FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2005 Yahoo! Technologies Norway AS
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
45 *
46 *
47 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48 * All rights reserved.
49 *
50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 /*
74 * The proverbial page-out daemon.
75 */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 /*
120 * System initialization
121 */
122
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129 int starting_page_shortage);
130
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132 NULL);
133
134 struct proc *pageproc;
135
136 static struct kproc_desc page_kp = {
137 "pagedaemon",
138 vm_pageout,
139 &pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142 &page_kp);
143
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define VM_LAUNDER_RATE 10
149 #define VM_INACT_SCAN_RATE 10
150
151 static int vm_pageout_oom_seq = 12;
152
153 static int vm_pageout_update_period;
154 static int disable_swap_pageouts;
155 static int lowmem_period = 10;
156 static int swapdev_enabled;
157
158 static int vm_panic_on_oom = 0;
159
160 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
161 CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
162 "Panic on the given number of out-of-memory errors instead of killing the largest process");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
165 CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
166 "Maximum active LRU update period");
167
168 static int pageout_cpus_per_thread = 16;
169 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
170 &pageout_cpus_per_thread, 0,
171 "Number of CPUs per pagedaemon worker thread");
172
173 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
174 "Low memory callback period");
175
176 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
177 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
178
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
182
183 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
184 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
185 "back-to-back calls to oom detector to start OOM");
186
187 static int act_scan_laundry_weight = 3;
188 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
189 &act_scan_laundry_weight, 0,
190 "weight given to clean vs. dirty pages in active queue scans");
191
192 static u_int vm_background_launder_rate = 4096;
193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
194 &vm_background_launder_rate, 0,
195 "background laundering rate, in kilobytes per second");
196
197 static u_int vm_background_launder_max = 20 * 1024;
198 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
199 &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
200
201 int vm_pageout_page_count = 32;
202
203 u_long vm_page_max_user_wired;
204 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
205 &vm_page_max_user_wired, 0,
206 "system-wide limit to user-wired page count");
207
208 static u_int isqrt(u_int num);
209 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
210 bool in_shortfall);
211 static void vm_pageout_laundry_worker(void *arg);
212
213 struct scan_state {
214 struct vm_batchqueue bq;
215 struct vm_pagequeue *pq;
216 vm_page_t marker;
217 int maxscan;
218 int scanned;
219 };
220
221 static void
222 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
223 vm_page_t marker, vm_page_t after, int maxscan)
224 {
225
226 vm_pagequeue_assert_locked(pq);
227 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
228 ("marker %p already enqueued", marker));
229
230 if (after == NULL)
231 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
232 else
233 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
234 vm_page_aflag_set(marker, PGA_ENQUEUED);
235
236 vm_batchqueue_init(&ss->bq);
237 ss->pq = pq;
238 ss->marker = marker;
239 ss->maxscan = maxscan;
240 ss->scanned = 0;
241 vm_pagequeue_unlock(pq);
242 }
243
244 static void
245 vm_pageout_end_scan(struct scan_state *ss)
246 {
247 struct vm_pagequeue *pq;
248
249 pq = ss->pq;
250 vm_pagequeue_assert_locked(pq);
251 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
252 ("marker %p not enqueued", ss->marker));
253
254 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
255 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
256 pq->pq_pdpages += ss->scanned;
257 }
258
259 /*
260 * Add a small number of queued pages to a batch queue for later processing
261 * without the corresponding queue lock held. The caller must have enqueued a
262 * marker page at the desired start point for the scan. Pages will be
263 * physically dequeued if the caller so requests. Otherwise, the returned
264 * batch may contain marker pages, and it is up to the caller to handle them.
265 *
266 * When processing the batch queue, vm_pageout_defer() must be used to
267 * determine whether the page has been logically dequeued since the batch was
268 * collected.
269 */
270 static __always_inline void
271 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
272 {
273 struct vm_pagequeue *pq;
274 vm_page_t m, marker, n;
275
276 marker = ss->marker;
277 pq = ss->pq;
278
279 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
280 ("marker %p not enqueued", ss->marker));
281
282 vm_pagequeue_lock(pq);
283 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
284 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
285 m = n, ss->scanned++) {
286 n = TAILQ_NEXT(m, plinks.q);
287 if ((m->flags & PG_MARKER) == 0) {
288 KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
289 ("page %p not enqueued", m));
290 KASSERT((m->flags & PG_FICTITIOUS) == 0,
291 ("Fictitious page %p cannot be in page queue", m));
292 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
293 ("Unmanaged page %p cannot be in page queue", m));
294 } else if (dequeue)
295 continue;
296
297 (void)vm_batchqueue_insert(&ss->bq, m);
298 if (dequeue) {
299 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
300 vm_page_aflag_clear(m, PGA_ENQUEUED);
301 }
302 }
303 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
304 if (__predict_true(m != NULL))
305 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
306 else
307 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
308 if (dequeue)
309 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
310 vm_pagequeue_unlock(pq);
311 }
312
313 /*
314 * Return the next page to be scanned, or NULL if the scan is complete.
315 */
316 static __always_inline vm_page_t
317 vm_pageout_next(struct scan_state *ss, const bool dequeue)
318 {
319
320 if (ss->bq.bq_cnt == 0)
321 vm_pageout_collect_batch(ss, dequeue);
322 return (vm_batchqueue_pop(&ss->bq));
323 }
324
325 /*
326 * Determine whether processing of a page should be deferred and ensure that any
327 * outstanding queue operations are processed.
328 */
329 static __always_inline bool
330 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
331 {
332 vm_page_astate_t as;
333
334 as = vm_page_astate_load(m);
335 if (__predict_false(as.queue != queue ||
336 ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
337 return (true);
338 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
339 vm_page_pqbatch_submit(m, queue);
340 return (true);
341 }
342 return (false);
343 }
344
345 /*
346 * Scan for pages at adjacent offsets within the given page's object that are
347 * eligible for laundering, form a cluster of these pages and the given page,
348 * and launder that cluster.
349 */
350 static int
351 vm_pageout_cluster(vm_page_t m)
352 {
353 vm_object_t object;
354 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
355 vm_pindex_t pindex;
356 int ib, is, page_base, pageout_count;
357
358 object = m->object;
359 VM_OBJECT_ASSERT_WLOCKED(object);
360 pindex = m->pindex;
361
362 vm_page_assert_xbusied(m);
363
364 mc[vm_pageout_page_count] = pb = ps = m;
365 pageout_count = 1;
366 page_base = vm_pageout_page_count;
367 ib = 1;
368 is = 1;
369
370 /*
371 * We can cluster only if the page is not clean, busy, or held, and
372 * the page is in the laundry queue.
373 *
374 * During heavy mmap/modification loads the pageout
375 * daemon can really fragment the underlying file
376 * due to flushing pages out of order and not trying to
377 * align the clusters (which leaves sporadic out-of-order
378 * holes). To solve this problem we do the reverse scan
379 * first and attempt to align our cluster, then do a
380 * forward scan if room remains.
381 */
382 more:
383 while (ib != 0 && pageout_count < vm_pageout_page_count) {
384 if (ib > pindex) {
385 ib = 0;
386 break;
387 }
388 if ((p = vm_page_prev(pb)) == NULL ||
389 vm_page_tryxbusy(p) == 0) {
390 ib = 0;
391 break;
392 }
393 if (vm_page_wired(p)) {
394 ib = 0;
395 vm_page_xunbusy(p);
396 break;
397 }
398 vm_page_test_dirty(p);
399 if (p->dirty == 0) {
400 ib = 0;
401 vm_page_xunbusy(p);
402 break;
403 }
404 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
405 vm_page_xunbusy(p);
406 ib = 0;
407 break;
408 }
409 mc[--page_base] = pb = p;
410 ++pageout_count;
411 ++ib;
412
413 /*
414 * We are at an alignment boundary. Stop here, and switch
415 * directions. Do not clear ib.
416 */
417 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418 break;
419 }
420 while (pageout_count < vm_pageout_page_count &&
421 pindex + is < object->size) {
422 if ((p = vm_page_next(ps)) == NULL ||
423 vm_page_tryxbusy(p) == 0)
424 break;
425 if (vm_page_wired(p)) {
426 vm_page_xunbusy(p);
427 break;
428 }
429 vm_page_test_dirty(p);
430 if (p->dirty == 0) {
431 vm_page_xunbusy(p);
432 break;
433 }
434 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
435 vm_page_xunbusy(p);
436 break;
437 }
438 mc[page_base + pageout_count] = ps = p;
439 ++pageout_count;
440 ++is;
441 }
442
443 /*
444 * If we exhausted our forward scan, continue with the reverse scan
445 * when possible, even past an alignment boundary. This catches
446 * boundary conditions.
