest object, and try to free pages from
  710          * that.
  711          */
  712         tmpe = map->header.next;
  713         while (tmpe != &map->header) {
  714                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  715                         obj = tmpe->object.vm_object;
  716                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
  717                                 if (obj->shadow_count <= 1 &&
  718                                     (bigobj == NULL ||
  719                                      bigobj->resident_page_count < obj->resident_page_count)) {
  720                                         if (bigobj != NULL)
  721                                                 VM_OBJECT_RUNLOCK(bigobj);
  722                                         bigobj = obj;
  723                                 } else
  724                                         VM_OBJECT_RUNLOCK(obj);
  725                         }
  726                 }
  727                 if (tmpe->wired_count > 0)
  728                         nothingwired = FALSE;
  729                 tmpe = tmpe->next;
  730         }
  731 
  732         if (bigobj != NULL) {
  733                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  734                 VM_OBJECT_RUNLOCK(bigobj);
  735         }
  736         /*
  737          * Next, hunt around for other pages to deactivate.  We actually
  738          * do this search sort of wrong -- .text first is not the best idea.
  739          */
  740         tmpe = map->header.next;
  741         while (tmpe != &map->header) {
  742                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  743                         break;
  744                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  745                         obj = tmpe->object.vm_object;
  746                         if (obj != NULL) {
  747                                 VM_OBJECT_RLOCK(obj);
  748                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  749                                 VM_OBJECT_RUNLOCK(obj);
  750                         }
  751                 }
  752                 tmpe = tmpe->next;
  753         }
  754 
  755         /*
  756          * Remove all mappings if a process is swapped out, this will free page
  757          * table pages.
  758          */
  759         if (desired == 0 && nothingwired) {
  760                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  761                     vm_map_max(map));
  762         }
  763 
  764         vm_map_unlock(map);
  765 }
  766 #endif          /* !defined(NO_SWAPPING) */
  767 
  768 /*
  769  * Attempt to acquire all of the necessary locks to launder a page and
  770  * then call through the clustering layer to PUTPAGES.  Wait a short
  771  * time for a vnode lock.
  772  *
  773  * Requires the page and object lock on entry, releases both before return.
  774  * Returns 0 on success and an errno otherwise.
  775  */
  776 static int
  777 vm_pageout_clean(vm_page_t m, int *numpagedout)
  778 {
  779         struct vnode *vp;
  780         struct mount *mp;
  781         vm_object_t object;
  782         vm_pindex_t pindex;
  783         int error, lockmode;
  784 
  785         vm_page_assert_locked(m);
  786         object = m->object;
  787         VM_OBJECT_ASSERT_WLOCKED(object);
  788         error = 0;
  789         vp = NULL;
  790         mp = NULL;
  791 
  792         /*
  793          * The object is already known NOT to be dead.   It
  794          * is possible for the vget() to block the whole
  795          * pageout daemon, but the new low-memory handling
  796          * code should prevent it.
  797          *
  798          * We can't wait forever for the vnode lock, we might
  799          * deadlock due to a vn_read() getting stuck in
  800          * vm_wait while holding this vnode.  We skip the 
  801          * vnode if we can't get it in a reasonable amount
  802          * of time.
  803          */
  804         if (object->type == OBJT_VNODE) {
  805                 vm_page_unlock(m);
  806                 vp = object->handle;
  807                 if (vp->v_type == VREG &&
  808                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
  809                         mp = NULL;
  810                         error = EDEADLK;
  811                         goto unlock_all;
  812                 }
  813                 KASSERT(mp != NULL,
  814                     ("vp %p with NULL v_mount", vp));
  815                 vm_object_reference_locked(object);
  816                 pindex = m->pindex;
  817                 VM_OBJECT_WUNLOCK(object);
  818                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
  819                     LK_SHARED : LK_EXCLUSIVE;
  820                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
  821                         vp = NULL;
  822                         error = EDEADLK;
  823                         goto unlock_mp;
  824                 }
  825                 VM_OBJECT_WLOCK(object);
  826                 vm_page_lock(m);
  827                 /*
  828                  * While the object and page were unlocked, the page
  829                  * may have been:
  830                  * (1) moved to a different queue,
  831                  * (2) reallocated to a different object,
  832                  * (3) reallocated to a different offset, or
  833                  * (4) cleaned.
  834                  */
  835                 if (!vm_page_in_laundry(m) || m->object != object ||
  836                     m->pindex != pindex || m->dirty == 0) {
  837                         vm_page_unlock(m);
  838                         error = ENXIO;
  839                         goto unlock_all;
  840                 }
  841 
  842                 /*
  843                  * The page may have been busied or held while the object
  844                  * and page locks were released.
  845                  */
  846                 if (vm_page_busied(m) || m->hold_count != 0) {
  847                         vm_page_unlock(m);
  848                         error = EBUSY;
  849                         goto unlock_all;
  850                 }
  851         }
  852 
  853         /*
  854          * If a page is dirty, then it is either being washed
  855          * (but not yet cleaned) or it is still in the
  856          * laundry.  If it is still in the laundry, then we
  857          * start the cleaning operation. 
  858          */
  859         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
  860                 error = EIO;
  861 
  862 unlock_all:
  863         VM_OBJECT_WUNLOCK(object);
  864 
  865 unlock_mp:
  866         vm_page_lock_assert(m, MA_NOTOWNED);
  867         if (mp != NULL) {
  868                 if (vp != NULL)
  869                         vput(vp);
  870                 vm_object_deallocate(object);
  871                 vn_finished_write(mp);
  872         }
  873 
  874         return (error);
  875 }
  876 
  877 /*
  878  * Attempt to launder the specified number of pages.
  879  *
  880  * Returns the number of pages successfully laundered.
  881  */
  882 static int
  883 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
  884 {
  885         struct vm_pagequeue *pq;
  886         vm_object_t object;
  887         vm_page_t m, next;
  888         int act_delta, error, maxscan, numpagedout, starting_target;
  889         int vnodes_skipped;
  890         bool pageout_ok, queue_locked;
  891 
  892         starting_target = launder;
  893         vnodes_skipped = 0;
  894 
  895         /*
  896          * Scan the laundry queue for pages eligible to be laundered.  We stop
  897          * once the target number of dirty pages have been laundered, or once
  898          * we've reached the end of the queue.  A single iteration of this loop
  899          * may cause more than one page to be laundered because of clustering.
  900          *
  901          * maxscan ensures that we don't re-examine requeued pages.  Any
  902          * additional pages written as part of a cluster are subtracted from
  903          * maxscan since they must be taken from the laundry queue.
  904          */
  905         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
  906         maxscan = pq->pq_cnt;
  907 
  908         vm_pagequeue_lock(pq);
  909         queue_locked = true;
  910         for (m = TAILQ_FIRST(&pq->pq_pl);
  911             m != NULL && maxscan-- > 0 && launder > 0;
  912             m = next) {
  913                 vm_pagequeue_assert_locked(pq);
  914                 KASSERT(queue_locked, ("unlocked laundry queue"));
  915                 KASSERT(vm_page_in_laundry(m),
  916                     ("page %p has an inconsistent queue", m));
  917                 next = TAILQ_NEXT(m, plinks.q);
  918                 if ((m->flags & PG_MARKER) != 0)
  919                         continue;
  920                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
  921                     ("PG_FICTITIOUS page %p cannot be in laundry queue", m));
  922                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
  923                     ("VPO_UNMANAGED page %p cannot be in laundry queue", m));
  924                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
  925                         vm_page_unlock(m);
  926                         continue;
  927                 }
  928                 object = m->object;
  929                 if ((!VM_OBJECT_TRYWLOCK(object) &&
  930                     (!vm_pageout_fallback_object_lock(m, &next) ||
  931                     m->hold_count != 0)) || vm_page_busied(m)) {
  932                         VM_OBJECT_WUNLOCK(object);
  933                         vm_page_unlock(m);
  934                         continue;
  935                 }
  936 
  937                 /*
  938                  * Unlock the laundry queue, invalidating the 'next' pointer.
