The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991 Regents of the University of California.
    5  * All rights reserved.
    6  * Copyright (c) 1994 John S. Dyson
    7  * All rights reserved.
    8  * Copyright (c) 1994 David Greenman
    9  * All rights reserved.
   10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
   11  * All rights reserved.
   12  *
   13  * This code is derived from software contributed to Berkeley by
   14  * The Mach Operating System project at Carnegie-Mellon University.
   15  *
   16  * Redistribution and use in source and binary forms, with or without
   17  * modification, are permitted provided that the following conditions
   18  * are met:
   19  * 1. Redistributions of source code must retain the above copyright
   20  *    notice, this list of conditions and the following disclaimer.
   21  * 2. Redistributions in binary form must reproduce the above copyright
   22  *    notice, this list of conditions and the following disclaimer in the
   23  *    documentation and/or other materials provided with the distribution.
   24  * 3. All advertising materials mentioning features or use of this software
   25  *    must display the following acknowledgement:
   26  *      This product includes software developed by the University of
   27  *      California, Berkeley and its contributors.
   28  * 4. Neither the name of the University nor the names of its contributors
   29  *    may be used to endorse or promote products derived from this software
   30  *    without specific prior written permission.
   31  *
   32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   42  * SUCH DAMAGE.
   43  *
   44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   45  *
   46  *
   47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   48  * All rights reserved.
   49  *
   50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   51  *
   52  * Permission to use, copy, modify and distribute this software and
   53  * its documentation is hereby granted, provided that both the copyright
   54  * notice and this permission notice appear in all copies of the
   55  * software, derivative works or modified versions, and any portions
   56  * thereof, and that both notices appear in supporting documentation.
   57  *
   58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   61  *
   62  * Carnegie Mellon requests users of this software to return to
   63  *
   64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   65  *  School of Computer Science
   66  *  Carnegie Mellon University
   67  *  Pittsburgh PA 15213-3890
   68  *
   69  * any improvements or extensions that they make and grant Carnegie the
   70  * rights to redistribute these changes.
   71  */
   72 
   73 /*
   74  *      The proverbial page-out daemon.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD$");
   79 
   80 #include "opt_vm.h"
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/kernel.h>
   85 #include <sys/blockcount.h>
   86 #include <sys/eventhandler.h>
   87 #include <sys/lock.h>
   88 #include <sys/mutex.h>
   89 #include <sys/proc.h>
   90 #include <sys/kthread.h>
   91 #include <sys/ktr.h>
   92 #include <sys/mount.h>
   93 #include <sys/racct.h>
   94 #include <sys/resourcevar.h>
   95 #include <sys/sched.h>
   96 #include <sys/sdt.h>
   97 #include <sys/signalvar.h>
   98 #include <sys/smp.h>
   99 #include <sys/time.h>
  100 #include <sys/vnode.h>
  101 #include <sys/vmmeter.h>
  102 #include <sys/rwlock.h>
  103 #include <sys/sx.h>
  104 #include <sys/sysctl.h>
  105 
  106 #include <vm/vm.h>
  107 #include <vm/vm_param.h>
  108 #include <vm/vm_object.h>
  109 #include <vm/vm_page.h>
  110 #include <vm/vm_map.h>
  111 #include <vm/vm_pageout.h>
  112 #include <vm/vm_pager.h>
  113 #include <vm/vm_phys.h>
  114 #include <vm/vm_pagequeue.h>
  115 #include <vm/swap_pager.h>
  116 #include <vm/vm_extern.h>
  117 #include <vm/uma.h>
  118 
  119 /*
  120  * System initialization
  121  */
  122 
  123 /* the kernel process "vm_pageout"*/
  124 static void vm_pageout(void);
  125 static void vm_pageout_init(void);
  126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
  127 static int vm_pageout_cluster(vm_page_t m);
  128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
  129     int starting_page_shortage);
  130 
  131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
  132     NULL);
  133 
  134 struct proc *pageproc;
  135 
  136 static struct kproc_desc page_kp = {
  137         "pagedaemon",
  138         vm_pageout,
  139         &pageproc
  140 };
  141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
  142     &page_kp);
  143 
  144 SDT_PROVIDER_DEFINE(vm);
  145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
  146 
  147 /* Pagedaemon activity rates, in subdivisions of one second. */
  148 #define VM_LAUNDER_RATE         10
  149 #define VM_INACT_SCAN_RATE      10
  150 
  151 static int vm_pageout_oom_seq = 12;
  152 
  153 static int vm_pageout_update_period;
  154 static int disable_swap_pageouts;
  155 static int lowmem_period = 10;
  156 static int swapdev_enabled;
  157 
  158 static int vm_panic_on_oom = 0;
  159 
  160 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
  161         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
  162         "Panic on the given number of out-of-memory errors instead of killing the largest process");
  163 
  164 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
  165         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
  166         "Maximum active LRU update period");
  167 
  168 static int pageout_cpus_per_thread = 16;
  169 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
  170     &pageout_cpus_per_thread, 0,
  171     "Number of CPUs per pagedaemon worker thread");
  172   
  173 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
  174         "Low memory callback period");
  175 
  176 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  177         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  178 
  179 static int pageout_lock_miss;
  180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  181         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  182 
  183 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
  184         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
  185         "back-to-back calls to oom detector to start OOM");
  186 
  187 static int act_scan_laundry_weight = 3;
  188 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
  189     &act_scan_laundry_weight, 0,
  190     "weight given to clean vs. dirty pages in active queue scans");
  191 
  192 static u_int vm_background_launder_rate = 4096;
  193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
  194     &vm_background_launder_rate, 0,
  195     "background laundering rate, in kilobytes per second");
  196 
  197 static u_int vm_background_launder_max = 20 * 1024;
  198 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
  199     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
  200 
  201 int vm_pageout_page_count = 32;
  202 