447 */
448 if (ib != 0 && pageout_count < vm_pageout_page_count)
449 goto more;
450
451 return (vm_pageout_flush(&mc[page_base], pageout_count,
452 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
453 }
454
455 /*
456 * vm_pageout_flush() - launder the given pages
457 *
458 * The given pages are laundered. Note that we setup for the start of
459 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
460 * reference count all in here rather then in the parent. If we want
461 * the parent to do more sophisticated things we may have to change
462 * the ordering.
463 *
464 * Returned runlen is the count of pages between mreq and first
465 * page after mreq with status VM_PAGER_AGAIN.
466 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
467 * for any page in runlen set.
468 */
469 int
470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
471 boolean_t *eio)
472 {
473 vm_object_t object = mc[0]->object;
474 int pageout_status[count];
475 int numpagedout = 0;
476 int i, runlen;
477
478 VM_OBJECT_ASSERT_WLOCKED(object);
479
480 /*
481 * Initiate I/O. Mark the pages shared busy and verify that they're
482 * valid and read-only.
483 *
484 * We do not have to fixup the clean/dirty bits here... we can
485 * allow the pager to do it after the I/O completes.
486 *
487 * NOTE! mc[i]->dirty may be partial or fragmented due to an
488 * edge case with file fragments.
489 */
490 for (i = 0; i < count; i++) {
491 KASSERT(vm_page_all_valid(mc[i]),
492 ("vm_pageout_flush: partially invalid page %p index %d/%d",
493 mc[i], i, count));
494 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
495 ("vm_pageout_flush: writeable page %p", mc[i]));
496 vm_page_busy_downgrade(mc[i]);
497 }
498 vm_object_pip_add(object, count);
499
500 vm_pager_put_pages(object, mc, count, flags, pageout_status);
501
502 runlen = count - mreq;
503 if (eio != NULL)
504 *eio = FALSE;
505 for (i = 0; i < count; i++) {
506 vm_page_t mt = mc[i];
507
508 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509 !pmap_page_is_write_mapped(mt),
510 ("vm_pageout_flush: page %p is not write protected", mt));
511 switch (pageout_status[i]) {
512 case VM_PAGER_OK:
513 /*
514 * The page may have moved since laundering started, in
515 * which case it should be left alone.
516 */
517 if (vm_page_in_laundry(mt))
518 vm_page_deactivate_noreuse(mt);
519 /* FALLTHROUGH */
520 case VM_PAGER_PEND:
521 numpagedout++;
522 break;
523 case VM_PAGER_BAD:
524 /*
525 * The page is outside the object's range. We pretend
526 * that the page out worked and clean the page, so the
527 * changes will be lost if the page is reclaimed by
528 * the page daemon.
529 */
530 vm_page_undirty(mt);
531 if (vm_page_in_laundry(mt))
532 vm_page_deactivate_noreuse(mt);
533 break;
534 case VM_PAGER_ERROR:
535 case VM_PAGER_FAIL:
536 /*
537 * If the page couldn't be paged out to swap because the
538 * pager wasn't able to find space, place the page in
539 * the PQ_UNSWAPPABLE holding queue. This is an
540 * optimization that prevents the page daemon from
541 * wasting CPU cycles on pages that cannot be reclaimed
542 * becase no swap device is configured.
543 *
544 * Otherwise, reactivate the page so that it doesn't
545 * clog the laundry and inactive queues. (We will try
546 * paging it out again later.)
547 */
548 if (object->type == OBJT_SWAP &&
549 pageout_status[i] == VM_PAGER_FAIL) {
550 vm_page_unswappable(mt);
551 numpagedout++;
552 } else
553 vm_page_activate(mt);
554 if (eio != NULL && i >= mreq && i - mreq < runlen)
555 *eio = TRUE;
556 break;
557 case VM_PAGER_AGAIN:
558 if (i >= mreq && i - mreq < runlen)
559 runlen = i - mreq;
560 break;
561 }
562
563 /*
564 * If the operation is still going, leave the page busy to
565 * block all other accesses. Also, leave the paging in
566 * progress indicator set so that we don't attempt an object
567 * collapse.
568 */
569 if (pageout_status[i] != VM_PAGER_PEND) {
570 vm_object_pip_wakeup(object);
571 vm_page_sunbusy(mt);
572 }
573 }
574 if (prunlen != NULL)
575 *prunlen = runlen;
576 return (numpagedout);
577 }
578
579 static void
580 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
581 {
582
583 atomic_store_rel_int(&swapdev_enabled, 1);
584 }
585
586 static void
587 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
588 {
589
590 if (swap_pager_nswapdev() == 1)
591 atomic_store_rel_int(&swapdev_enabled, 0);
592 }
593
594 /*
595 * Attempt to acquire all of the necessary locks to launder a page and
596 * then call through the clustering layer to PUTPAGES. Wait a short
597 * time for a vnode lock.
598 *
599 * Requires the page and object lock on entry, releases both before return.
600 * Returns 0 on success and an errno otherwise.
601 */
602 static int
603 vm_pageout_clean(vm_page_t m, int *numpagedout)
604 {
605 struct vnode *vp;
606 struct mount *mp;
607 vm_object_t object;
608 vm_pindex_t pindex;
609 int error, lockmode;
610
611 object = m->object;
612 VM_OBJECT_ASSERT_WLOCKED(object);
613 error = 0;
614 vp = NULL;
615 mp = NULL;
616
617 /*
618 * The object is already known NOT to be dead. It
619 * is possible for the vget() to block the whole
620 * pageout daemon, but the new low-memory handling
621 * code should prevent it.
622 *
623 * We can't wait forever for the vnode lock, we might
624 * deadlock due to a vn_read() getting stuck in
625 * vm_wait while holding this vnode. We skip the
626 * vnode if we can't get it in a reasonable amount
627 * of time.
628 */
629 if (object->type == OBJT_VNODE) {
630 vm_page_xunbusy(m);
631 vp = object->handle;
632 if (vp->v_type == VREG &&
633 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
634 mp = NULL;
635 error = EDEADLK;
636 goto unlock_all;
637 }
638 KASSERT(mp != NULL,
639 ("vp %p with NULL v_mount", vp));
640 vm_object_reference_locked(object);
641 pindex = m->pindex;
642 VM_OBJECT_WUNLOCK(object);
643 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
644 LK_SHARED : LK_EXCLUSIVE;
645 if (vget(vp, lockmode | LK_TIMELOCK)) {
646 vp = NULL;
647 error = EDEADLK;
648 goto unlock_mp;
649 }
650 VM_OBJECT_WLOCK(object);
651
652 /*
653 * Ensure that the object and vnode were not disassociated
654 * while locks were dropped.
655 */
656 if (vp->v_object != object) {
657 error = ENOENT;
658 goto unlock_all;
659 }
660
661 /*
662 * While the object was unlocked, the page may have been:
663 * (1) moved to a different queue,
664 * (2) reallocated to a different object,
665 * (3) reallocated to a different offset, or
666 * (4) cleaned.
667 */
668 if (!vm_page_in_laundry(m) || m->object != object ||
669 m->pindex != pindex || m->dirty == 0) {
670 error = ENXIO;
671 goto unlock_all;
672 }
673
674 /*
675 * The page may have been busied while the object lock was
676 * released.
677 */
678 if (vm_page_tryxbusy(m) == 0) {
679 error = EBUSY;
680 goto unlock_all;
681 }
682 }
683
684 /*
685 * Remove all writeable mappings, failing if the page is wired.
686 */
687 if (!vm_page_try_remove_write(m)) {
688 vm_page_xunbusy(m);
689 error = EBUSY;
690 goto unlock_all;
691 }
692
693 /*
694 * If a page is dirty, then it is either being washed
695 * (but not yet cleaned) or it is still in the
696 * laundry. If it is still in the laundry, then we
697 * start the cleaning operation.
698 */
699 if ((*numpagedout = vm_pageout_cluster(m)) == 0)
700 error = EIO;
701
702 unlock_all:
703 VM_OBJECT_WUNLOCK(object);
704
705 unlock_mp:
706 if (mp != NULL) {
707 if (vp != NULL)
708 vput(vp);
709 vm_object_deallocate(object);
710 vn_finished_write(mp);
711 }
712
713 return (error);
714 }
715
716 /*
717 * Attempt to launder the specified number of pages.
718 *
719 * Returns the number of pages successfully laundered.
720 */
721 static int
722 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
723 {
724 struct scan_state ss;
725 struct vm_pagequeue *pq;
726 vm_object_t object;
727 vm_page_t m, marker;
728 vm_page_astate_t new, old;
729 int act_delta, error, numpagedout, queue, refs, starting_target;
730 int vnodes_skipped;
731 bool pageout_ok;
732
733 object = NULL;
734 starting_target = launder;
735 vnodes_skipped = 0;
736
737 /*
738 * Scan the laundry queues for pages eligible to be laundered. We stop
739 * once the target number of dirty pages have been laundered, or once
740 * we've reached the end of the queue. A single iteration of this loop
741 * may cause more than one page to be laundered because of clustering.
742 *
743 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
744 * swap devices are configured.