  939                  * Use a marker to remember our place in the laundry queue.
  940                  */
  941                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker,
  942                     plinks.q);
  943                 vm_pagequeue_unlock(pq);
  944                 queue_locked = false;
  945 
  946                 /*
  947                  * Invalid pages can be easily freed.  They cannot be
  948                  * mapped; vm_page_free() asserts this.
  949                  */
  950                 if (m->valid == 0)
  951                         goto free_page;
  952 
  953                 /*
  954                  * If the page has been referenced and the object is not dead,
  955                  * reactivate or requeue the page depending on whether the
  956                  * object is mapped.
  957                  */
  958                 if ((m->aflags & PGA_REFERENCED) != 0) {
  959                         vm_page_aflag_clear(m, PGA_REFERENCED);
  960                         act_delta = 1;
  961                 } else
  962                         act_delta = 0;
  963                 if (object->ref_count != 0)
  964                         act_delta += pmap_ts_referenced(m);
  965                 else {
  966                         KASSERT(!pmap_page_is_mapped(m),
  967                             ("page %p is mapped", m));
  968                 }
  969                 if (act_delta != 0) {
  970                         if (object->ref_count != 0) {
  971                                 PCPU_INC(cnt.v_reactivated);
  972                                 vm_page_activate(m);
  973 
  974                                 /*
  975                                  * Increase the activation count if the page
  976                                  * was referenced while in the laundry queue.
  977                                  * This makes it less likely that the page will
  978                                  * be returned prematurely to the inactive
  979                                  * queue.
  980                                  */
  981                                 m->act_count += act_delta + ACT_ADVANCE;
  982 
  983                                 /*
  984                                  * If this was a background laundering, count
  985                                  * activated pages towards our target.  The
  986                                  * purpose of background laundering is to ensure
  987                                  * that pages are eventually cycled through the
  988                                  * laundry queue, and an activation is a valid
  989                                  * way out.
  990                                  */
  991                                 if (!in_shortfall)
  992                                         launder--;
  993                                 goto drop_page;
  994                         } else if ((object->flags & OBJ_DEAD) == 0)
  995                                 goto requeue_page;
  996                 }
  997 
  998                 /*
  999                  * If the page appears to be clean at the machine-independent
 1000                  * layer, then remove all of its mappings from the pmap in
 1001                  * anticipation of freeing it.  If, however, any of the page's
 1002                  * mappings allow write access, then the page may still be
 1003                  * modified until the last of those mappings are removed.
 1004                  */
 1005                 if (object->ref_count != 0) {
 1006                         vm_page_test_dirty(m);
 1007                         if (m->dirty == 0)
 1008                                 pmap_remove_all(m);
 1009                 }
 1010 
 1011                 /*
 1012                  * Clean pages are freed, and dirty pages are paged out unless
 1013                  * they belong to a dead object.  Requeueing dirty pages from
 1014                  * dead objects is pointless, as they are being paged out and
 1015                  * freed by the thread that destroyed the object.
 1016                  */
 1017                 if (m->dirty == 0) {
 1018 free_page:
 1019                         vm_page_free(m);
 1020                         PCPU_INC(cnt.v_dfree);
 1021                 } else if ((object->flags & OBJ_DEAD) == 0) {
 1022                         if (object->type != OBJT_SWAP &&
 1023                             object->type != OBJT_DEFAULT)
 1024                                 pageout_ok = true;
 1025                         else if (disable_swap_pageouts)
 1026                                 pageout_ok = false;
 1027                         else
 1028                                 pageout_ok = true;
 1029                         if (!pageout_ok) {
 1030 requeue_page:
 1031                                 vm_pagequeue_lock(pq);
 1032                                 queue_locked = true;
 1033                                 vm_page_requeue_locked(m);
 1034                                 goto drop_page;
 1035                         }
 1036 
 1037                         /*
 1038                          * Form a cluster with adjacent, dirty pages from the
 1039                          * same object, and page out that entire cluster.
 1040                          *
 1041                          * The adjacent, dirty pages must also be in the
 1042                          * laundry.  However, their mappings are not checked
 1043                          * for new references.  Consequently, a recently
 1044                          * referenced page may be paged out.  However, that
 1045                          * page will not be prematurely reclaimed.  After page
 1046                          * out, the page will be placed in the inactive queue,
 1047                          * where any new references will be detected and the
 1048                          * page reactivated.
 1049                          */
 1050                         error = vm_pageout_clean(m, &numpagedout);
 1051                         if (error == 0) {
 1052                                 launder -= numpagedout;
 1053                                 maxscan -= numpagedout - 1;
 1054                         } else if (error == EDEADLK) {
 1055                                 pageout_lock_miss++;
 1056                                 vnodes_skipped++;
 1057                         }
 1058                         goto relock_queue;
 1059                 }
 1060 drop_page:
 1061                 vm_page_unlock(m);
 1062                 VM_OBJECT_WUNLOCK(object);
 1063 relock_queue:
 1064                 if (!queue_locked) {
 1065                         vm_pagequeue_lock(pq);
 1066                         queue_locked = true;
 1067                 }
 1068                 next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q);
 1069                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q);
 1070         }
 1071         vm_pagequeue_unlock(pq);
 1072 
 1073         /*
 1074          * Wakeup the sync daemon if we skipped a vnode in a writeable object
 1075          * and we didn't launder enough pages.
 1076          */
 1077         if (vnodes_skipped > 0 && launder > 0)
 1078                 (void)speedup_syncer();
 1079 
 1080         return (starting_target - launder);
 1081 }
 1082 
 1083 /*
 1084  * Compute the integer square root.
 1085  */
 1086 static u_int
 1087 isqrt(u_int num)
 1088 {
 1089         u_int bit, root, tmp;
 1090 
 1091         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
 1092         while (bit > num)
 1093                 bit >>= 2;
 1094         root = 0;
 1095         while (bit != 0) {
 1096                 tmp = root + bit;
 1097                 root >>= 1;
 1098                 if (num >= tmp) {
 1099                         num -= tmp;
 1100                         root += bit;
 1101                 }
 1102                 bit >>= 2;
 1103         }
 1104         return (root);
 1105 }
 1106 
 1107 /*
 1108  * Perform the work of the laundry thread: periodically wake up and determine
 1109  * whether any pages need to be laundered.  If so, determine the number of pages
 1110  * that need to be laundered, and launder them.