  203 u_long vm_page_max_user_wired;
  204 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
  205     &vm_page_max_user_wired, 0,
  206     "system-wide limit to user-wired page count");
  207 
  208 static u_int isqrt(u_int num);
  209 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
  210     bool in_shortfall);
  211 static void vm_pageout_laundry_worker(void *arg);
  212 
  213 struct scan_state {
  214         struct vm_batchqueue bq;
  215         struct vm_pagequeue *pq;
  216         vm_page_t       marker;
  217         int             maxscan;
  218         int             scanned;
  219 };
  220 
  221 static void
  222 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
  223     vm_page_t marker, vm_page_t after, int maxscan)
  224 {
  225 
  226         vm_pagequeue_assert_locked(pq);
  227         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
  228             ("marker %p already enqueued", marker));
  229 
  230         if (after == NULL)
  231                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
  232         else
  233                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
  234         vm_page_aflag_set(marker, PGA_ENQUEUED);
  235 
  236         vm_batchqueue_init(&ss->bq);
  237         ss->pq = pq;
  238         ss->marker = marker;
  239         ss->maxscan = maxscan;
  240         ss->scanned = 0;
  241         vm_pagequeue_unlock(pq);
  242 }
  243 
  244 static void
  245 vm_pageout_end_scan(struct scan_state *ss)
  246 {
  247         struct vm_pagequeue *pq;
  248 
  249         pq = ss->pq;
  250         vm_pagequeue_assert_locked(pq);
  251         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
  252             ("marker %p not enqueued", ss->marker));
  253 
  254         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
  255         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
  256         pq->pq_pdpages += ss->scanned;
  257 }
  258 
  259 /*
  260  * Add a small number of queued pages to a batch queue for later processing
  261  * without the corresponding queue lock held.  The caller must have enqueued a
  262  * marker page at the desired start point for the scan.  Pages will be
  263  * physically dequeued if the caller so requests.  Otherwise, the returned
  264  * batch may contain marker pages, and it is up to the caller to handle them.
  265  *
  266  * When processing the batch queue, vm_pageout_defer() must be used to
  267  * determine whether the page has been logically dequeued since the batch was
  268  * collected.
  269  */
  270 static __always_inline void
  271 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
  272 {
  273         struct vm_pagequeue *pq;
  274         vm_page_t m, marker, n;
  275 
  276         marker = ss->marker;
  277         pq = ss->pq;
  278 
  279         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
  280             ("marker %p not enqueued", ss->marker));
  281 
  282         vm_pagequeue_lock(pq);
  283         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
  284             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
  285             m = n, ss->scanned++) {
  286                 n = TAILQ_NEXT(m, plinks.q);
  287                 if ((m->flags & PG_MARKER) == 0) {
  288                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
  289                             ("page %p not enqueued", m));
  290                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
  291                             ("Fictitious page %p cannot be in page queue", m));
  292                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
  293                             ("Unmanaged page %p cannot be in page queue", m));
  294                 } else if (dequeue)
  295                         continue;
  296 
  297                 (void)vm_batchqueue_insert(&ss->bq, m);
  298                 if (dequeue) {
  299                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
  300                         vm_page_aflag_clear(m, PGA_ENQUEUED);
  301                 }
  302         }
  303         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
  304         if (__predict_true(m != NULL))
  305                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
  306         else
  307                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
  308         if (dequeue)
  309                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
  310         vm_pagequeue_unlock(pq);
  311 }
  312 
  313 /*
  314  * Return the next page to be scanned, or NULL if the scan is complete.
  315  */
  316 static __always_inline vm_page_t
  317 vm_pageout_next(struct scan_state *ss, const bool dequeue)
  318 {
  319 
  320         if (ss->bq.bq_cnt == 0)
  321                 vm_pageout_collect_batch(ss, dequeue);
  322         return (vm_batchqueue_pop(&ss->bq));
  323 }
  324 
  325 /*
  326  * Determine whether processing of a page should be deferred and ensure that any
  327  * outstanding queue operations are processed.
  328  */
  329 static __always_inline bool
  330 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
  331 {
  332         vm_page_astate_t as;
  333 
  334         as = vm_page_astate_load(m);
  335         if (__predict_false(as.queue != queue ||
  336             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
  337                 return (true);
  338         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
  339                 vm_page_pqbatch_submit(m, queue);
  340                 return (true);
  341         }
  342         return (false);
  343 }
  344 
  345 /*
  346  * Scan for pages at adjacent offsets within the given page's object that are
  347  * eligible for laundering, form a cluster of these pages and the given page,
  348  * and launder that cluster.
  349  */
  350 static int
  351 vm_pageout_cluster(vm_page_t m)
  352 {
  353         vm_object_t object;
  354         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
  355         vm_pindex_t pindex;
  356         int ib, is, page_base, pageout_count;
  357 
  358         object = m->object;
  359         VM_OBJECT_ASSERT_WLOCKED(object);
  360         pindex = m->pindex;
  361 
  362         vm_page_assert_xbusied(m);
  363 
  364         mc[vm_pageout_page_count] = pb = ps = m;
  365         pageout_count = 1;
  366         page_base = vm_pageout_page_count;
  367         ib = 1;
  368         is = 1;
  369 
  370         /*
  371          * We can cluster only if the page is not clean, busy, or held, and
  372          * the page is in the laundry queue.
  373          *
  374          * During heavy mmap/modification loads the pageout
  375          * daemon can really fragment the underlying file
  376          * due to flushing pages out of order and not trying to
  377          * align the clusters (which leaves sporadic out-of-order
  378          * holes).  To solve this problem we do the reverse scan
  379          * first and attempt to align our cluster, then do a 
  380          * forward scan if room remains.