745 */
746 if (atomic_load_acq_int(&swapdev_enabled))
747 queue = PQ_UNSWAPPABLE;
748 else
749 queue = PQ_LAUNDRY;
750
751 scan:
752 marker = &vmd->vmd_markers[queue];
753 pq = &vmd->vmd_pagequeues[queue];
754 vm_pagequeue_lock(pq);
755 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
756 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
757 if (__predict_false((m->flags & PG_MARKER) != 0))
758 continue;
759
760 /*
761 * Don't touch a page that was removed from the queue after the
762 * page queue lock was released. Otherwise, ensure that any
763 * pending queue operations, such as dequeues for wired pages,
764 * are handled.
765 */
766 if (vm_pageout_defer(m, queue, true))
767 continue;
768
769 /*
770 * Lock the page's object.
771 */
772 if (object == NULL || object != m->object) {
773 if (object != NULL)
774 VM_OBJECT_WUNLOCK(object);
775 object = atomic_load_ptr(&m->object);
776 if (__predict_false(object == NULL))
777 /* The page is being freed by another thread. */
778 continue;
779
780 /* Depends on type-stability. */
781 VM_OBJECT_WLOCK(object);
782 if (__predict_false(m->object != object)) {
783 VM_OBJECT_WUNLOCK(object);
784 object = NULL;
785 continue;
786 }
787 }
788
789 if (vm_page_tryxbusy(m) == 0)
790 continue;
791
792 /*
793 * Check for wirings now that we hold the object lock and have
794 * exclusively busied the page. If the page is mapped, it may
795 * still be wired by pmap lookups. The call to
796 * vm_page_try_remove_all() below atomically checks for such
797 * wirings and removes mappings. If the page is unmapped, the
798 * wire count is guaranteed not to increase after this check.
799 */
800 if (__predict_false(vm_page_wired(m)))
801 goto skip_page;
802
803 /*
804 * Invalid pages can be easily freed. They cannot be
805 * mapped; vm_page_free() asserts this.
806 */
807 if (vm_page_none_valid(m))
808 goto free_page;
809
810 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
811
812 for (old = vm_page_astate_load(m);;) {
813 /*
814 * Check to see if the page has been removed from the
815 * queue since the first such check. Leave it alone if
816 * so, discarding any references collected by
817 * pmap_ts_referenced().
818 */
819 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
820 goto skip_page;
821
822 new = old;
823 act_delta = refs;
824 if ((old.flags & PGA_REFERENCED) != 0) {
825 new.flags &= ~PGA_REFERENCED;
826 act_delta++;
827 }
828 if (act_delta == 0) {
829 ;
830 } else if (object->ref_count != 0) {
831 /*
832 * Increase the activation count if the page was
833 * referenced while in the laundry queue. This
834 * makes it less likely that the page will be
835 * returned prematurely to the laundry queue.
836 */
837 new.act_count += ACT_ADVANCE +
838 act_delta;
839 if (new.act_count > ACT_MAX)
840 new.act_count = ACT_MAX;
841
842 new.flags &= ~PGA_QUEUE_OP_MASK;
843 new.flags |= PGA_REQUEUE;
844 new.queue = PQ_ACTIVE;
845 if (!vm_page_pqstate_commit(m, &old, new))
846 continue;
847
848 /*
849 * If this was a background laundering, count
850 * activated pages towards our target. The
851 * purpose of background laundering is to ensure
852 * that pages are eventually cycled through the
853 * laundry queue, and an activation is a valid
854 * way out.
855 */
856 if (!in_shortfall)
857 launder--;
858 VM_CNT_INC(v_reactivated);
859 goto skip_page;
860 } else if ((object->flags & OBJ_DEAD) == 0) {
861 new.flags |= PGA_REQUEUE;
862 if (!vm_page_pqstate_commit(m, &old, new))
863 continue;
864 goto skip_page;
865 }
866 break;
867 }
868
869 /*
870 * If the page appears to be clean at the machine-independent
871 * layer, then remove all of its mappings from the pmap in
872 * anticipation of freeing it. If, however, any of the page's
873 * mappings allow write access, then the page may still be
874 * modified until the last of those mappings are removed.
875 */
876 if (object->ref_count != 0) {
877 vm_page_test_dirty(m);
878 if (m->dirty == 0 && !vm_page_try_remove_all(m))
879 goto skip_page;
880 }
881
882 /*
883 * Clean pages are freed, and dirty pages are paged out unless
884 * they belong to a dead object. Requeueing dirty pages from
885 * dead objects is pointless, as they are being paged out and
886 * freed by the thread that destroyed the object.
887 */
888 if (m->dirty == 0) {
889 free_page:
890 /*
891 * Now we are guaranteed that no other threads are
892 * manipulating the page, check for a last-second
893 * reference.
894 */
895 if (vm_pageout_defer(m, queue, true))
896 goto skip_page;
897 vm_page_free(m);
898 VM_CNT_INC(v_dfree);
899 } else if ((object->flags & OBJ_DEAD) == 0) {
900 if (object->type != OBJT_SWAP &&
901 object->type != OBJT_DEFAULT)
902 pageout_ok = true;
903 else if (disable_swap_pageouts)
904 pageout_ok = false;
905 else
906 pageout_ok = true;
907 if (!pageout_ok) {
908 vm_page_launder(m);
909 goto skip_page;
910 }
911
912 /*
913 * Form a cluster with adjacent, dirty pages from the
914 * same object, and page out that entire cluster.
915 *
916 * The adjacent, dirty pages must also be in the
917 * laundry. However, their mappings are not checked
918 * for new references. Consequently, a recently
919 * referenced page may be paged out. However, that
920 * page will not be prematurely reclaimed. After page
921 * out, the page will be placed in the inactive queue,
922 * where any new references will be detected and the
923 * page reactivated.
924 */
925 error = vm_pageout_clean(m, &numpagedout);
926 if (error == 0) {
927 launder -= numpagedout;
928 ss.scanned += numpagedout;
929 } else if (error == EDEADLK) {
930 pageout_lock_miss++;
931 vnodes_skipped++;
932 }
933 object = NULL;
934 } else {
935 skip_page:
936 vm_page_xunbusy(m);
937 }
938 }
939 if (object != NULL) {
940 VM_OBJECT_WUNLOCK(object);
941 object = NULL;
942 }
943 vm_pagequeue_lock(pq);
944 vm_pageout_end_scan(&ss);
945 vm_pagequeue_unlock(pq);
946
947 if (launder > 0 && queue == PQ_UNSWAPPABLE) {
948 queue = PQ_LAUNDRY;
949 goto scan;
950 }
951
952 /*
953 * Wakeup the sync daemon if we skipped a vnode in a writeable object
954 * and we didn't launder enough pages.
955 */
956 if (vnodes_skipped > 0 && launder > 0)
957 (void)speedup_syncer();
958
959 return (starting_target - launder);
960 }
961
962 /*
963 * Compute the integer square root.
964 */
965 static u_int
966 isqrt(u_int num)
967 {
968 u_int bit, root, tmp;
969
970 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
971 root = 0;
972 while (bit != 0) {
973 tmp = root + bit;
974 root >>= 1;
975 if (num >= tmp) {
976 num -= tmp;
977 root += bit;
978 }
979 bit >>= 2;
980 }
981 return (root);
982 }
983
984 /*
985 * Perform the work of the laundry thread: periodically wake up and determine
986 * whether any pages need to be laundered. If so, determine the number of pages
987 * that need to be laundered, and launder them.
988 */
989 static void
990 vm_pageout_laundry_worker(void *arg)
991 {
992 struct vm_domain *vmd;
993 struct vm_pagequeue *pq;
994 uint64_t nclean, ndirty, nfreed;
995 int domain, last_target, launder, shortfall, shortfall_cycle, target;
996 bool in_shortfall;
997
998 domain = (uintptr_t)arg;
999 vmd = VM_DOMAIN(domain);
1000 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1001 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1002
1003 shortfall = 0;
1004 in_shortfall = false;
1005 shortfall_cycle = 0;
1006 last_target = target = 0;
1007 nfreed = 0;
1008
1009 /*
1010 * Calls to these handlers are serialized by the swap syscall lock.
1011 */
1012 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1013 EVENTHANDLER_PRI_ANY);
1014 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1015 EVENTHANDLER_PRI_ANY);
1016
1017 /*
1018 * The pageout laundry worker is never done, so loop forever.
1019 */
1020 for (;;) {
1021 KASSERT(target >= 0, ("negative target %d", target));
1022 KASSERT(shortfall_cycle >= 0,
1023 ("negative cycle %d", shortfall_cycle));
1024 launder = 0;
1025
1026 /*
1027 * First determine whether we need to launder pages to meet a
1028 * shortage of free pages.