 1111  */
 1112 static void
 1113 vm_pageout_laundry_worker(void *arg)
 1114 {
 1115         struct vm_domain *domain;
 1116         struct vm_pagequeue *pq;
 1117         uint64_t nclean, ndirty;
 1118         u_int last_launder, wakeups;
 1119         int domidx, last_target, launder, shortfall, shortfall_cycle, target;
 1120         bool in_shortfall;
 1121 
 1122         domidx = (uintptr_t)arg;
 1123         domain = &vm_dom[domidx];
 1124         pq = &domain->vmd_pagequeues[PQ_LAUNDRY];
 1125         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
 1126         vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY);
 1127 
 1128         shortfall = 0;
 1129         in_shortfall = false;
 1130         shortfall_cycle = 0;
 1131         target = 0;
 1132         last_launder = 0;
 1133 
 1134         /*
 1135          * The pageout laundry worker is never done, so loop forever.
 1136          */
 1137         for (;;) {
 1138                 KASSERT(target >= 0, ("negative target %d", target));
 1139                 KASSERT(shortfall_cycle >= 0,
 1140                     ("negative cycle %d", shortfall_cycle));
 1141                 launder = 0;
 1142                 wakeups = VM_METER_PCPU_CNT(v_pdwakeups);
 1143 
 1144                 /*
 1145                  * First determine whether we need to launder pages to meet a
 1146                  * shortage of free pages.
 1147                  */
 1148                 if (shortfall > 0) {
 1149                         in_shortfall = true;
 1150                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
 1151                         target = shortfall;
 1152                 } else if (!in_shortfall)
 1153                         goto trybackground;
 1154                 else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) {
 1155                         /*
 1156                          * We recently entered shortfall and began laundering
 1157                          * pages.  If we have completed that laundering run
 1158                          * (and we are no longer in shortfall) or we have met
 1159                          * our laundry target through other activity, then we
 1160                          * can stop laundering pages.
 1161                          */
 1162                         in_shortfall = false;
 1163                         target = 0;
 1164                         goto trybackground;
 1165                 }
 1166                 last_launder = wakeups;
 1167                 launder = target / shortfall_cycle--;
 1168                 goto dolaundry;
 1169 
 1170                 /*
 1171                  * There's no immediate need to launder any pages; see if we
 1172                  * meet the conditions to perform background laundering:
 1173                  *
 1174                  * 1. The ratio of dirty to clean inactive pages exceeds the
 1175                  *    background laundering threshold and the pagedaemon has
 1176                  *    been woken up to reclaim pages since our last
 1177                  *    laundering, or
 1178                  * 2. we haven't yet reached the target of the current
 1179                  *    background laundering run.
 1180                  *
 1181                  * The background laundering threshold is not a constant.
 1182                  * Instead, it is a slowly growing function of the number of
 1183                  * page daemon wakeups since the last laundering.  Thus, as the
 1184                  * ratio of dirty to clean inactive pages grows, the amount of
 1185                  * memory pressure required to trigger laundering decreases.
 1186                  */
 1187 trybackground:
 1188                 nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count;
 1189                 ndirty = vm_cnt.v_laundry_count;
 1190                 if (target == 0 && wakeups != last_launder &&
 1191                     ndirty * isqrt(wakeups - last_launder) >= nclean) {
 1192                         target = vm_background_launder_target;
 1193                 }
 1194 
 1195                 /*
 1196                  * We have a non-zero background laundering target.  If we've
 1197                  * laundered up to our maximum without observing a page daemon
 1198                  * wakeup, just stop.  This is a safety belt that ensures we
 1199                  * don't launder an excessive amount if memory pressure is low
 1200                  * and the ratio of dirty to clean pages is large.  Otherwise,
 1201                  * proceed at the background laundering rate.
 1202                  */
 1203                 if (target > 0) {
 1204                         if (wakeups != last_launder) {
 1205                                 last_launder = wakeups;
 1206                                 last_target = target;
 1207                         } else if (last_target - target >=
 1208                             vm_background_launder_max * PAGE_SIZE / 1024) {
 1209                                 target = 0;
 1210                         }
 1211                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
 1212                         launder /= VM_LAUNDER_RATE;
 1213                         if (launder > target)
 1214                                 launder = target;
 1215                 }
 1216 
 1217 dolaundry:
 1218                 if (launder > 0) {
 1219                         /*
 1220                          * Because of I/O clustering, the number of laundered
 1221                          * pages could exceed "target" by the maximum size of
 1222                          * a cluster minus one. 
 1223                          */
 1224                         target -= min(vm_pageout_launder(domain, launder,
 1225                             in_shortfall), target);
 1226                         pause("laundp", hz / VM_LAUNDER_RATE);
 1227                 }
 1228 
 1229                 /*
 1230                  * If we're not currently laundering pages and the page daemon
 1231                  * hasn't posted a new request, sleep until the page daemon
 1232                  * kicks us.
 1233                  */
 1234                 vm_pagequeue_lock(pq);
 1235                 if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE)
 1236                         (void)mtx_sleep(&vm_laundry_request,
 1237                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
 1238 
 1239                 /*
 1240                  * If the pagedaemon has indicated that it's in shortfall, start
 1241                  * a shortfall laundering unless we're already in the middle of
 1242                  * one.  This may preempt a background laundering.
 1243                  */
 1244                 if (vm_laundry_request == VM_LAUNDRY_SHORTFALL &&
 1245                     (!in_shortfall || shortfall_cycle == 0)) {
 1246                         shortfall = vm_laundry_target() + vm_pageout_deficit;
 1247                         target = 0;
 1248                 } else
 1249                         shortfall = 0;
 1250 
 1251                 if (target == 0)
 1252                         vm_laundry_request = VM_LAUNDRY_IDLE;
 1253                 vm_pagequeue_unlock(pq);
 1254         }
 1255 }
 1256 
 1257 /*
 1258  *      vm_pageout_scan does the dirty work for the pageout daemon.
 1259  *
 1260  *      pass == 0: Update active LRU/deactivate pages
 1261  *      pass >= 1: Free inactive pages
 1262  *
 1263  * Returns true if pass was zero or enough pages were freed by the inactive
 1264  * queue scan to meet the target.
 1265  */
 1266 static bool
 1267 vm_pageout_scan(struct vm_domain *vmd, int pass)
 1268 {
 1269         vm_page_t m, next;
 1270         struct vm_pagequeue *pq;
 1271         vm_object_t object;
 1272         long min_scan;
 1273         int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan;
 1274         int page_shortage, scan_tick, scanned, starting_page_shortage;
 1275         boolean_t queue_locked;
 1276 
 1277         /*
 1278          * If we need to reclaim memory ask kernel caches to return
 1279          * some.  We rate limit to avoid thrashing.
 1280          */
 1281         if (vmd == &vm_dom[0] && pass > 0 &&
 1282             (time_uptime - lowmem_uptime) >= lowmem_period) {
 1283                 /*
 1284                  * Decrease registered cache sizes.
 1285                  */
 1286                 SDT_PROBE0(vm, , , vm__lowmem_scan);
 1287                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
 1288                 /*
 1289                  * We do this explicitly after the caches have been
 1290                  * drained above.
 1291                  */
 1292                 uma_reclaim();
 1293                 lowmem_uptime = time_uptime;
 1294         }
 1295 
 1296         /*
 1297          * The addl_page_shortage is the number of temporarily
 1298          * stuck pages in the inactive queue.  In other words, the
 1299          * number of pages from the inactive count that should be
 1300          * discounted in setting the target for the active queue scan.
 1301          */
 1302         addl_page_shortage = 0;
 1303 
 1304         /*
 1305          * Calculate the number of pages that we want to free.  This number
 1306          * can be negative if many pages are freed between the wakeup call to
 1307          * the page daemon and this calculation.