  381          */
  382 more:
  383         while (ib != 0 && pageout_count < vm_pageout_page_count) {
  384                 if (ib > pindex) {
  385                         ib = 0;
  386                         break;
  387                 }
  388                 if ((p = vm_page_prev(pb)) == NULL ||
  389                     vm_page_tryxbusy(p) == 0) {
  390                         ib = 0;
  391                         break;
  392                 }
  393                 if (vm_page_wired(p)) {
  394                         ib = 0;
  395                         vm_page_xunbusy(p);
  396                         break;
  397                 }
  398                 vm_page_test_dirty(p);
  399                 if (p->dirty == 0) {
  400                         ib = 0;
  401                         vm_page_xunbusy(p);
  402                         break;
  403                 }
  404                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
  405                         vm_page_xunbusy(p);
  406                         ib = 0;
  407                         break;
  408                 }
  409                 mc[--page_base] = pb = p;
  410                 ++pageout_count;
  411                 ++ib;
  412 
  413                 /*
  414                  * We are at an alignment boundary.  Stop here, and switch
  415                  * directions.  Do not clear ib.
  416                  */
  417                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  418                         break;
  419         }
  420         while (pageout_count < vm_pageout_page_count && 
  421             pindex + is < object->size) {
  422                 if ((p = vm_page_next(ps)) == NULL ||
  423                     vm_page_tryxbusy(p) == 0)
  424                         break;
  425                 if (vm_page_wired(p)) {
  426                         vm_page_xunbusy(p);
  427                         break;
  428                 }
  429                 vm_page_test_dirty(p);
  430                 if (p->dirty == 0) {
  431                         vm_page_xunbusy(p);
  432                         break;
  433                 }
  434                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
  435                         vm_page_xunbusy(p);
  436                         break;
  437                 }
  438                 mc[page_base + pageout_count] = ps = p;
  439                 ++pageout_count;
  440                 ++is;
  441         }
  442 
  443         /*
  444          * If we exhausted our forward scan, continue with the reverse scan
  445          * when possible, even past an alignment boundary.  This catches
  446          * boundary conditions.
  447          */
  448         if (ib != 0 && pageout_count < vm_pageout_page_count)
  449                 goto more;
  450 
  451         return (vm_pageout_flush(&mc[page_base], pageout_count,
  452             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
  453 }
  454 
  455 /*
  456  * vm_pageout_flush() - launder the given pages
  457  *
  458  *      The given pages are laundered.  Note that we setup for the start of
  459  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  460  *      reference count all in here rather then in the parent.  If we want
  461  *      the parent to do more sophisticated things we may have to change
  462  *      the ordering.
  463  *
  464  *      Returned runlen is the count of pages between mreq and first
  465  *      page after mreq with status VM_PAGER_AGAIN.
  466  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  467  *      for any page in runlen set.
  468  */
  469 int
  470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  471     boolean_t *eio)
  472 {
  473         vm_object_t object = mc[0]->object;
  474         int pageout_status[count];
  475         int numpagedout = 0;
  476         int i, runlen;
  477 
  478         VM_OBJECT_ASSERT_WLOCKED(object);
  479 
  480         /*
  481          * Initiate I/O.  Mark the pages shared busy and verify that they're
  482          * valid and read-only.
  483          *
  484          * We do not have to fixup the clean/dirty bits here... we can
  485          * allow the pager to do it after the I/O completes.
  486          *
  487          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  488          * edge case with file fragments.
  489          */
  490         for (i = 0; i < count; i++) {
  491                 KASSERT(vm_page_all_valid(mc[i]),
  492                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  493                         mc[i], i, count));
  494                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
  495                     ("vm_pageout_flush: writeable page %p", mc[i]));
  496                 vm_page_busy_downgrade(mc[i]);
  497         }
  498         vm_object_pip_add(object, count);
  499 
  500         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  501 
  502         runlen = count - mreq;
  503         if (eio != NULL)
  504                 *eio = FALSE;
  505         for (i = 0; i < count; i++) {
  506                 vm_page_t mt = mc[i];
  507 
  508                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  509                     !pmap_page_is_write_mapped(mt),
  510                     ("vm_pageout_flush: page %p is not write protected", mt));
  511                 switch (pageout_status[i]) {
  512                 case VM_PAGER_OK:
  513                         /*
  514                          * The page may have moved since laundering started, in
  515                          * which case it should be left alone.
  516                          */
  517                         if (vm_page_in_laundry(mt))
  518                                 vm_page_deactivate_noreuse(mt);
  519                         /* FALLTHROUGH */
  520                 case VM_PAGER_PEND:
  521                         numpagedout++;
  522                         break;
  523                 case VM_PAGER_BAD:
  524                         /*
  525                          * The page is outside the object's range.  We pretend
  526                          * that the page out worked and clean the page, so the
  527                          * changes will be lost if the page is reclaimed by
  528                          * the page daemon.
  529                          */
  530                         vm_page_undirty(mt);
  531                         if (vm_page_in_laundry(mt))
  532                                 vm_page_deactivate_noreuse(mt);
  533                         break;
  534                 case VM_PAGER_ERROR:
  535                 case VM_PAGER_FAIL:
  536                         /*
  537                          * If the page couldn't be paged out to swap because the
  538                          * pager wasn't able to find space, place the page in
  539                          * the PQ_UNSWAPPABLE holding queue.  This is an
  540                          * optimization that prevents the page daemon from
  541                          * wasting CPU cycles on pages that cannot be reclaimed
  542                          * becase no swap device is configured.
  543                          *
  544                          * Otherwise, reactivate the page so that it doesn't
  545                          * clog the laundry and inactive queues.  (We will try
  546                          * paging it out again later.)