1029 */
1030 if (shortfall > 0) {
1031 in_shortfall = true;
1032 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1033 target = shortfall;
1034 } else if (!in_shortfall)
1035 goto trybackground;
1036 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1037 /*
1038 * We recently entered shortfall and began laundering
1039 * pages. If we have completed that laundering run
1040 * (and we are no longer in shortfall) or we have met
1041 * our laundry target through other activity, then we
1042 * can stop laundering pages.
1043 */
1044 in_shortfall = false;
1045 target = 0;
1046 goto trybackground;
1047 }
1048 launder = target / shortfall_cycle--;
1049 goto dolaundry;
1050
1051 /*
1052 * There's no immediate need to launder any pages; see if we
1053 * meet the conditions to perform background laundering:
1054 *
1055 * 1. The ratio of dirty to clean inactive pages exceeds the
1056 * background laundering threshold, or
1057 * 2. we haven't yet reached the target of the current
1058 * background laundering run.
1059 *
1060 * The background laundering threshold is not a constant.
1061 * Instead, it is a slowly growing function of the number of
1062 * clean pages freed by the page daemon since the last
1063 * background laundering. Thus, as the ratio of dirty to
1064 * clean inactive pages grows, the amount of memory pressure
1065 * required to trigger laundering decreases. We ensure
1066 * that the threshold is non-zero after an inactive queue
1067 * scan, even if that scan failed to free a single clean page.
1068 */
1069 trybackground:
1070 nclean = vmd->vmd_free_count +
1071 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1072 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1073 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1074 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1075 target = vmd->vmd_background_launder_target;
1076 }
1077
1078 /*
1079 * We have a non-zero background laundering target. If we've
1080 * laundered up to our maximum without observing a page daemon
1081 * request, just stop. This is a safety belt that ensures we
1082 * don't launder an excessive amount if memory pressure is low
1083 * and the ratio of dirty to clean pages is large. Otherwise,
1084 * proceed at the background laundering rate.
1085 */
1086 if (target > 0) {
1087 if (nfreed > 0) {
1088 nfreed = 0;
1089 last_target = target;
1090 } else if (last_target - target >=
1091 vm_background_launder_max * PAGE_SIZE / 1024) {
1092 target = 0;
1093 }
1094 launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1095 launder /= VM_LAUNDER_RATE;
1096 if (launder > target)
1097 launder = target;
1098 }
1099
1100 dolaundry:
1101 if (launder > 0) {
1102 /*
1103 * Because of I/O clustering, the number of laundered
1104 * pages could exceed "target" by the maximum size of
1105 * a cluster minus one.
1106 */
1107 target -= min(vm_pageout_launder(vmd, launder,
1108 in_shortfall), target);
1109 pause("laundp", hz / VM_LAUNDER_RATE);
1110 }
1111
1112 /*
1113 * If we're not currently laundering pages and the page daemon
1114 * hasn't posted a new request, sleep until the page daemon
1115 * kicks us.
1116 */
1117 vm_pagequeue_lock(pq);
1118 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1119 (void)mtx_sleep(&vmd->vmd_laundry_request,
1120 vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1121
1122 /*
1123 * If the pagedaemon has indicated that it's in shortfall, start
1124 * a shortfall laundering unless we're already in the middle of
1125 * one. This may preempt a background laundering.
1126 */
1127 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1128 (!in_shortfall || shortfall_cycle == 0)) {
1129 shortfall = vm_laundry_target(vmd) +
1130 vmd->vmd_pageout_deficit;
1131 target = 0;
1132 } else
1133 shortfall = 0;
1134
1135 if (target == 0)
1136 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1137 nfreed += vmd->vmd_clean_pages_freed;
1138 vmd->vmd_clean_pages_freed = 0;
1139 vm_pagequeue_unlock(pq);
1140 }
1141 }
1142
1143 /*
1144 * Compute the number of pages we want to try to move from the
1145 * active queue to either the inactive or laundry queue.
1146 *
1147 * When scanning active pages during a shortage, we make clean pages
1148 * count more heavily towards the page shortage than dirty pages.
1149 * This is because dirty pages must be laundered before they can be
1150 * reused and thus have less utility when attempting to quickly
1151 * alleviate a free page shortage. However, this weighting also
1152 * causes the scan to deactivate dirty pages more aggressively,
1153 * improving the effectiveness of clustering.
1154 */
1155 static int
1156 vm_pageout_active_target(struct vm_domain *vmd)
1157 {
1158 int shortage;
1159
1160 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1161 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1162 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1163 shortage *= act_scan_laundry_weight;
1164 return (shortage);
1165 }
1166
1167 /*
1168 * Scan the active queue. If there is no shortage of inactive pages, scan a
1169 * small portion of the queue in order to maintain quasi-LRU.
1170 */
1171 static void
1172 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1173 {
1174 struct scan_state ss;
1175 vm_object_t object;
1176 vm_page_t m, marker;
1177 struct vm_pagequeue *pq;
1178 vm_page_astate_t old, new;
1179 long min_scan;
1180 int act_delta, max_scan, ps_delta, refs, scan_tick;
1181 uint8_t nqueue;
1182
1183 marker = &vmd->vmd_markers[PQ_ACTIVE];
1184 pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1185 vm_pagequeue_lock(pq);
1186
1187 /*
1188 * If we're just idle polling attempt to visit every
1189 * active page within 'update_period' seconds.
1190 */
1191 scan_tick = ticks;
1192 if (vm_pageout_update_period != 0) {
1193 min_scan = pq->pq_cnt;
1194 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1195 min_scan /= hz * vm_pageout_update_period;
1196 } else
1197 min_scan = 0;
1198 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1199 vmd->vmd_last_active_scan = scan_tick;
1200
1201 /*
1202 * Scan the active queue for pages that can be deactivated. Update
1203 * the per-page activity counter and use it to identify deactivation
1204 * candidates. Held pages may be deactivated.
1205 *
1206 * To avoid requeuing each page that remains in the active queue, we
1207 * implement the CLOCK algorithm. To keep the implementation of the
1208 * enqueue operation consistent for all page queues, we use two hands,
1209 * represented by marker pages. Scans begin at the first hand, which
1210 * precedes the second hand in the queue. When the two hands meet,
1211 * they are moved back to the head and tail of the queue, respectively,
1212 * and scanning resumes.
1213 */
1214 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1215 act_scan:
1216 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1217 while ((m = vm_pageout_next(&ss, false)) != NULL) {
1218 if (__predict_false(m == &vmd->vmd_clock[1])) {
1219 vm_pagequeue_lock(pq);
1220 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1221 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1222 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1223 plinks.q);
1224 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1225 plinks.q);
1226 max_scan -= ss.scanned;
1227 vm_pageout_end_scan(&ss);
1228 goto act_scan;
1229 }
1230 if (__predict_false((m->flags & PG_MARKER) != 0))
1231 continue;
1232
1233 /*
1234 * Don't touch a page that was removed from the queue after the
1235 * page queue lock was released. Otherwise, ensure that any
1236 * pending queue operations, such as dequeues for wired pages,
1237 * are handled.
1238 */
1239 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1240 continue;
1241
1242 /*
1243 * A page's object pointer may be set to NULL before
1244 * the object lock is acquired.
1245 */
1246 object = atomic_load_ptr(&m->object);
1247 if (__predict_false(object == NULL))
1248 /*
1249 * The page has been removed from its object.
1250 */
1251 continue;
1252
1253 /* Deferred free of swap space. */
1254 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1255 VM_OBJECT_TRYWLOCK(object)) {
1256 if (m->object == object)
1257 vm_pager_page_unswapped(m);
1258 VM_OBJECT_WUNLOCK(object);
1259 }
1260
1261 /*
1262 * Check to see "how much" the page has been used.
1263 *
1264 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1265 * that a reference from a concurrently destroyed mapping is
1266 * observed here and now.
1267 *
1268 * Perform an unsynchronized object ref count check. While
1269 * the page lock ensures that the page is not reallocated to
1270 * another object, in particular, one with unmanaged mappings
1271 * that cannot support pmap_ts_referenced(), two races are,
1272 * nonetheless, possible:
1273 * 1) The count was transitioning to zero, but we saw a non-
1274 * zero value. pmap_ts_referenced() will return zero
1275 * because the page is not mapped.
1276 * 2) The count was transitioning to one, but we saw zero.
1277 * This race delays the detection of a new reference. At
1278 * worst, we will deactivate and reactivate the page.
1279 */
1280 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1281
1282 old = vm_page_astate_load(m);
1283 do {
1284 /*
1285 * Check to see if the page has been removed from the
1286 * queue since the first such check. Leave it alone if
1287 * so, discarding any references collected by
1288 * pmap_ts_referenced().
1289 */
1290 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1291 ps_delta = 0;
1292 break;
1293 }
1294
1295 /*
1296 * Advance or decay the act_count based on recent usage.