 1308          */
 1309         if (pass > 0) {
 1310                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
 1311                 page_shortage = vm_paging_target() + deficit;
 1312         } else
 1313                 page_shortage = deficit = 0;
 1314         starting_page_shortage = page_shortage;
 1315 
 1316         /*
 1317          * Start scanning the inactive queue for pages that we can free.  The
 1318          * scan will stop when we reach the target or we have scanned the
 1319          * entire queue.  (Note that m->act_count is not used to make
 1320          * decisions for the inactive queue, only for the active queue.)
 1321          */
 1322         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
 1323         maxscan = pq->pq_cnt;
 1324         vm_pagequeue_lock(pq);
 1325         queue_locked = TRUE;
 1326         for (m = TAILQ_FIRST(&pq->pq_pl);
 1327              m != NULL && maxscan-- > 0 && page_shortage > 0;
 1328              m = next) {
 1329                 vm_pagequeue_assert_locked(pq);
 1330                 KASSERT(queue_locked, ("unlocked inactive queue"));
 1331                 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m));
 1332 
 1333                 PCPU_INC(cnt.v_pdpages);
 1334                 next = TAILQ_NEXT(m, plinks.q);
 1335 
 1336                 /*
 1337                  * skip marker pages
 1338                  */
 1339                 if (m->flags & PG_MARKER)
 1340                         continue;
 1341 
 1342                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1343                     ("Fictitious page %p cannot be in inactive queue", m));
 1344                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1345                     ("Unmanaged page %p cannot be in inactive queue", m));
 1346 
 1347                 /*
 1348                  * The page or object lock acquisitions fail if the
 1349                  * page was removed from the queue or moved to a
 1350                  * different position within the queue.  In either
 1351                  * case, addl_page_shortage should not be incremented.
 1352                  */
 1353                 if (!vm_pageout_page_lock(m, &next))
 1354                         goto unlock_page;
 1355                 else if (m->hold_count != 0) {
 1356                         /*
 1357                          * Held pages are essentially stuck in the
 1358                          * queue.  So, they ought to be discounted
 1359                          * from the inactive count.  See the
 1360                          * calculation of inactq_shortage before the
 1361                          * loop over the active queue below.
 1362                          */
 1363                         addl_page_shortage++;
 1364                         goto unlock_page;
 1365                 }
 1366                 object = m->object;
 1367                 if (!VM_OBJECT_TRYWLOCK(object)) {
 1368                         if (!vm_pageout_fallback_object_lock(m, &next))
 1369                                 goto unlock_object;
 1370                         else if (m->hold_count != 0) {
 1371                                 addl_page_shortage++;
 1372                                 goto unlock_object;
 1373                         }
 1374                 }
 1375                 if (vm_page_busied(m)) {
 1376                         /*
 1377                          * Don't mess with busy pages.  Leave them at
 1378                          * the front of the queue.  Most likely, they
 1379                          * are being paged out and will leave the
 1380                          * queue shortly after the scan finishes.  So,
 1381                          * they ought to be discounted from the
 1382                          * inactive count.
 1383                          */
 1384                         addl_page_shortage++;
 1385 unlock_object:
 1386                         VM_OBJECT_WUNLOCK(object);
 1387 unlock_page:
 1388                         vm_page_unlock(m);
 1389                         continue;
 1390                 }
 1391                 KASSERT(m->hold_count == 0, ("Held page %p", m));
 1392 
 1393                 /*
 1394                  * Dequeue the inactive page and unlock the inactive page
 1395                  * queue, invalidating the 'next' pointer.  Dequeueing the
 1396                  * page here avoids a later reacquisition (and release) of
 1397                  * the inactive page queue lock when vm_page_activate(),
 1398                  * vm_page_free(), or vm_page_launder() is called.  Use a
 1399                  * marker to remember our place in the inactive queue.
 1400                  */
 1401                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
 1402                 vm_page_dequeue_locked(m);
 1403                 vm_pagequeue_unlock(pq);
 1404                 queue_locked = FALSE;
 1405 
 1406                 /*
 1407                  * Invalid pages can be easily freed. They cannot be
 1408                  * mapped, vm_page_free() asserts this.
 1409                  */
 1410                 if (m->valid == 0)
 1411                         goto free_page;
 1412 
 1413                 /*
 1414                  * If the page has been referenced and the object is not dead,
 1415                  * reactivate or requeue the page depending on whether the
 1416                  * object is mapped.
 1417                  */
 1418                 if ((m->aflags & PGA_REFERENCED) != 0) {
 1419                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1420                         act_delta = 1;
 1421                 } else
 1422                         act_delta = 0;
 1423                 if (object->ref_count != 0) {
 1424                         act_delta += pmap_ts_referenced(m);
 1425                 } else {
 1426                         KASSERT(!pmap_page_is_mapped(m),
 1427                             ("vm_pageout_scan: page %p is mapped", m));
 1428                 }
 1429                 if (act_delta != 0) {
 1430                         if (object->ref_count != 0) {
 1431                                 PCPU_INC(cnt.v_reactivated);
 1432                                 vm_page_activate(m);
 1433 
 1434                                 /*
 1435                                  * Increase the activation count if the page
 1436                                  * was referenced while in the inactive queue.
 1437                                  * This makes it less likely that the page will
 1438                                  * be returned prematurely to the inactive
 1439                                  * queue.
 1440                                  */
 1441                                 m->act_count += act_delta + ACT_ADVANCE;
 1442                                 goto drop_page;
 1443                         } else if ((object->flags & OBJ_DEAD) == 0) {
 1444                                 vm_pagequeue_lock(pq);
 1445                                 queue_locked = TRUE;
 1446                                 m->queue = PQ_INACTIVE;
 1447                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
 1448                                 vm_pagequeue_cnt_inc(pq);
 1449                                 goto drop_page;
 1450                         }
 1451                 }
 1452 
 1453                 /*
 1454                  * If the page appears to be clean at the machine-independent
 1455                  * layer, then remove all of its mappings from the pmap in
 1456                  * anticipation of freeing it.  If, however, any of the page's
 1457                  * mappings allow write access, then the page may still be
 1458                  * modified until the last of those mappings are removed.
 1459                  */
 1460                 if (object->ref_count != 0) {
 1461                         vm_page_test_dirty(m);
 1462                         if (m->dirty == 0)
 1463                                 pmap_remove_all(m);
 1464                 }
 1465 
 1466                 /*
 1467                  * Clean pages can be freed, but dirty pages must be sent back
 1468                  * to the laundry, unless they belong to a dead object.
 1469                  * Requeueing dirty pages from dead objects is pointless, as
 1470                  * they are being paged out and freed by the thread that
 1471                  * destroyed the object.
 1472                  */
 1473                 if (m->dirty == 0) {
 1474 free_page:
 1475                         vm_page_free(m);
 1476                         PCPU_INC(cnt.v_dfree);
 1477                         --page_shortage;
 1478                 } else if ((object->flags & OBJ_DEAD) == 0)
 1479                         vm_page_launder(m);
 1480 drop_page:
 1481                 vm_page_unlock(m);
 1482                 VM_OBJECT_WUNLOCK(object);
 1483                 if (!queue_locked) {
 1484                         vm_pagequeue_lock(pq);
 1485                         queue_locked = TRUE;
 1486                 }
 1487                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
 1488                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
 1489         }
 1490         vm_pagequeue_unlock(pq);
 1491 
 1492         /*
 1493          * Wake up the laundry thread so that it can perform any needed
 1494          * laundering.  If we didn't meet our target, we're in shortfall and
 1495          * need to launder more aggressively.