  547                          */
  548                         if (object->type == OBJT_SWAP &&
  549                             pageout_status[i] == VM_PAGER_FAIL) {
  550                                 vm_page_unswappable(mt);
  551                                 numpagedout++;
  552                         } else
  553                                 vm_page_activate(mt);
  554                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  555                                 *eio = TRUE;
  556                         break;
  557                 case VM_PAGER_AGAIN:
  558                         if (i >= mreq && i - mreq < runlen)
  559                                 runlen = i - mreq;
  560                         break;
  561                 }
  562 
  563                 /*
  564                  * If the operation is still going, leave the page busy to
  565                  * block all other accesses. Also, leave the paging in
  566                  * progress indicator set so that we don't attempt an object
  567                  * collapse.
  568                  */
  569                 if (pageout_status[i] != VM_PAGER_PEND) {
  570                         vm_object_pip_wakeup(object);
  571                         vm_page_sunbusy(mt);
  572                 }
  573         }
  574         if (prunlen != NULL)
  575                 *prunlen = runlen;
  576         return (numpagedout);
  577 }
  578 
  579 static void
  580 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
  581 {
  582 
  583         atomic_store_rel_int(&swapdev_enabled, 1);
  584 }
  585 
  586 static void
  587 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
  588 {
  589 
  590         if (swap_pager_nswapdev() == 1)
  591                 atomic_store_rel_int(&swapdev_enabled, 0);
  592 }
  593 
  594 /*
  595  * Attempt to acquire all of the necessary locks to launder a page and
  596  * then call through the clustering layer to PUTPAGES.  Wait a short
  597  * time for a vnode lock.
  598  *
  599  * Requires the page and object lock on entry, releases both before return.
  600  * Returns 0 on success and an errno otherwise.
  601  */
  602 static int
  603 vm_pageout_clean(vm_page_t m, int *numpagedout)
  604 {
  605         struct vnode *vp;
  606         struct mount *mp;
  607         vm_object_t object;
  608         vm_pindex_t pindex;
  609         int error, lockmode;
  610 
  611         object = m->object;
  612         VM_OBJECT_ASSERT_WLOCKED(object);
  613         error = 0;
  614         vp = NULL;
  615         mp = NULL;
  616 
  617         /*
  618          * The object is already known NOT to be dead.   It
  619          * is possible for the vget() to block the whole
  620          * pageout daemon, but the new low-memory handling
  621          * code should prevent it.
  622          *
  623          * We can't wait forever for the vnode lock, we might
  624          * deadlock due to a vn_read() getting stuck in
  625          * vm_wait while holding this vnode.  We skip the 
  626          * vnode if we can't get it in a reasonable amount
  627          * of time.
  628          */
  629         if (object->type == OBJT_VNODE) {
  630                 vm_page_xunbusy(m);
  631                 vp = object->handle;
  632                 if (vp->v_type == VREG &&
  633                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
  634                         mp = NULL;
  635                         error = EDEADLK;
  636                         goto unlock_all;
  637                 }
  638                 KASSERT(mp != NULL,
  639                     ("vp %p with NULL v_mount", vp));
  640                 vm_object_reference_locked(object);
  641                 pindex = m->pindex;
  642                 VM_OBJECT_WUNLOCK(object);
  643                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
  644                     LK_SHARED : LK_EXCLUSIVE;
  645                 if (vget(vp, lockmode | LK_TIMELOCK)) {
  646                         vp = NULL;
  647                         error = EDEADLK;
  648                         goto unlock_mp;
  649                 }
  650                 VM_OBJECT_WLOCK(object);
  651 
  652                 /*
  653                  * Ensure that the object and vnode were not disassociated
  654                  * while locks were dropped.
  655                  */
  656                 if (vp->v_object != object) {
  657                         error = ENOENT;
  658                         goto unlock_all;
  659                 }
  660 
  661                 /*
  662                  * While the object was unlocked, the page may have been:
  663                  * (1) moved to a different queue,
  664                  * (2) reallocated to a different object,
  665                  * (3) reallocated to a different offset, or
  666                  * (4) cleaned.
  667                  */
  668                 if (!vm_page_in_laundry(m) || m->object != object ||
  669                     m->pindex != pindex || m->dirty == 0) {
  670                         error = ENXIO;
  671                         goto unlock_all;
  672                 }
  673 
  674                 /*
  675                  * The page may have been busied while the object lock was
  676                  * released.
  677                  */
  678                 if (vm_page_tryxbusy(m) == 0) {
  679                         error = EBUSY;
  680                         goto unlock_all;
  681                 }
  682         }
  683 
  684         /*
  685          * Remove all writeable mappings, failing if the page is wired.
  686          */
  687         if (!vm_page_try_remove_write(m)) {
  688                 vm_page_xunbusy(m);
  689                 error = EBUSY;
  690                 goto unlock_all;
  691         }
  692 
  693         /*
  694          * If a page is dirty, then it is either being washed
  695          * (but not yet cleaned) or it is still in the
  696          * laundry.  If it is still in the laundry, then we
  697          * start the cleaning operation. 
  698          */
  699         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
  700                 error = EIO;
  701 
  702 unlock_all:
  703         VM_OBJECT_WUNLOCK(object);
  704 
  705 unlock_mp:
  706         if (mp != NULL) {
  707                 if (vp != NULL)
  708                         vput(vp);
  709                 vm_object_deallocate(object);
  710                 vn_finished_write(mp);
  711         }
  712 
  713         return (error);
  714 }
  715 
  716 /*
  717  * Attempt to launder the specified number of pages.
  718  *
  719  * Returns the number of pages successfully laundered.