1297 */
1298 new = old;
1299 act_delta = refs;
1300 if ((old.flags & PGA_REFERENCED) != 0) {
1301 new.flags &= ~PGA_REFERENCED;
1302 act_delta++;
1303 }
1304 if (act_delta != 0) {
1305 new.act_count += ACT_ADVANCE + act_delta;
1306 if (new.act_count > ACT_MAX)
1307 new.act_count = ACT_MAX;
1308 } else {
1309 new.act_count -= min(new.act_count,
1310 ACT_DECLINE);
1311 }
1312
1313 if (new.act_count > 0) {
1314 /*
1315 * Adjust the activation count and keep the page
1316 * in the active queue. The count might be left
1317 * unchanged if it is saturated. The page may
1318 * have been moved to a different queue since we
1319 * started the scan, in which case we move it
1320 * back.
1321 */
1322 ps_delta = 0;
1323 if (old.queue != PQ_ACTIVE) {
1324 new.flags &= ~PGA_QUEUE_OP_MASK;
1325 new.flags |= PGA_REQUEUE;
1326 new.queue = PQ_ACTIVE;
1327 }
1328 } else {
1329 /*
1330 * When not short for inactive pages, let dirty
1331 * pages go through the inactive queue before
1332 * moving to the laundry queue. This gives them
1333 * some extra time to be reactivated,
1334 * potentially avoiding an expensive pageout.
1335 * However, during a page shortage, the inactive
1336 * queue is necessarily small, and so dirty
1337 * pages would only spend a trivial amount of
1338 * time in the inactive queue. Therefore, we
1339 * might as well place them directly in the
1340 * laundry queue to reduce queuing overhead.
1341 *
1342 * Calling vm_page_test_dirty() here would
1343 * require acquisition of the object's write
1344 * lock. However, during a page shortage,
1345 * directing dirty pages into the laundry queue
1346 * is only an optimization and not a
1347 * requirement. Therefore, we simply rely on
1348 * the opportunistic updates to the page's dirty
1349 * field by the pmap.
1350 */
1351 if (page_shortage <= 0) {
1352 nqueue = PQ_INACTIVE;
1353 ps_delta = 0;
1354 } else if (m->dirty == 0) {
1355 nqueue = PQ_INACTIVE;
1356 ps_delta = act_scan_laundry_weight;
1357 } else {
1358 nqueue = PQ_LAUNDRY;
1359 ps_delta = 1;
1360 }
1361
1362 new.flags &= ~PGA_QUEUE_OP_MASK;
1363 new.flags |= PGA_REQUEUE;
1364 new.queue = nqueue;
1365 }
1366 } while (!vm_page_pqstate_commit(m, &old, new));
1367
1368 page_shortage -= ps_delta;
1369 }
1370 vm_pagequeue_lock(pq);
1371 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1372 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1373 vm_pageout_end_scan(&ss);
1374 vm_pagequeue_unlock(pq);
1375 }
1376
1377 static int
1378 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1379 vm_page_t m)
1380 {
1381 vm_page_astate_t as;
1382
1383 vm_pagequeue_assert_locked(pq);
1384
1385 as = vm_page_astate_load(m);
1386 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1387 return (0);
1388 vm_page_aflag_set(m, PGA_ENQUEUED);
1389 TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1390 return (1);
1391 }
1392
1393 /*
1394 * Re-add stuck pages to the inactive queue. We will examine them again
1395 * during the next scan. If the queue state of a page has changed since
1396 * it was physically removed from the page queue in
1397 * vm_pageout_collect_batch(), don't do anything with that page.
1398 */
1399 static void
1400 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1401 vm_page_t m)
1402 {
1403 struct vm_pagequeue *pq;
1404 vm_page_t marker;
1405 int delta;
1406
1407 delta = 0;
1408 marker = ss->marker;
1409 pq = ss->pq;
1410
1411 if (m != NULL) {
1412 if (vm_batchqueue_insert(bq, m))
1413 return;
1414 vm_pagequeue_lock(pq);
1415 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1416 } else
1417 vm_pagequeue_lock(pq);
1418 while ((m = vm_batchqueue_pop(bq)) != NULL)
1419 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1420 vm_pagequeue_cnt_add(pq, delta);
1421 vm_pagequeue_unlock(pq);
1422 vm_batchqueue_init(bq);
1423 }
1424
1425 static void
1426 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1427 {
1428 struct timeval start, end;
1429 struct scan_state ss;
1430 struct vm_batchqueue rq;
1431 struct vm_page marker_page;
1432 vm_page_t m, marker;
1433 struct vm_pagequeue *pq;
1434 vm_object_t object;
1435 vm_page_astate_t old, new;
1436 int act_delta, addl_page_shortage, starting_page_shortage, refs;
1437
1438 object = NULL;
1439 vm_batchqueue_init(&rq);
1440 getmicrouptime(&start);
1441
1442 /*
1443 * The addl_page_shortage is an estimate of the number of temporarily
1444 * stuck pages in the inactive queue. In other words, the
1445 * number of pages from the inactive count that should be
1446 * discounted in setting the target for the active queue scan.
1447 */
1448 addl_page_shortage = 0;
1449
1450 /*
1451 * Start scanning the inactive queue for pages that we can free. The
1452 * scan will stop when we reach the target or we have scanned the
1453 * entire queue. (Note that m->a.act_count is not used to make
1454 * decisions for the inactive queue, only for the active queue.)
1455 */
1456 starting_page_shortage = page_shortage;
1457 marker = &marker_page;
1458 vm_page_init_marker(marker, PQ_INACTIVE, 0);
1459 pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1460 vm_pagequeue_lock(pq);
1461 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1462 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1463 KASSERT((m->flags & PG_MARKER) == 0,
1464 ("marker page %p was dequeued", m));
1465
1466 /*
1467 * Don't touch a page that was removed from the queue after the
1468 * page queue lock was released. Otherwise, ensure that any
1469 * pending queue operations, such as dequeues for wired pages,
1470 * are handled.
1471 */
1472 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1473 continue;
1474
1475 /*
1476 * Lock the page's object.
1477 */
1478 if (object == NULL || object != m->object) {
1479 if (object != NULL)
1480 VM_OBJECT_WUNLOCK(object);
1481 object = atomic_load_ptr(&m->object);
1482 if (__predict_false(object == NULL))
1483 /* The page is being freed by another thread. */
1484 continue;
1485
1486 /* Depends on type-stability. */
1487 VM_OBJECT_WLOCK(object);
1488 if (__predict_false(m->object != object)) {
1489 VM_OBJECT_WUNLOCK(object);
1490 object = NULL;
1491 goto reinsert;
1492 }
1493 }
1494
1495 if (vm_page_tryxbusy(m) == 0) {
1496 /*
1497 * Don't mess with busy pages. Leave them at
1498 * the front of the queue. Most likely, they
1499 * are being paged out and will leave the
1500 * queue shortly after the scan finishes. So,
1501 * they ought to be discounted from the
1502 * inactive count.
1503 */
1504 addl_page_shortage++;
1505 goto reinsert;
1506 }
1507
1508 /* Deferred free of swap space. */
1509 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1510 vm_pager_page_unswapped(m);
1511
1512 /*
1513 * Check for wirings now that we hold the object lock and have
1514 * exclusively busied the page. If the page is mapped, it may
1515 * still be wired by pmap lookups. The call to
1516 * vm_page_try_remove_all() below atomically checks for such
1517 * wirings and removes mappings. If the page is unmapped, the
1518 * wire count is guaranteed not to increase after this check.
1519 */
1520 if (__predict_false(vm_page_wired(m)))
1521 goto skip_page;
1522
1523 /*
1524 * Invalid pages can be easily freed. They cannot be
1525 * mapped, vm_page_free() asserts this.
1526 */
1527 if (vm_page_none_valid(m))
1528 goto free_page;
1529
1530 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1531
1532 for (old = vm_page_astate_load(m);;) {
1533 /*
1534 * Check to see if the page has been removed from the
1535 * queue since the first such check. Leave it alone if
1536 * so, discarding any references collected by
1537 * pmap_ts_referenced().
1538 */
1539 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1540 goto skip_page;
1541
1542 new = old;
1543 act_delta = refs;
1544 if ((old.flags & PGA_REFERENCED) != 0) {
1545 new.flags &= ~PGA_REFERENCED;
1546 act_delta++;
1547 }
1548 if (act_delta == 0) {
1549 ;
1550 } else if (object->ref_count != 0) {
1551 /*
1552 * Increase the activation count if the
1553 * page was referenced while in the
1554 * inactive queue. This makes it less
1555 * likely that the page will be returned
1556 * prematurely to the inactive queue.