 1496          */
 1497         if (vm_laundry_request == VM_LAUNDRY_IDLE &&
 1498             starting_page_shortage > 0) {
 1499                 pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY];
 1500                 vm_pagequeue_lock(pq);
 1501                 if (page_shortage > 0) {
 1502                         vm_laundry_request = VM_LAUNDRY_SHORTFALL;
 1503                         PCPU_INC(cnt.v_pdshortfalls);
 1504                 } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL)
 1505                         vm_laundry_request = VM_LAUNDRY_BACKGROUND;
 1506                 wakeup(&vm_laundry_request);
 1507                 vm_pagequeue_unlock(pq);
 1508         }
 1509 
 1510 #if !defined(NO_SWAPPING)
 1511         /*
 1512          * Wakeup the swapout daemon if we didn't free the targeted number of
 1513          * pages.
 1514          */
 1515         if (vm_swap_enabled && page_shortage > 0)
 1516                 vm_req_vmdaemon(VM_SWAP_NORMAL);
 1517 #endif
 1518 
 1519         /*
 1520          * If the inactive queue scan fails repeatedly to meet its
 1521          * target, kill the largest process.
 1522          */
 1523         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
 1524 
 1525         /*
 1526          * Compute the number of pages we want to try to move from the
 1527          * active queue to either the inactive or laundry queue.
 1528          *
 1529          * When scanning active pages, we make clean pages count more heavily
 1530          * towards the page shortage than dirty pages.  This is because dirty
 1531          * pages must be laundered before they can be reused and thus have less
 1532          * utility when attempting to quickly alleviate a shortage.  However,
 1533          * this weighting also causes the scan to deactivate dirty pages more
 1534          * more aggressively, improving the effectiveness of clustering and
 1535          * ensuring that they can eventually be reused.
 1536          */
 1537         inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count +
 1538             vm_cnt.v_laundry_count / act_scan_laundry_weight) +
 1539             vm_paging_target() + deficit + addl_page_shortage;
 1540         page_shortage *= act_scan_laundry_weight;
 1541 
 1542         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
 1543         vm_pagequeue_lock(pq);
 1544         maxscan = pq->pq_cnt;
 1545 
 1546         /*
 1547          * If we're just idle polling attempt to visit every
 1548          * active page within 'update_period' seconds.
 1549          */
 1550         scan_tick = ticks;
 1551         if (vm_pageout_update_period != 0) {
 1552                 min_scan = pq->pq_cnt;
 1553                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
 1554                 min_scan /= hz * vm_pageout_update_period;
 1555         } else
 1556                 min_scan = 0;
 1557         if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0))
 1558                 vmd->vmd_last_active_scan = scan_tick;
 1559 
 1560         /*
 1561          * Scan the active queue for pages that can be deactivated.  Update
 1562          * the per-page activity counter and use it to identify deactivation
 1563          * candidates.  Held pages may be deactivated.
 1564          */
 1565         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
 1566             min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next,
 1567             scanned++) {
 1568                 KASSERT(m->queue == PQ_ACTIVE,
 1569                     ("vm_pageout_scan: page %p isn't active", m));
 1570                 next = TAILQ_NEXT(m, plinks.q);
 1571                 if ((m->flags & PG_MARKER) != 0)
 1572                         continue;
 1573                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1574                     ("Fictitious page %p cannot be in active queue", m));
 1575                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1576                     ("Unmanaged page %p cannot be in active queue", m));
 1577                 if (!vm_pageout_page_lock(m, &next)) {
 1578                         vm_page_unlock(m);
 1579                         continue;
 1580                 }
 1581 
 1582                 /*
 1583                  * The count for page daemon pages is updated after checking
 1584                  * the page for eligibility.
 1585                  */
 1586                 PCPU_INC(cnt.v_pdpages);
 1587 
 1588                 /*
 1589                  * Check to see "how much" the page has been used.
 1590                  */
 1591                 if ((m->aflags & PGA_REFERENCED) != 0) {
 1592                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1593                         act_delta = 1;
 1594                 } else
 1595                         act_delta = 0;
 1596 
 1597                 /*
 1598                  * Perform an unsynchronized object ref count check.  While
 1599                  * the page lock ensures that the page is not reallocated to
 1600                  * another object, in particular, one with unmanaged mappings
 1601                  * that cannot support pmap_ts_referenced(), two races are,
 1602                  * nonetheless, possible:
 1603                  * 1) The count was transitioning to zero, but we saw a non-
 1604                  *    zero value.  pmap_ts_referenced() will return zero
 1605                  *    because the page is not mapped.
 1606                  * 2) The count was transitioning to one, but we saw zero. 
 1607                  *    This race delays the detection of a new reference.  At
 1608                  *    worst, we will deactivate and reactivate the page.
 1609                  */
 1610                 if (m->object->ref_count != 0)
 1611                         act_delta += pmap_ts_referenced(m);
 1612 
 1613                 /*
 1614                  * Advance or decay the act_count based on recent usage.
 1615                  */
 1616                 if (act_delta != 0) {
 1617                         m->act_count += ACT_ADVANCE + act_delta;
 1618                         if (m->act_count > ACT_MAX)
 1619                                 m->act_count = ACT_MAX;
 1620                 } else
 1621                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1622 
 1623                 /*
 1624                  * Move this page to the tail of the active, inactive or laundry
 1625                  * queue depending on usage.
 1626                  */
 1627                 if (m->act_count == 0) {
 1628                         /* Dequeue to avoid later lock recursion. */
 1629                         vm_page_dequeue_locked(m);
 1630 
 1631                         /*
 1632                          * When not short for inactive pages, let dirty pages go
 1633                          * through the inactive queue before moving to the
 1634                          * laundry queues.  This gives them some extra time to
 1635                          * be reactivated, potentially avoiding an expensive
 1636                          * pageout.  During a page shortage, the inactive queue
 1637                          * is necessarily small, so we may move dirty pages
 1638                          * directly to the laundry queue.
 1639                          */
 1640                         if (inactq_shortage <= 0)
 1641                                 vm_page_deactivate(m);
 1642                         else {
 1643                                 /*
 1644                                  * Calling vm_page_test_dirty() here would
 1645                                  * require acquisition of the object's write
 1646                                  * lock.  However, during a page shortage,
 1647                                  * directing dirty pages into the laundry
 1648                                  * queue is only an optimization and not a
 1649                                  * requirement.  Therefore, we simply rely on
 1650                                  * the opportunistic updates to the page's
 1651                                  * dirty field by the pmap.
 1652                                  */
 1653                                 if (m->dirty == 0) {
 1654                                         vm_page_deactivate(m);
 1655                                         inactq_shortage -=
 1656                                             act_scan_laundry_weight;
 1657                                 } else {
 1658                                         vm_page_launder(m);
 1659                                         inactq_shortage--;
 1660                                 }
 1661                         }
 1662                 } else
 1663                         vm_page_requeue_locked(m);
 1664                 vm_page_unlock(m);
 1665         }
 1666         vm_pagequeue_unlock(pq);
 1667 #if !defined(NO_SWAPPING)
 1668         /*
 1669          * Idle process swapout -- run once per second.