  720  */
  721 static int
  722 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
  723 {
  724         struct scan_state ss;
  725         struct vm_pagequeue *pq;
  726         vm_object_t object;
  727         vm_page_t m, marker;
  728         vm_page_astate_t new, old;
  729         int act_delta, error, numpagedout, queue, refs, starting_target;
  730         int vnodes_skipped;
  731         bool pageout_ok;
  732 
  733         object = NULL;
  734         starting_target = launder;
  735         vnodes_skipped = 0;
  736 
  737         /*
  738          * Scan the laundry queues for pages eligible to be laundered.  We stop
  739          * once the target number of dirty pages have been laundered, or once
  740          * we've reached the end of the queue.  A single iteration of this loop
  741          * may cause more than one page to be laundered because of clustering.
  742          *
  743          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
  744          * swap devices are configured.
  745          */
  746         if (atomic_load_acq_int(&swapdev_enabled))
  747                 queue = PQ_UNSWAPPABLE;
  748         else
  749                 queue = PQ_LAUNDRY;
  750 
  751 scan:
  752         marker = &vmd->vmd_markers[queue];
  753         pq = &vmd->vmd_pagequeues[queue];
  754         vm_pagequeue_lock(pq);
  755         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
  756         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
  757                 if (__predict_false((m->flags & PG_MARKER) != 0))
  758                         continue;
  759 
  760                 /*
  761                  * Don't touch a page that was removed from the queue after the
  762                  * page queue lock was released.  Otherwise, ensure that any
  763                  * pending queue operations, such as dequeues for wired pages,
  764                  * are handled.
  765                  */
  766                 if (vm_pageout_defer(m, queue, true))
  767                         continue;
  768 
  769                 /*
  770                  * Lock the page's object.
  771                  */
  772                 if (object == NULL || object != m->object) {
  773                         if (object != NULL)
  774                                 VM_OBJECT_WUNLOCK(object);
  775                         object = atomic_load_ptr(&m->object);
  776                         if (__predict_false(object == NULL))
  777                                 /* The page is being freed by another thread. */
  778                                 continue;
  779 
  780                         /* Depends on type-stability. */
  781                         VM_OBJECT_WLOCK(object);
  782                         if (__predict_false(m->object != object)) {
  783                                 VM_OBJECT_WUNLOCK(object);
  784                                 object = NULL;
  785                                 continue;
  786                         }
  787                 }
  788 
  789                 if (vm_page_tryxbusy(m) == 0)
  790                         continue;
  791 
  792                 /*
  793                  * Check for wirings now that we hold the object lock and have
  794                  * exclusively busied the page.  If the page is mapped, it may
  795                  * still be wired by pmap lookups.  The call to
  796                  * vm_page_try_remove_all() below atomically checks for such
  797                  * wirings and removes mappings.  If the page is unmapped, the
  798                  * wire count is guaranteed not to increase after this check.
  799                  */
  800                 if (__predict_false(vm_page_wired(m)))
  801                         goto skip_page;
  802 
  803                 /*
  804                  * Invalid pages can be easily freed.  They cannot be
  805                  * mapped; vm_page_free() asserts this.
  806                  */
  807                 if (vm_page_none_valid(m))
  808                         goto free_page;
  809 
  810                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
  811 
  812                 for (old = vm_page_astate_load(m);;) {
  813                         /*
  814                          * Check to see if the page has been removed from the
  815                          * queue since the first such check.  Leave it alone if
  816                          * so, discarding any references collected by
  817                          * pmap_ts_referenced().
  818                          */
  819                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
  820                                 goto skip_page;
  821 
  822                         new = old;
  823                         act_delta = refs;
  824                         if ((old.flags & PGA_REFERENCED) != 0) {
  825                                 new.flags &= ~PGA_REFERENCED;
  826                                 act_delta++;
  827                         }
  828                         if (act_delta == 0) {
  829                                 ;
  830                         } else if (object->ref_count != 0) {
  831                                 /*
  832                                  * Increase the activation count if the page was
  833                                  * referenced while in the laundry queue.  This
  834                                  * makes it less likely that the page will be
  835                                  * returned prematurely to the laundry queue.
  836                                  */
  837                                 new.act_count += ACT_ADVANCE +
  838                                     act_delta;
  839                                 if (new.act_count > ACT_MAX)
  840                                         new.act_count = ACT_MAX;
  841 
  842                                 new.flags &= ~PGA_QUEUE_OP_MASK;
  843                                 new.flags |= PGA_REQUEUE;
  844                                 new.queue = PQ_ACTIVE;
  845                                 if (!vm_page_pqstate_commit(m, &old, new))
  846                                         continue;
  847 
  848                                 /*
  849                                  * If this was a background laundering, count
  850                                  * activated pages towards our target.  The
  851                                  * purpose of background laundering is to ensure
  852                                  * that pages are eventually cycled through the
  853                                  * laundry queue, and an activation is a valid
  854                                  * way out.
  855                                  */
  856                                 if (!in_shortfall)
  857                                         launder--;
  858                                 VM_CNT_INC(v_reactivated);
  859                                 goto skip_page;
  860                         } else if ((object->flags & OBJ_DEAD) == 0) {
  861                                 new.flags |= PGA_REQUEUE;
  862                                 if (!vm_page_pqstate_commit(m, &old, new))
  863                                         continue;
  864                                 goto skip_page;
  865                         }
  866                         break;
  867                 }
  868 
  869                 /*
  870                  * If the page appears to be clean at the machine-independent
  871                  * layer, then remove all of its mappings from the pmap in
  872                  * anticipation of freeing it.  If, however, any of the page's
  873                  * mappings allow write access, then the page may still be
  874                  * modified until the last of those mappings are removed.
  875                  */
  876                 if (object->ref_count != 0) {
  877                         vm_page_test_dirty(m);
  878                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
  879                                 goto skip_page;
  880                 }
  881 
  882                 /*
  883                  * Clean pages are freed, and dirty pages are paged out unless
  884                  * they belong to a dead object.  Requeueing dirty pages from
  885                  * dead objects is pointless, as they are being paged out and
  886                  * freed by the thread that destroyed the object.