1557 */
1558 new.act_count += ACT_ADVANCE +
1559 act_delta;
1560 if (new.act_count > ACT_MAX)
1561 new.act_count = ACT_MAX;
1562
1563 new.flags &= ~PGA_QUEUE_OP_MASK;
1564 new.flags |= PGA_REQUEUE;
1565 new.queue = PQ_ACTIVE;
1566 if (!vm_page_pqstate_commit(m, &old, new))
1567 continue;
1568
1569 VM_CNT_INC(v_reactivated);
1570 goto skip_page;
1571 } else if ((object->flags & OBJ_DEAD) == 0) {
1572 new.queue = PQ_INACTIVE;
1573 new.flags |= PGA_REQUEUE;
1574 if (!vm_page_pqstate_commit(m, &old, new))
1575 continue;
1576 goto skip_page;
1577 }
1578 break;
1579 }
1580
1581 /*
1582 * If the page appears to be clean at the machine-independent
1583 * layer, then remove all of its mappings from the pmap in
1584 * anticipation of freeing it. If, however, any of the page's
1585 * mappings allow write access, then the page may still be
1586 * modified until the last of those mappings are removed.
1587 */
1588 if (object->ref_count != 0) {
1589 vm_page_test_dirty(m);
1590 if (m->dirty == 0 && !vm_page_try_remove_all(m))
1591 goto skip_page;
1592 }
1593
1594 /*
1595 * Clean pages can be freed, but dirty pages must be sent back
1596 * to the laundry, unless they belong to a dead object.
1597 * Requeueing dirty pages from dead objects is pointless, as
1598 * they are being paged out and freed by the thread that
1599 * destroyed the object.
1600 */
1601 if (m->dirty == 0) {
1602 free_page:
1603 /*
1604 * Now we are guaranteed that no other threads are
1605 * manipulating the page, check for a last-second
1606 * reference that would save it from doom.
1607 */
1608 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1609 goto skip_page;
1610
1611 /*
1612 * Because we dequeued the page and have already checked
1613 * for pending dequeue and enqueue requests, we can
1614 * safely disassociate the page from the inactive queue
1615 * without holding the queue lock.
1616 */
1617 m->a.queue = PQ_NONE;
1618 vm_page_free(m);
1619 page_shortage--;
1620 continue;
1621 }
1622 if ((object->flags & OBJ_DEAD) == 0)
1623 vm_page_launder(m);
1624 skip_page:
1625 vm_page_xunbusy(m);
1626 continue;
1627 reinsert:
1628 vm_pageout_reinsert_inactive(&ss, &rq, m);
1629 }
1630 if (object != NULL)
1631 VM_OBJECT_WUNLOCK(object);
1632 vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1633 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1634 vm_pagequeue_lock(pq);
1635 vm_pageout_end_scan(&ss);
1636 vm_pagequeue_unlock(pq);
1637
1638 /*
1639 * Record the remaining shortage and the progress and rate it was made.
1640 */
1641 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1642 getmicrouptime(&end);
1643 timevalsub(&end, &start);
1644 atomic_add_int(&vmd->vmd_inactive_us,
1645 end.tv_sec * 1000000 + end.tv_usec);
1646 atomic_add_int(&vmd->vmd_inactive_freed,
1647 starting_page_shortage - page_shortage);
1648 }
1649
1650 /*
1651 * Dispatch a number of inactive threads according to load and collect the
1652 * results to present a coherent view of paging activity on this domain.
1653 */
1654 static int
1655 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1656 {
1657 u_int freed, pps, slop, threads, us;
1658
1659 vmd->vmd_inactive_shortage = shortage;
1660 slop = 0;
1661
1662 /*
1663 * If we have more work than we can do in a quarter of our interval, we
1664 * fire off multiple threads to process it.
1665 */
1666 threads = vmd->vmd_inactive_threads;
1667 if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1668 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1669 vmd->vmd_inactive_shortage /= threads;
1670 slop = shortage % threads;
1671 vm_domain_pageout_lock(vmd);
1672 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1673 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1674 wakeup(&vmd->vmd_inactive_shortage);
1675 vm_domain_pageout_unlock(vmd);
1676 }
1677
1678 /* Run the local thread scan. */
1679 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1680
1681 /*
1682 * Block until helper threads report results and then accumulate
1683 * totals.
1684 */
1685 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1686 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1687 VM_CNT_ADD(v_dfree, freed);
1688
1689 /*
1690 * Calculate the per-thread paging rate with an exponential decay of
1691 * prior results. Careful to avoid integer rounding errors with large
1692 * us values.
1693 */
1694 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1695 if (us > 1000000)
1696 /* Keep rounding to tenths */
1697 pps = (freed * 10) / ((us * 10) / 1000000);
1698 else
1699 pps = (1000000 / us) * freed;
1700 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1701
1702 return (shortage - freed);
1703 }
1704
1705 /*
1706 * Attempt to reclaim the requested number of pages from the inactive queue.
1707 * Returns true if the shortage was addressed.
1708 */
1709 static int
1710 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1711 {
1712 struct vm_pagequeue *pq;
1713 u_int addl_page_shortage, deficit, page_shortage;
1714 u_int starting_page_shortage;
1715
1716 /*
1717 * vmd_pageout_deficit counts the number of pages requested in
1718 * allocations that failed because of a free page shortage. We assume
1719 * that the allocations will be reattempted and thus include the deficit
1720 * in our scan target.
1721 */
1722 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1723 starting_page_shortage = shortage + deficit;
1724
1725 /*
1726 * Run the inactive scan on as many threads as is necessary.
1727 */
1728 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1729 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1730
1731 /*
1732 * Wake up the laundry thread so that it can perform any needed
1733 * laundering. If we didn't meet our target, we're in shortfall and
1734 * need to launder more aggressively. If PQ_LAUNDRY is empty and no
1735 * swap devices are configured, the laundry thread has no work to do, so
1736 * don't bother waking it up.
1737 *
1738 * The laundry thread uses the number of inactive queue scans elapsed
1739 * since the last laundering to determine whether to launder again, so
1740 * keep count.
1741 */
1742 if (starting_page_shortage > 0) {
1743 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1744 vm_pagequeue_lock(pq);
1745 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1746 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1747 if (page_shortage > 0) {
1748 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1749 VM_CNT_INC(v_pdshortfalls);
1750 } else if (vmd->vmd_laundry_request !=
1751 VM_LAUNDRY_SHORTFALL)
1752 vmd->vmd_laundry_request =
1753 VM_LAUNDRY_BACKGROUND;
1754 wakeup(&vmd->vmd_laundry_request);
1755 }
1756 vmd->vmd_clean_pages_freed +=
1757 starting_page_shortage - page_shortage;
1758 vm_pagequeue_unlock(pq);
1759 }
1760
1761 /*
1762 * Wakeup the swapout daemon if we didn't free the targeted number of
1763 * pages.
1764 */
1765 if (page_shortage > 0)
1766 vm_swapout_run();
1767
1768 /*
1769 * If the inactive queue scan fails repeatedly to meet its
1770 * target, kill the largest process.
1771 */
1772 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1773
1774 /*
1775 * Reclaim pages by swapping out idle processes, if configured to do so.
1776 */
1777 vm_swapout_run_idle();
1778
1779 /*
1780 * See the description of addl_page_shortage above.
1781 */
1782 *addl_shortage = addl_page_shortage + deficit;
1783
1784 return (page_shortage <= 0);
1785 }
1786
1787 static int vm_pageout_oom_vote;
1788
1789 /*
1790 * The pagedaemon threads randlomly select one to perform the
1791 * OOM. Trying to kill processes before all pagedaemons
1792 * failed to reach free target is premature.
1793 */
1794 static void
1795 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1796 int starting_page_shortage)
1797 {
1798 int old_vote;
1799
1800 if (starting_page_shortage <= 0 || starting_page_shortage !=
1801 page_shortage)
1802 vmd->vmd_oom_seq = 0;
1803 else
1804 vmd->vmd_oom_seq++;
1805 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1806 if (vmd->vmd_oom) {
1807 vmd->vmd_oom = FALSE;
1808 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1809 }
1810 return;
1811 }
1812
1813 /*
1814 * Do not follow the call sequence until OOM condition is
1815 * cleared.
1816 */
1817 vmd->vmd_oom_seq = 0;
1818
1819 if (vmd->vmd_oom)
1820 return;
1821
1822 vmd->vmd_oom = TRUE;
1823 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1824 if (old_vote != vm_ndomains - 1)
1825 return;
1826
1827 /*
1828 * The current pagedaemon thread is the last in the quorum to
1829 * start OOM. Initiate the selection and signaling of the
1830 * victim.
1831 */
1832 vm_pageout_oom(VM_OOM_MEM);
1833
1834 /*
1835 * After one round of OOM terror, recall our vote. On the
1836 * next pass, current pagedaemon would vote again if the low
1837 * memory condition is still there, due to vmd_oom being
1838 * false.
1839 */
1840 vmd->vmd_oom = FALSE;
1841 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1842 }
1843
1844 /*
1845 * The OOM killer is the page daemon's action of last resort when
1846 * memory allocation requests have been stalled for a prolonged period
1847 * of time because it cannot reclaim memory. This function computes
1848 * the approximate number of physical pages that could be reclaimed if
1849 * the specified address space is destroyed.