 1670          */
 1671         if (vm_swap_idle_enabled) {
 1672                 static long lsec;
 1673                 if (time_second != lsec) {
 1674                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1675                         lsec = time_second;
 1676                 }
 1677         }
 1678 #endif
 1679         return (page_shortage <= 0);
 1680 }
 1681 
 1682 static int vm_pageout_oom_vote;
 1683 
 1684 /*
 1685  * The pagedaemon threads randlomly select one to perform the
 1686  * OOM.  Trying to kill processes before all pagedaemons
 1687  * failed to reach free target is premature.
 1688  */
 1689 static void
 1690 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
 1691     int starting_page_shortage)
 1692 {
 1693         int old_vote;
 1694 
 1695         if (starting_page_shortage <= 0 || starting_page_shortage !=
 1696             page_shortage)
 1697                 vmd->vmd_oom_seq = 0;
 1698         else
 1699                 vmd->vmd_oom_seq++;
 1700         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
 1701                 if (vmd->vmd_oom) {
 1702                         vmd->vmd_oom = FALSE;
 1703                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1704                 }
 1705                 return;
 1706         }
 1707 
 1708         /*
 1709          * Do not follow the call sequence until OOM condition is
 1710          * cleared.
 1711          */
 1712         vmd->vmd_oom_seq = 0;
 1713 
 1714         if (vmd->vmd_oom)
 1715                 return;
 1716 
 1717         vmd->vmd_oom = TRUE;
 1718         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
 1719         if (old_vote != vm_ndomains - 1)
 1720                 return;
 1721 
 1722         /*
 1723          * The current pagedaemon thread is the last in the quorum to
 1724          * start OOM.  Initiate the selection and signaling of the
 1725          * victim.
 1726          */
 1727         vm_pageout_oom(VM_OOM_MEM);
 1728 
 1729         /*
 1730          * After one round of OOM terror, recall our vote.  On the
 1731          * next pass, current pagedaemon would vote again if the low
 1732          * memory condition is still there, due to vmd_oom being
 1733          * false.
 1734          */
 1735         vmd->vmd_oom = FALSE;
 1736         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1737 }
 1738 
 1739 /*
 1740  * The OOM killer is the page daemon's action of last resort when
 1741  * memory allocation requests have been stalled for a prolonged period
 1742  * of time because it cannot reclaim memory.  This function computes
 1743  * the approximate number of physical pages that could be reclaimed if
 1744  * the specified address space is destroyed.
 1745  *
 1746  * Private, anonymous memory owned by the address space is the
 1747  * principal resource that we expect to recover after an OOM kill.
 1748  * Since the physical pages mapped by the address space's COW entries
 1749  * are typically shared pages, they are unlikely to be released and so
 1750  * they are not counted.
 1751  *
 1752  * To get to the point where the page daemon runs the OOM killer, its
 1753  * efforts to write-back vnode-backed pages may have stalled.  This
 1754  * could be caused by a memory allocation deadlock in the write path
 1755  * that might be resolved by an OOM kill.  Therefore, physical pages
 1756  * belonging to vnode-backed objects are counted, because they might
 1757  * be freed without being written out first if the address space holds
 1758  * the last reference to an unlinked vnode.
 1759  *
 1760  * Similarly, physical pages belonging to OBJT_PHYS objects are
 1761  * counted because the address space might hold the last reference to
 1762  * the object.
 1763  */
 1764 static long
 1765 vm_pageout_oom_pagecount(struct vmspace *vmspace)
 1766 {
 1767         vm_map_t map;
 1768         vm_map_entry_t entry;
 1769         vm_object_t obj;
 1770         long res;
 1771 
 1772         map = &vmspace->vm_map;
 1773         KASSERT(!map->system_map, ("system map"));
 1774         sx_assert(&map->lock, SA_LOCKED);
 1775         res = 0;
 1776         for (entry = map->header.next; entry != &map->header;
 1777             entry = entry->next) {
 1778                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1779                         continue;
 1780                 obj = entry->object.vm_object;
 1781                 if (obj == NULL)
 1782                         continue;
 1783                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
 1784                     obj->ref_count != 1)
 1785                         continue;
 1786                 switch (obj->type) {
 1787                 case OBJT_DEFAULT:
 1788                 case OBJT_SWAP:
 1789                 case OBJT_PHYS:
 1790                 case OBJT_VNODE:
 1791                         res += obj->resident_page_count;
 1792                         break;
 1793                 }
 1794         }
 1795         return (res);
 1796 }
 1797 
 1798 void
 1799 vm_pageout_oom(int shortage)
 1800 {
 1801         struct proc *p, *bigproc;
 1802         vm_offset_t size, bigsize;
 1803         struct thread *td;
 1804         struct vmspace *vm;
 1805 
 1806         /*
 1807          * We keep the process bigproc locked once we find it to keep anyone
 1808          * from messing with it; however, there is a possibility of
 1809          * deadlock if process B is bigproc and one of it's child processes
 1810          * attempts to propagate a signal to B while we are waiting for A's
 1811          * lock while walking this list.  To avoid this, we don't block on
 1812          * the process lock but just skip a process if it is already locked.
 1813          */
 1814         bigproc = NULL;
 1815         bigsize = 0;
 1816         sx_slock(&allproc_lock);
 1817         FOREACH_PROC_IN_SYSTEM(p) {
 1818                 int breakout;
 1819 
 1820                 PROC_LOCK(p);
 1821 
 1822                 /*
 1823                  * If this is a system, protected or killed process, skip it.
 1824                  */
 1825                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
 1826                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
 1827                     p->p_pid == 1 || P_KILLED(p) ||
 1828                     (p->p_pid < 48 && swap_pager_avail != 0)) {
 1829                         PROC_UNLOCK(p);
 1830                         continue;
 1831                 }
 1832                 /*
 1833                  * If the process is in a non-running type state,
 1834                  * don't touch it.  Check all the threads individually.
 1835                  */
 1836                 breakout = 0;
 1837                 FOREACH_THREAD_IN_PROC(p, td) {
 1838                         thread_lock(td);
 1839                         if (!TD_ON_RUNQ(td) &&
 1840                             !TD_IS_RUNNING(td) &&
 1841                             !TD_IS_SLEEPING(td) &&
 1842                             !TD_IS_SUSPENDED(td) &&
 1843                             !TD_IS_SWAPPED(td)) {
 1844                                 thread_unlock(td);
 1845                                 breakout = 1;
 1846                                 break;
 1847                         }
 1848                         thread_unlock(td);
 1849                 }
 1850                 if (breakout) {
 1851                         PROC_UNLOCK(p);
 1852                         continue;
 1853                 }
 1854                 /*
 1855                  * get the process size
 1856                  */
 1857                 vm = vmspace_acquire_ref(p);
 1858                 if (vm == NULL) {
 1859                         PROC_UNLOCK(p);
 1860                         continue;
 1861                 }
 1862                 _PHOLD_LITE(p);
 1863                 PROC_UNLOCK(p);
 1864                 sx_sunlock(&allproc_lock);
 1865                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1866                         vmspace_free(vm);
 1867                         sx_slock(&allproc_lock);
 1868                         PRELE(p);
 1869                         continue;
 1870                 }
 1871                 size = vmspace_swap_count(vm);
 1872                 if (shortage == VM_OOM_MEM)
 1873                         size += vm_pageout_oom_pagecount(vm);
 1874                 vm_map_unlock_read(&vm->vm_map);
 1875                 vmspace_free(vm);
 1876                 sx_slock(&allproc_lock);
 1877 
 1878                 /*
 1879                  * If this process is bigger than the biggest one,
 1880                  * remember it.