  887                  */
  888                 if (m->dirty == 0) {
  889 free_page:
  890                         /*
  891                          * Now we are guaranteed that no other threads are
  892                          * manipulating the page, check for a last-second
  893                          * reference.
  894                          */
  895                         if (vm_pageout_defer(m, queue, true))
  896                                 goto skip_page;
  897                         vm_page_free(m);
  898                         VM_CNT_INC(v_dfree);
  899                 } else if ((object->flags & OBJ_DEAD) == 0) {
  900                         if (object->type != OBJT_SWAP &&
  901                             object->type != OBJT_DEFAULT)
  902                                 pageout_ok = true;
  903                         else if (disable_swap_pageouts)
  904                                 pageout_ok = false;
  905                         else
  906                                 pageout_ok = true;
  907                         if (!pageout_ok) {
  908                                 vm_page_launder(m);
  909                                 goto skip_page;
  910                         }
  911 
  912                         /*
  913                          * Form a cluster with adjacent, dirty pages from the
  914                          * same object, and page out that entire cluster.
  915                          *
  916                          * The adjacent, dirty pages must also be in the
  917                          * laundry.  However, their mappings are not checked
  918                          * for new references.  Consequently, a recently
  919                          * referenced page may be paged out.  However, that
  920                          * page will not be prematurely reclaimed.  After page
  921                          * out, the page will be placed in the inactive queue,
  922                          * where any new references will be detected and the
  923                          * page reactivated.
  924                          */
  925                         error = vm_pageout_clean(m, &numpagedout);
  926                         if (error == 0) {
  927                                 launder -= numpagedout;
  928                                 ss.scanned += numpagedout;
  929                         } else if (error == EDEADLK) {
  930                                 pageout_lock_miss++;
  931                                 vnodes_skipped++;
  932                         }
  933                         object = NULL;
  934                 } else {
  935 skip_page:
  936                         vm_page_xunbusy(m);
  937                 }
  938         }
  939         if (object != NULL) {
  940                 VM_OBJECT_WUNLOCK(object);
  941                 object = NULL;
  942         }
  943         vm_pagequeue_lock(pq);
  944         vm_pageout_end_scan(&ss);
  945         vm_pagequeue_unlock(pq);
  946 
  947         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
  948                 queue = PQ_LAUNDRY;
  949                 goto scan;
  950         }
  951 
  952         /*
  953          * Wakeup the sync daemon if we skipped a vnode in a writeable object
  954          * and we didn't launder enough pages.
  955          */
  956         if (vnodes_skipped > 0 && launder > 0)
  957                 (void)speedup_syncer();
  958 
  959         return (starting_target - launder);
  960 }
  961 
  962 /*
  963  * Compute the integer square root.
  964  */
  965 static u_int
  966 isqrt(u_int num)
  967 {
  968         u_int bit, root, tmp;
  969 
  970         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
  971         root = 0;
  972         while (bit != 0) {
  973                 tmp = root + bit;
  974                 root >>= 1;
  975                 if (num >= tmp) {
  976                         num -= tmp;
  977                         root += bit;
  978                 }
  979                 bit >>= 2;
  980         }
  981         return (root);
  982 }
  983 
  984 /*
  985  * Perform the work of the laundry thread: periodically wake up and determine
  986  * whether any pages need to be laundered.  If so, determine the number of pages
  987  * that need to be laundered, and launder them.
  988  */
  989 static void
  990 vm_pageout_laundry_worker(void *arg)
  991 {
  992         struct vm_domain *vmd;
  993         struct vm_pagequeue *pq;
  994         uint64_t nclean, ndirty, nfreed;
  995         int domain, last_target, launder, shortfall, shortfall_cycle, target;
  996         bool in_shortfall;
  997 
  998         domain = (uintptr_t)arg;
  999         vmd = VM_DOMAIN(domain);
 1000         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
 1001         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
 1002 
 1003         shortfall = 0;
 1004         in_shortfall = false;
 1005         shortfall_cycle = 0;
 1006         last_target = target = 0;
 1007         nfreed = 0;
 1008 
 1009         /*
 1010          * Calls to these handlers are serialized by the swap syscall lock.
 1011          */
 1012         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
 1013             EVENTHANDLER_PRI_ANY);
 1014         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
 1015             EVENTHANDLER_PRI_ANY);
 1016 
 1017         /*
 1018          * The pageout laundry worker is never done, so loop forever.
 1019          */
 1020         for (;;) {
 1021                 KASSERT(target >= 0, ("negative target %d", target));
 1022                 KASSERT(shortfall_cycle >= 0,
 1023                     ("negative cycle %d", shortfall_cycle));
 1024                 launder = 0;
 1025 
 1026                 /*
 1027                  * First determine whether we need to launder pages to meet a
 1028                  * shortage of free pages.
 1029                  */
 1030                 if (shortfall > 0) {
 1031                         in_shortfall = true;
 1032                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
 1033                         target = shortfall;
 1034                 } else if (!in_shortfall)
 1035                         goto trybackground;
 1036                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
 1037                         /*
 1038                          * We recently entered shortfall and began laundering
 1039                          * pages.  If we have completed that laundering run
 1040                          * (and we are no longer in shortfall) or we have met
 1041                          * our laundry target through other activity, then we
 1042                          * can stop laundering pages.
 1043                          */
 1044                         in_shortfall = false;
 1045                         target = 0;
 1046                         goto trybackground;
 1047                 }
 1048                 launder = target / shortfall_cycle--;
 1049                 goto dolaundry;
 1050 
 1051                 /*
 1052                  * There's no immediate need to launder any pages; see if we
 1053                  * meet the conditions to perform background laundering:
 1054                  *
 1055                  * 1. The ratio of dirty to clean inactive pages exceeds the
 1056                  *    background laundering threshold, or
 1057                  * 2. we haven't yet reached the target of the current
 1058                  *    background laundering run.