1850 *
1851 * Private, anonymous memory owned by the address space is the
1852 * principal resource that we expect to recover after an OOM kill.
1853 * Since the physical pages mapped by the address space's COW entries
1854 * are typically shared pages, they are unlikely to be released and so
1855 * they are not counted.
1856 *
1857 * To get to the point where the page daemon runs the OOM killer, its
1858 * efforts to write-back vnode-backed pages may have stalled. This
1859 * could be caused by a memory allocation deadlock in the write path
1860 * that might be resolved by an OOM kill. Therefore, physical pages
1861 * belonging to vnode-backed objects are counted, because they might
1862 * be freed without being written out first if the address space holds
1863 * the last reference to an unlinked vnode.
1864 *
1865 * Similarly, physical pages belonging to OBJT_PHYS objects are
1866 * counted because the address space might hold the last reference to
1867 * the object.
1868 */
1869 static long
1870 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1871 {
1872 vm_map_t map;
1873 vm_map_entry_t entry;
1874 vm_object_t obj;
1875 long res;
1876
1877 map = &vmspace->vm_map;
1878 KASSERT(!map->system_map, ("system map"));
1879 sx_assert(&map->lock, SA_LOCKED);
1880 res = 0;
1881 VM_MAP_ENTRY_FOREACH(entry, map) {
1882 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1883 continue;
1884 obj = entry->object.vm_object;
1885 if (obj == NULL)
1886 continue;
1887 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1888 obj->ref_count != 1)
1889 continue;
1890 switch (obj->type) {
1891 case OBJT_DEFAULT:
1892 case OBJT_SWAP:
1893 case OBJT_PHYS:
1894 case OBJT_VNODE:
1895 res += obj->resident_page_count;
1896 break;
1897 }
1898 }
1899 return (res);
1900 }
1901
1902 static int vm_oom_ratelim_last;
1903 static int vm_oom_pf_secs = 10;
1904 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1905 "");
1906 static struct mtx vm_oom_ratelim_mtx;
1907
1908 void
1909 vm_pageout_oom(int shortage)
1910 {
1911 struct proc *p, *bigproc;
1912 vm_offset_t size, bigsize;
1913 struct thread *td;
1914 struct vmspace *vm;
1915 int now;
1916 bool breakout;
1917
1918 /*
1919 * For OOM requests originating from vm_fault(), there is a high
1920 * chance that a single large process faults simultaneously in
1921 * several threads. Also, on an active system running many
1922 * processes of middle-size, like buildworld, all of them
1923 * could fault almost simultaneously as well.
1924 *
1925 * To avoid killing too many processes, rate-limit OOMs
1926 * initiated by vm_fault() time-outs on the waits for free
1927 * pages.
1928 */
1929 mtx_lock(&vm_oom_ratelim_mtx);
1930 now = ticks;
1931 if (shortage == VM_OOM_MEM_PF &&
1932 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1933 mtx_unlock(&vm_oom_ratelim_mtx);
1934 return;
1935 }
1936 vm_oom_ratelim_last = now;
1937 mtx_unlock(&vm_oom_ratelim_mtx);
1938
1939 /*
1940 * We keep the process bigproc locked once we find it to keep anyone
1941 * from messing with it; however, there is a possibility of
1942 * deadlock if process B is bigproc and one of its child processes
1943 * attempts to propagate a signal to B while we are waiting for A's
1944 * lock while walking this list. To avoid this, we don't block on
1945 * the process lock but just skip a process if it is already locked.
1946 */
1947 bigproc = NULL;
1948 bigsize = 0;
1949 sx_slock(&allproc_lock);
1950 FOREACH_PROC_IN_SYSTEM(p) {
1951 PROC_LOCK(p);
1952
1953 /*
1954 * If this is a system, protected or killed process, skip it.
1955 */
1956 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1957 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1958 p->p_pid == 1 || P_KILLED(p) ||
1959 (p->p_pid < 48 && swap_pager_avail != 0)) {
1960 PROC_UNLOCK(p);
1961 continue;
1962 }
1963 /*
1964 * If the process is in a non-running type state,
1965 * don't touch it. Check all the threads individually.
1966 */
1967 breakout = false;
1968 FOREACH_THREAD_IN_PROC(p, td) {
1969 thread_lock(td);
1970 if (!TD_ON_RUNQ(td) &&
1971 !TD_IS_RUNNING(td) &&
1972 !TD_IS_SLEEPING(td) &&
1973 !TD_IS_SUSPENDED(td) &&
1974 !TD_IS_SWAPPED(td)) {
1975 thread_unlock(td);
1976 breakout = true;
1977 break;
1978 }
1979 thread_unlock(td);
1980 }
1981 if (breakout) {
1982 PROC_UNLOCK(p);
1983 continue;
1984 }
1985 /*
1986 * get the process size
1987 */
1988 vm = vmspace_acquire_ref(p);
1989 if (vm == NULL) {
1990 PROC_UNLOCK(p);
1991 continue;
1992 }
1993 _PHOLD_LITE(p);
1994 PROC_UNLOCK(p);
1995 sx_sunlock(&allproc_lock);
1996 if (!vm_map_trylock_read(&vm->vm_map)) {
1997 vmspace_free(vm);
1998 sx_slock(&allproc_lock);
1999 PRELE(p);
2000 continue;
2001 }
2002 size = vmspace_swap_count(vm);
2003 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
2004 size += vm_pageout_oom_pagecount(vm);
2005 vm_map_unlock_read(&vm->vm_map);
2006 vmspace_free(vm);
2007 sx_slock(&allproc_lock);
2008
2009 /*
2010 * If this process is bigger than the biggest one,
2011 * remember it.
2012 */
2013 if (size > bigsize) {
2014 if (bigproc != NULL)
2015 PRELE(bigproc);
2016 bigproc = p;
2017 bigsize = size;
2018 } else {
2019 PRELE(p);
2020 }
2021 }
2022 sx_sunlock(&allproc_lock);
2023 if (bigproc != NULL) {
2024 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2025 panic("out of swap space");
2026 PROC_LOCK(bigproc);
2027 killproc(bigproc, "out of swap space");
2028 sched_nice(bigproc, PRIO_MIN);
2029 _PRELE(bigproc);
2030 PROC_UNLOCK(bigproc);
2031 }
2032 }
2033
2034 /*
2035 * Signal a free page shortage to subsystems that have registered an event
2036 * handler. Reclaim memory from UMA in the event of a severe shortage.
2037 * Return true if the free page count should be re-evaluated.
2038 */
2039 static bool
2040 vm_pageout_lowmem(void)
2041 {
2042 static int lowmem_ticks = 0;
2043 int last;
2044 bool ret;
2045
2046 ret = false;
2047
2048 last = atomic_load_int(&lowmem_ticks);
2049 while ((u_int)(ticks - last) / hz >= lowmem_period) {
2050 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2051 continue;
2052
2053 /*
2054 * Decrease registered cache sizes.
2055 */
2056 SDT_PROBE0(vm, , , vm__lowmem_scan);
2057 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2058
2059 /*
2060 * We do this explicitly after the caches have been
2061 * drained above.
2062 */
2063 uma_reclaim(UMA_RECLAIM_TRIM);
2064 ret = true;
2065 break;
2066 }
2067
2068 /*
2069 * Kick off an asynchronous reclaim of cached memory if one of the
2070 * page daemons is failing to keep up with demand. Use the "severe"
2071 * threshold instead of "min" to ensure that we do not blow away the
2072 * caches if a subset of the NUMA domains are depleted by kernel memory
2073 * allocations; the domainset iterators automatically skip domains
2074 * below the "min" threshold on the first pass.
2075 *
2076 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2077 * worry about kicking it too often.
2078 */
2079 if (vm_page_count_severe())
2080 uma_reclaim_wakeup();
2081
2082 return (ret);
2083 }
2084
2085 static void
2086 vm_pageout_worker(void *arg)
2087 {
2088 struct vm_domain *vmd;
2089 u_int ofree;
2090 int addl_shortage, domain, shortage;
2091 bool target_met;
2092
2093 domain = (uintptr_t)arg;
2094 vmd = VM_DOMAIN(domain);
2095 shortage = 0;
2096 target_met = true;
2097
2098 /*
2099 * XXXKIB It could be useful to bind pageout daemon threads to
2100 * the cores belonging to the domain, from which vm_page_array
2101 * is allocated.
2102 */
2103
2104 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2105 vmd->vmd_last_active_scan = ticks;
2106
2107 /*
2108 * The pageout daemon worker is never done, so loop forever.
2109 */
2110 while (TRUE) {
2111 vm_domain_pageout_lock(vmd);
2112
2113 /*
2114 * We need to clear wanted before we check the limits. This
2115 * prevents races with wakers who will check wanted after they
2116 * reach the limit.
2117 */
2118 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2119
2120 /*
2121 * Might the page daemon need to run again?