 1881                  */
 1882                 if (size > bigsize) {
 1883                         if (bigproc != NULL)
 1884                                 PRELE(bigproc);
 1885                         bigproc = p;
 1886                         bigsize = size;
 1887                 } else {
 1888                         PRELE(p);
 1889                 }
 1890         }
 1891         sx_sunlock(&allproc_lock);
 1892         if (bigproc != NULL) {
 1893                 if (vm_panic_on_oom != 0)
 1894                         panic("out of swap space");
 1895                 PROC_LOCK(bigproc);
 1896                 killproc(bigproc, "out of swap space");
 1897                 sched_nice(bigproc, PRIO_MIN);
 1898                 _PRELE(bigproc);
 1899                 PROC_UNLOCK(bigproc);
 1900                 wakeup(&vm_cnt.v_free_count);
 1901         }
 1902 }
 1903 
 1904 static void
 1905 vm_pageout_worker(void *arg)
 1906 {
 1907         struct vm_domain *domain;
 1908         int domidx, pass;
 1909         bool target_met;
 1910 
 1911         domidx = (uintptr_t)arg;
 1912         domain = &vm_dom[domidx];
 1913         pass = 0;
 1914         target_met = true;
 1915 
 1916         /*
 1917          * XXXKIB It could be useful to bind pageout daemon threads to
 1918          * the cores belonging to the domain, from which vm_page_array
 1919          * is allocated.
 1920          */
 1921 
 1922         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
 1923         domain->vmd_last_active_scan = ticks;
 1924         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
 1925         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
 1926         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
 1927             &domain->vmd_inacthead, plinks.q);
 1928 
 1929         /*
 1930          * The pageout daemon worker is never done, so loop forever.
 1931          */
 1932         while (TRUE) {
 1933                 mtx_lock(&vm_page_queue_free_mtx);
 1934 
 1935                 /*
 1936                  * Generally, after a level >= 1 scan, if there are enough
 1937                  * free pages to wakeup the waiters, then they are already
 1938                  * awake.  A call to vm_page_free() during the scan awakened
 1939                  * them.  However, in the following case, this wakeup serves
 1940                  * to bound the amount of time that a thread might wait.
 1941                  * Suppose a thread's call to vm_page_alloc() fails, but
 1942                  * before that thread calls VM_WAIT, enough pages are freed by
 1943                  * other threads to alleviate the free page shortage.  The
 1944                  * thread will, nonetheless, wait until another page is freed
 1945                  * or this wakeup is performed.
 1946                  */
 1947                 if (vm_pages_needed && !vm_page_count_min()) {
 1948                         vm_pages_needed = false;
 1949                         wakeup(&vm_cnt.v_free_count);
 1950                 }
 1951 
 1952                 /*
 1953                  * Do not clear vm_pageout_wanted until we reach our free page
 1954                  * target.  Otherwise, we may be awakened over and over again,
 1955                  * wasting CPU time.
 1956                  */
 1957                 if (vm_pageout_wanted && target_met)
 1958                         vm_pageout_wanted = false;
 1959 
 1960                 /*
 1961                  * Might the page daemon receive a wakeup call?
 1962                  */
 1963                 if (vm_pageout_wanted) {
 1964                         /*
 1965                          * No.  Either vm_pageout_wanted was set by another
 1966                          * thread during the previous scan, which must have
 1967                          * been a level 0 scan, or vm_pageout_wanted was
 1968                          * already set and the scan failed to free enough
 1969                          * pages.  If we haven't yet performed a level >= 1
 1970                          * (page reclamation) scan, then increase the level
 1971                          * and scan again now.  Otherwise, sleep a bit and
 1972                          * try again later.
 1973                          */
 1974                         mtx_unlock(&vm_page_queue_free_mtx);
 1975                         if (pass >= 1)
 1976                                 pause("psleep", hz / VM_INACT_SCAN_RATE);
 1977                         pass++;
 1978                 } else {
 1979                         /*
 1980                          * Yes.  Sleep until pages need to be reclaimed or
 1981                          * have their reference stats updated.
 1982                          */
 1983                         if (mtx_sleep(&vm_pageout_wanted,
 1984                             &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
 1985                             hz) == 0) {
 1986                                 PCPU_INC(cnt.v_pdwakeups);
 1987                                 pass = 1;
 1988                         } else
 1989                                 pass = 0;
 1990                 }
 1991 
 1992                 target_met = vm_pageout_scan(domain, pass);
 1993         }
 1994 }
 1995 
 1996 /*
 1997  *      vm_pageout_init initialises basic pageout daemon settings.
 1998  */
 1999 static void
 2000 vm_pageout_init(void)
 2001 {
 2002         /*
 2003          * Initialize some paging parameters.
 2004          */
 2005         vm_cnt.v_interrupt_free_min = 2;
 2006         if (vm_cnt.v_page_count < 2000)
 2007                 vm_pageout_page_count = 8;
 2008 
 2009         /*
 2010          * v_free_reserved needs to include enough for the largest
 2011          * swap pager structures plus enough for any pv_entry structs
 2012          * when paging. 
 2013          */
 2014         if (vm_cnt.v_page_count > 1024)
 2015                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
 2016         else
 2017                 vm_cnt.v_free_min = 4;
 2018         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 2019             vm_cnt.v_interrupt_free_min;
 2020         vm_cnt.v_free_reserved = vm_pageout_page_count +
 2021             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
 2022         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
 2023         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
 2024         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
 2025         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
 2026         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
 2027         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
 2028                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
 2029 
 2030         /*
 2031          * Set the default wakeup threshold to be 10% above the minimum
 2032          * page limit.  This keeps the steady state out of shortfall.
 2033          */
 2034         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
 2035 
 2036         /*
 2037          * Set interval in seconds for active scan.  We want to visit each
 2038          * page at least once every ten minutes.  This is to prevent worst
 2039          * case paging behaviors with stale active LRU.
 2040          */
 2041         if (vm_pageout_update_period == 0)
 2042                 vm_pageout_update_period = 600;
 2043 
 2044         /* XXX does not really belong here */
 2045         if (vm_page_max_wired == 0)
 2046                 vm_page_max_wired = vm_cnt.v_free_count / 3;
 2047 
 2048         /*
 2049          * Target amount of memory to move out of the laundry queue during a
 2050          * background laundering.  This is proportional to the amount of system
 2051          * memory.
 2052          */
 2053         vm_background_launder_target = (vm_cnt.v_free_target -
 2054             vm_cnt.v_free_min) / 10;
 2055 }
 2056 
 2057 /*
 2058  *     vm_pageout is the high level pageout daemon.