 1059                  *
 1060                  * The background laundering threshold is not a constant.
 1061                  * Instead, it is a slowly growing function of the number of
 1062                  * clean pages freed by the page daemon since the last
 1063                  * background laundering.  Thus, as the ratio of dirty to
 1064                  * clean inactive pages grows, the amount of memory pressure
 1065                  * required to trigger laundering decreases.  We ensure
 1066                  * that the threshold is non-zero after an inactive queue
 1067                  * scan, even if that scan failed to free a single clean page.
 1068                  */
 1069 trybackground:
 1070                 nclean = vmd->vmd_free_count +
 1071                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
 1072                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
 1073                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
 1074                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
 1075                         target = vmd->vmd_background_launder_target;
 1076                 }
 1077 
 1078                 /*
 1079                  * We have a non-zero background laundering target.  If we've
 1080                  * laundered up to our maximum without observing a page daemon
 1081                  * request, just stop.  This is a safety belt that ensures we
 1082                  * don't launder an excessive amount if memory pressure is low
 1083                  * and the ratio of dirty to clean pages is large.  Otherwise,
 1084                  * proceed at the background laundering rate.
 1085                  */
 1086                 if (target > 0) {
 1087                         if (nfreed > 0) {
 1088                                 nfreed = 0;
 1089                                 last_target = target;
 1090                         } else if (last_target - target >=
 1091                             vm_background_launder_max * PAGE_SIZE / 1024) {
 1092                                 target = 0;
 1093                         }
 1094                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
 1095                         launder /= VM_LAUNDER_RATE;
 1096                         if (launder > target)
 1097                                 launder = target;
 1098                 }
 1099 
 1100 dolaundry:
 1101                 if (launder > 0) {
 1102                         /*
 1103                          * Because of I/O clustering, the number of laundered
 1104                          * pages could exceed "target" by the maximum size of
 1105                          * a cluster minus one. 
 1106                          */
 1107                         target -= min(vm_pageout_launder(vmd, launder,
 1108                             in_shortfall), target);
 1109                         pause("laundp", hz / VM_LAUNDER_RATE);
 1110                 }
 1111 
 1112                 /*
 1113                  * If we're not currently laundering pages and the page daemon
 1114                  * hasn't posted a new request, sleep until the page daemon
 1115                  * kicks us.
 1116                  */
 1117                 vm_pagequeue_lock(pq);
 1118                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
 1119                         (void)mtx_sleep(&vmd->vmd_laundry_request,
 1120                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
 1121 
 1122                 /*
 1123                  * If the pagedaemon has indicated that it's in shortfall, start
 1124                  * a shortfall laundering unless we're already in the middle of
 1125                  * one.  This may preempt a background laundering.
 1126                  */
 1127                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
 1128                     (!in_shortfall || shortfall_cycle == 0)) {
 1129                         shortfall = vm_laundry_target(vmd) +
 1130                             vmd->vmd_pageout_deficit;
 1131                         target = 0;
 1132                 } else
 1133                         shortfall = 0;
 1134 
 1135                 if (target == 0)
 1136                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
 1137                 nfreed += vmd->vmd_clean_pages_freed;
 1138                 vmd->vmd_clean_pages_freed = 0;
 1139                 vm_pagequeue_unlock(pq);
 1140         }
 1141 }
 1142 
 1143 /*
 1144  * Compute the number of pages we want to try to move from the
 1145  * active queue to either the inactive or laundry queue.
 1146  *
 1147  * When scanning active pages during a shortage, we make clean pages
 1148  * count more heavily towards the page shortage than dirty pages.
 1149  * This is because dirty pages must be laundered before they can be
 1150  * reused and thus have less utility when attempting to quickly
 1151  * alleviate a free page shortage.  However, this weighting also
 1152  * causes the scan to deactivate dirty pages more aggressively,
 1153  * improving the effectiveness of clustering.
 1154  */
 1155 static int
 1156 vm_pageout_active_target(struct vm_domain *vmd)
 1157 {
 1158         int shortage;
 1159 
 1160         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
 1161             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
 1162             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
 1163         shortage *= act_scan_laundry_weight;
 1164         return (shortage);
 1165 }
 1166 
 1167 /*
 1168  * Scan the active queue.  If there is no shortage of inactive pages, scan a
 1169  * small portion of the queue in order to maintain quasi-LRU.
 1170  */
 1171 static void
 1172 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
 1173 {
 1174         struct scan_state ss;
 1175         vm_object_t object;
 1176         vm_page_t m, marker;
 1177         struct vm_pagequeue *pq;
 1178         vm_page_astate_t old, new;
 1179         long min_scan;
 1180         int act_delta, max_scan, ps_delta, refs, scan_tick;
 1181         uint8_t nqueue;
 1182 
 1183         marker = &vmd->vmd_markers[PQ_ACTIVE];
 1184         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
 1185         vm_pagequeue_lock(pq);
 1186 
 1187         /*
 1188          * If we're just idle polling attempt to visit every
 1189          * active page within 'update_period' seconds.
 1190          */
 1191         scan_tick = ticks;
 1192         if (vm_pageout_update_period != 0) {
 1193                 min_scan = pq->pq_cnt;
 1194                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
 1195                 min_scan /= hz * vm_pageout_update_period;
 1196         } else
 1197                 min_scan = 0;
 1198         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
 1199                 vmd->vmd_last_active_scan = scan_tick;
 1200 
 1201         /*
 1202          * Scan the active queue for pages that can be deactivated.  Update
 1203          * the per-page activity counter and use it to identify deactivation
 1204          * candidates.  Held pages may be deactivated.