2122 */
2123 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2124 /*
2125 * Yes. If the scan failed to produce enough free
2126 * pages, sleep uninterruptibly for some time in the
2127 * hope that the laundry thread will clean some pages.
2128 */
2129 vm_domain_pageout_unlock(vmd);
2130 if (!target_met)
2131 pause("pwait", hz / VM_INACT_SCAN_RATE);
2132 } else {
2133 /*
2134 * No, sleep until the next wakeup or until pages
2135 * need to have their reference stats updated.
2136 */
2137 if (mtx_sleep(&vmd->vmd_pageout_wanted,
2138 vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2139 "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2140 VM_CNT_INC(v_pdwakeups);
2141 }
2142
2143 /* Prevent spurious wakeups by ensuring that wanted is set. */
2144 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2145
2146 /*
2147 * Use the controller to calculate how many pages to free in
2148 * this interval, and scan the inactive queue. If the lowmem
2149 * handlers appear to have freed up some pages, subtract the
2150 * difference from the inactive queue scan target.
2151 */
2152 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2153 if (shortage > 0) {
2154 ofree = vmd->vmd_free_count;
2155 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2156 shortage -= min(vmd->vmd_free_count - ofree,
2157 (u_int)shortage);
2158 target_met = vm_pageout_inactive(vmd, shortage,
2159 &addl_shortage);
2160 } else
2161 addl_shortage = 0;
2162
2163 /*
2164 * Scan the active queue. A positive value for shortage
2165 * indicates that we must aggressively deactivate pages to avoid
2166 * a shortfall.
2167 */
2168 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2169 vm_pageout_scan_active(vmd, shortage);
2170 }
2171 }
2172
2173 /*
2174 * vm_pageout_helper runs additional pageout daemons in times of high paging
2175 * activity.
2176 */
2177 static void
2178 vm_pageout_helper(void *arg)
2179 {
2180 struct vm_domain *vmd;
2181 int domain;
2182
2183 domain = (uintptr_t)arg;
2184 vmd = VM_DOMAIN(domain);
2185
2186 vm_domain_pageout_lock(vmd);
2187 for (;;) {
2188 msleep(&vmd->vmd_inactive_shortage,
2189 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2190 blockcount_release(&vmd->vmd_inactive_starting, 1);
2191
2192 vm_domain_pageout_unlock(vmd);
2193 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2194 vm_domain_pageout_lock(vmd);
2195
2196 /*
2197 * Release the running count while the pageout lock is held to
2198 * prevent wakeup races.
2199 */
2200 blockcount_release(&vmd->vmd_inactive_running, 1);
2201 }
2202 }
2203
2204 static int
2205 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2206 {
2207 unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2208
2209 if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2210 return (0);
2211
2212 /*
2213 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2214 * total number of CPUs in the system as an upper limit.
2215 */
2216 if (pageout_cpus_per_thread < 2)
2217 pageout_cpus_per_thread = 2;
2218 else if (pageout_cpus_per_thread > mp_ncpus)
2219 pageout_cpus_per_thread = mp_ncpus;
2220
2221 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2222 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2223
2224 /* Pagedaemons are not run in empty domains. */
2225 eligible_cpus = mp_ncpus;
2226 for (unsigned i = 0; i < vm_ndomains; i++)
2227 if (VM_DOMAIN_EMPTY(i))
2228 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2229
2230 /*
2231 * Assign a portion of the total pageout threads to this domain
2232 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2233 * domain. In asymmetric NUMA systems, domains with more CPUs may be
2234 * allocated more threads than domains with fewer CPUs.
2235 */
2236 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2237 }
2238
2239 /*
2240 * Initialize basic pageout daemon settings. See the comment above the
2241 * definition of vm_domain for some explanation of how these thresholds are
2242 * used.
2243 */
2244 static void
2245 vm_pageout_init_domain(int domain)
2246 {
2247 struct vm_domain *vmd;
2248 struct sysctl_oid *oid;
2249
2250 vmd = VM_DOMAIN(domain);
2251 vmd->vmd_interrupt_free_min = 2;
2252
2253 /*
2254 * v_free_reserved needs to include enough for the largest
2255 * swap pager structures plus enough for any pv_entry structs
2256 * when paging.
2257 */
2258 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2259 vmd->vmd_interrupt_free_min;
2260 vmd->vmd_free_reserved = vm_pageout_page_count +
2261 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2262 vmd->vmd_free_min = vmd->vmd_page_count / 200;
2263 vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2264 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2265 vmd->vmd_free_min += vmd->vmd_free_reserved;
2266 vmd->vmd_free_severe += vmd->vmd_free_reserved;
2267 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2268 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2269 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2270
2271 /*
2272 * Set the default wakeup threshold to be 10% below the paging
2273 * target. This keeps the steady state out of shortfall.
2274 */
2275 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2276
2277 /*
2278 * Target amount of memory to move out of the laundry queue during a
2279 * background laundering. This is proportional to the amount of system
2280 * memory.
2281 */
2282 vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2283 vmd->vmd_free_min) / 10;
2284
2285 /* Initialize the pageout daemon pid controller. */
2286 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2287 vmd->vmd_free_target, PIDCTRL_BOUND,
2288 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2289 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2290 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2291 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2292
2293 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2294 }
2295
2296 static void
2297 vm_pageout_init(void)
2298 {
2299 u_long freecount;
2300 int i;
2301
2302 /*
2303 * Initialize some paging parameters.
2304 */
2305 if (vm_cnt.v_page_count < 2000)
2306 vm_pageout_page_count = 8;
2307
2308 freecount = 0;
2309 for (i = 0; i < vm_ndomains; i++) {
2310 struct vm_domain *vmd;
2311
2312 vm_pageout_init_domain(i);
2313 vmd = VM_DOMAIN(i);
2314 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2315 vm_cnt.v_free_target += vmd->vmd_free_target;
2316 vm_cnt.v_free_min += vmd->vmd_free_min;
2317 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2318 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2319 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2320 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2321 freecount += vmd->vmd_free_count;
2322 }
2323
2324 /*
2325 * Set interval in seconds for active scan. We want to visit each
2326 * page at least once every ten minutes. This is to prevent worst
2327 * case paging behaviors with stale active LRU.
2328 */
2329 if (vm_pageout_update_period == 0)
2330 vm_pageout_update_period = 600;
2331
2332 /*
2333 * Set the maximum number of user-wired virtual pages. Historically the
2334 * main source of such pages was mlock(2) and mlockall(2). Hypervisors
2335 * may also request user-wired memory.
2336 */
2337 if (vm_page_max_user_wired == 0)
2338 vm_page_max_user_wired = 4 * freecount / 5;
2339 }
2340
2341 /*
2342 * vm_pageout is the high level pageout daemon.
2343 */
2344 static void
2345 vm_pageout(void)
2346 {
2347 struct proc *p;
2348 struct thread *td;
2349 int error, first, i, j, pageout_threads;
2350
2351 p = curproc;
2352 td = curthread;
2353
2354 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2355 swap_pager_swap_init();
2356 for (first = -1, i = 0; i < vm_ndomains; i++) {
2357 if (VM_DOMAIN_EMPTY(i)) {
2358 if (bootverbose)
2359 printf("domain %d empty; skipping pageout\n",
2360 i);
2361 continue;
2362 }
2363 if (first == -1)
2364 first = i;
2365 else {
2366 error = kthread_add(vm_pageout_worker,
2367 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2368 if (error != 0)
2369 panic("starting pageout for domain %d: %d\n",
2370 i, error);
2371 }
2372 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2373 for (j = 0; j < pageout_threads - 1; j++) {
2374 error = kthread_add(vm_pageout_helper,
2375 (void *)(uintptr_t)i, p, NULL, 0, 0,
2376 "dom%d helper%d", i, j);
2377 if (error != 0)
2378 panic("starting pageout helper %d for domain "
2379 "%d: %d\n", j, i, error);
2380 }
2381 error = kthread_add(vm_pageout_laundry_worker,
2382 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2383 if (error != 0)
2384 panic("starting laundry for domain %d: %d", i, error);
2385 }
2386 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2387 if (error != 0)
2388 panic("starting uma_reclaim helper, error %d\n", error);
2389
2390 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2391 vm_pageout_worker((void *)(uintptr_t)first);
2392 }
2393
2394 /*
2395 * Perform an advisory wakeup of the page daemon.
2396 */
2397 void
2398 pagedaemon_wakeup(int domain)
2399 {
2400 struct vm_domain *vmd;
2401
2402 vmd = VM_DOMAIN(domain);
2403 vm_domain_pageout_assert_unlocked(vmd);
2404 if (curproc == pageproc)
2405 return;
2406
2407 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2408 vm_domain_pageout_lock(vmd);
2409 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2410 wakeup(&vmd->vmd_pageout_wanted);
2411 vm_domain_pageout_unlock(vmd);
2412 }
2413 }
Cache object: d347f9db3a1fd27bceb7c19c6e1c2bdc
|