 2059  */
 2060 static void
 2061 vm_pageout(void)
 2062 {
 2063         int error;
 2064 #ifdef VM_NUMA_ALLOC
 2065         int i;
 2066 #endif
 2067 
 2068         swap_pager_swap_init();
 2069         error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
 2070             0, 0, "laundry: dom0");
 2071         if (error != 0)
 2072                 panic("starting laundry for domain 0, error %d", error);
 2073 #ifdef VM_NUMA_ALLOC
 2074         for (i = 1; i < vm_ndomains; i++) {
 2075                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
 2076                     curproc, NULL, 0, 0, "dom%d", i);
 2077                 if (error != 0) {
 2078                         panic("starting pageout for domain %d, error %d\n",
 2079                             i, error);
 2080                 }
 2081         }
 2082 #endif
 2083         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
 2084             0, 0, "uma");
 2085         if (error != 0)
 2086                 panic("starting uma_reclaim helper, error %d\n", error);
 2087         vm_pageout_worker((void *)(uintptr_t)0);
 2088 }
 2089 
 2090 /*
 2091  * Unless the free page queue lock is held by the caller, this function
 2092  * should be regarded as advisory.  Specifically, the caller should
 2093  * not msleep() on &vm_cnt.v_free_count following this function unless
 2094  * the free page queue lock is held until the msleep() is performed.
 2095  */
 2096 void
 2097 pagedaemon_wakeup(void)
 2098 {
 2099 
 2100         if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
 2101                 vm_pageout_wanted = true;
 2102                 wakeup(&vm_pageout_wanted);
 2103         }
 2104 }
 2105 
 2106 #if !defined(NO_SWAPPING)
 2107 static void
 2108 vm_req_vmdaemon(int req)
 2109 {
 2110         static int lastrun = 0;
 2111 
 2112         mtx_lock(&vm_daemon_mtx);
 2113         vm_pageout_req_swapout |= req;
 2114         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 2115                 wakeup(&vm_daemon_needed);
 2116                 lastrun = ticks;
 2117         }
 2118         mtx_unlock(&vm_daemon_mtx);
 2119 }
 2120 
 2121 static void
 2122 vm_daemon(void)
 2123 {
 2124         struct rlimit rsslim;
 2125         struct proc *p;
 2126         struct thread *td;
 2127         struct vmspace *vm;
 2128         int breakout, swapout_flags, tryagain, attempts;
 2129 #ifdef RACCT
 2130         uint64_t rsize, ravailable;
 2131 #endif
 2132 
 2133         while (TRUE) {
 2134                 mtx_lock(&vm_daemon_mtx);
 2135                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
 2136 #ifdef RACCT
 2137                     racct_enable ? hz : 0
 2138 #else
 2139                     0
 2140 #endif
 2141                 );
 2142                 swapout_flags = vm_pageout_req_swapout;
 2143                 vm_pageout_req_swapout = 0;
 2144                 mtx_unlock(&vm_daemon_mtx);
 2145                 if (swapout_flags)
 2146                         swapout_procs(swapout_flags);
 2147 
 2148                 /*
 2149                  * scan the processes for exceeding their rlimits or if
 2150                  * process is swapped out -- deactivate pages
 2151                  */
 2152                 tryagain = 0;
 2153                 attempts = 0;
 2154 again:
 2155                 attempts++;
 2156                 sx_slock(&allproc_lock);
 2157                 FOREACH_PROC_IN_SYSTEM(p) {
 2158                         vm_pindex_t limit, size;
 2159 
 2160                         /*
 2161                          * if this is a system process or if we have already
 2162                          * looked at this process, skip it.
 2163                          */
 2164                         PROC_LOCK(p);
 2165                         if (p->p_state != PRS_NORMAL ||
 2166                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
 2167                                 PROC_UNLOCK(p);
 2168                                 continue;
 2169                         }
 2170                         /*
 2171                          * if the process is in a non-running type state,
 2172                          * don't touch it.
 2173                          */
 2174                         breakout = 0;
 2175                         FOREACH_THREAD_IN_PROC(p, td) {
 2176                                 thread_lock(td);
 2177                                 if (!TD_ON_RUNQ(td) &&
 2178                                     !TD_IS_RUNNING(td) &&
 2179                                     !TD_IS_SLEEPING(td) &&
 2180                                     !TD_IS_SUSPENDED(td)) {
 2181                                         thread_unlock(td);
 2182                                         breakout = 1;
 2183                                         break;
 2184                                 }
 2185                                 thread_unlock(td);
 2186                         }
 2187                         if (breakout) {
 2188                                 PROC_UNLOCK(p);
 2189                                 continue;
 2190                         }
 2191                         /*
 2192                          * get a limit
 2193                          */
 2194                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
 2195                         limit = OFF_TO_IDX(
 2196                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 2197 
 2198                         /*
 2199                          * let processes that are swapped out really be
 2200                          * swapped out set the limit to nothing (will force a
 2201                          * swap-out.)
 2202                          */
 2203                         if ((p->p_flag & P_INMEM) == 0)
 2204                                 limit = 0;      /* XXX */
 2205                         vm = vmspace_acquire_ref(p);
 2206                         _PHOLD_LITE(p);
 2207                         PROC_UNLOCK(p);
 2208                         if (vm == NULL) {
 2209                                 PRELE(p);
 2210                                 continue;
 2211                         }
 2212                         sx_sunlock(&allproc_lock);
 2213 
 2214                         size = vmspace_resident_count(vm);
 2215                         if (size >= limit) {
 2216                                 vm_pageout_map_deactivate_pages(
 2217                                     &vm->vm_map, limit);
 2218                                 size = vmspace_resident_count(vm);
 2219                         }
 2220 #ifdef RACCT
 2221                         if (racct_enable) {
 2222                                 rsize = IDX_TO_OFF(size);
 2223                                 PROC_LOCK(p);
 2224                                 if (p->p_state == PRS_NORMAL)
 2225                                         racct_set(p, RACCT_RSS, rsize);
 2226                                 ravailable = racct_get_available(p, RACCT_RSS);
 2227                                 PROC_UNLOCK(p);
 2228                                 if (rsize > ravailable) {
 2229                                         /*
 2230                                          * Don't be overly aggressive; this
 2231                                          * might be an innocent process,
 2232                                          * and the limit could've been exceeded
 2233                                          * by some memory hog.  Don't try
 2234                                          * to deactivate more than 1/4th
 2235                                          * of process' resident set size.
 2236                                          */
 2237                                         if (attempts <= 8) {
 2238                                                 if (ravailable < rsize -
 2239                                                     (rsize / 4)) {
 2240                                                         ravailable = rsize -
 2241                                                             (rsize / 4);
 2242                                                 }
 2243                                         }
 2244                                         vm_pageout_map_deactivate_pages(
 2245                                             &vm->vm_map,
 2246                                             OFF_TO_IDX(ravailable));
 2247                                         /* Update RSS usage after paging out. */
 2248                                         size = vmspace_resident_count(vm);
 2249                                         rsize = IDX_TO_OFF(size);
 2250                                         PROC_LOCK(p);
 2251                                         if (p->p_state == PRS_NORMAL)
 2252                                                 racct_set(p, RACCT_RSS, rsize);
 2253                                         PROC_UNLOCK(p);
 2254                                         if (rsize > ravailable)
 2255                                                 tryagain = 1;
 2256                                 }
 2257                         }
 2258 #endif
 2259                         vmspace_free(vm);
 2260                         sx_slock(&allproc_lock);
 2261                         PRELE(p);
 2262                 }
 2263                 sx_sunlock(&allproc_lock);
 2264                 if (tryagain != 0 && attempts <= 10)
 2265                         goto again;
 2266         }
 2267 }
 2268 #endif                  /* !defined(NO_SWAPPING) */

Cache object: 27fa028620520cff773d63119c7a4e0d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.