 1205          *
 1206          * To avoid requeuing each page that remains in the active queue, we
 1207          * implement the CLOCK algorithm.  To keep the implementation of the
 1208          * enqueue operation consistent for all page queues, we use two hands,
 1209          * represented by marker pages. Scans begin at the first hand, which
 1210          * precedes the second hand in the queue.  When the two hands meet,
 1211          * they are moved back to the head and tail of the queue, respectively,
 1212          * and scanning resumes.
 1213          */
 1214         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
 1215 act_scan:
 1216         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
 1217         while ((m = vm_pageout_next(&ss, false)) != NULL) {
 1218                 if (__predict_false(m == &vmd->vmd_clock[1])) {
 1219                         vm_pagequeue_lock(pq);
 1220                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
 1221                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
 1222                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
 1223                             plinks.q);
 1224                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
 1225                             plinks.q);
 1226                         max_scan -= ss.scanned;
 1227                         vm_pageout_end_scan(&ss);
 1228                         goto act_scan;
 1229                 }
 1230                 if (__predict_false((m->flags & PG_MARKER) != 0))
 1231                         continue;
 1232 
 1233                 /*
 1234                  * Don't touch a page that was removed from the queue after the
 1235                  * page queue lock was released.  Otherwise, ensure that any
 1236                  * pending queue operations, such as dequeues for wired pages,
 1237                  * are handled.
 1238                  */
 1239                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
 1240                         continue;
 1241 
 1242                 /*
 1243                  * A page's object pointer may be set to NULL before
 1244                  * the object lock is acquired.
 1245                  */
 1246                 object = atomic_load_ptr(&m->object);
 1247                 if (__predict_false(object == NULL))
 1248                         /*
 1249                          * The page has been removed from its object.
 1250                          */
 1251                         continue;
 1252 
 1253                 /* Deferred free of swap space. */
 1254                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
 1255                     VM_OBJECT_TRYWLOCK(object)) {
 1256                         if (m->object == object)
 1257                                 vm_pager_page_unswapped(m);
 1258                         VM_OBJECT_WUNLOCK(object);
 1259                 }
 1260 
 1261                 /*
 1262                  * Check to see "how much" the page has been used.
 1263                  *
 1264                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
 1265                  * that a reference from a concurrently destroyed mapping is
 1266                  * observed here and now.
 1267                  *
 1268                  * Perform an unsynchronized object ref count check.  While
 1269                  * the page lock ensures that the page is not reallocated to
 1270                  * another object, in particular, one with unmanaged mappings
 1271                  * that cannot support pmap_ts_referenced(), two races are,
 1272                  * nonetheless, possible:
 1273                  * 1) The count was transitioning to zero, but we saw a non-
 1274                  *    zero value.  pmap_ts_referenced() will return zero
 1275                  *    because the page is not mapped.
 1276                  * 2) The count was transitioning to one, but we saw zero.
 1277                  *    This race delays the detection of a new reference.  At
 1278                  *    worst, we will deactivate and reactivate the page.
 1279                  */
 1280                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
 1281 
 1282                 old = vm_page_astate_load(m);
 1283                 do {
 1284                         /*
 1285                          * Check to see if the page has been removed from the
 1286                          * queue since the first such check.  Leave it alone if
 1287                          * so, discarding any references collected by
 1288                          * pmap_ts_referenced().
 1289                          */
 1290                         if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
 1291                                 ps_delta = 0;
 1292                                 break;
 1293                         }
 1294 
 1295                         /*
 1296                          * Advance or decay the act_count based on recent usage.
 1297                          */
 1298                         new = old;
 1299                         act_delta = refs;
 1300                         if ((old.flags & PGA_REFERENCED) != 0) {
 1301                                 new.flags &= ~PGA_REFERENCED;
 1302                                 act_delta++;
 1303                         }
 1304                         if (act_delta != 0) {
 1305                                 new.act_count += ACT_ADVANCE + act_delta;
 1306                                 if (new.act_count > ACT_MAX)
 1307                                         new.act_count = ACT_MAX;
 1308                         } else {
 1309                                 new.act_count -= min(new.act_count,
 1310                                     ACT_DECLINE);
 1311                         }
 1312 
 1313                         if (new.act_count > 0) {
 1314                                 /*
 1315                                  * Adjust the activation count and keep the page
 1316                                  * in the active queue.  The count might be left
 1317                                  * unchanged if it is saturated.  The page may
 1318                                  * have been moved to a different queue since we
 1319                                  * started the scan, in which case we move it
 1320                                  * back.
 1321                                  */
 1322                                 ps_delta = 0;
 1323                                 if (old.queue != PQ_ACTIVE) {
 1324                                         new.flags &= ~PGA_QUEUE_OP_MASK;
 1325                                         new.flags |= PGA_REQUEUE;
 1326                                         new.queue = PQ_ACTIVE;
 1327                                 }
 1328                         } else {
 1329                                 /*
 1330                                  * When not short for inactive pages, let dirty
 1331                                  * pages go through the inactive queue before
 1332                                  * moving to the laundry queue.  This gives them
 1333                                  * some extra time to be reactivated,
 1334                                  * potentially avoiding an expensive pageout.
 1335                                  * However, during a page shortage, the inactive
 1336                                  * queue is necessarily small, and so dirty
 1337                                  * pages would only spend a trivial amount of
 1338                                  * time in the inactive queue.  Therefore, we
 1339                                  * might as well place them directly in the
 1340                                  * laundry queue to reduce queuing overhead.
 1341                                  *
 1342                                  * Calling vm_page_test_dirty() here would
 1343                                  * require acquisition of the object's write
 1344                                  * lock.  However, during a page shortage,
 1345                                  * directing dirty pages into the laundry queue
 1346                                  * is only an optimization and not a
 1347                                  * requirement.  Therefore, we simply rely on
 1348                                  * the opportunistic updates to the page's dirty
 1349                                  * field by the pmap.
 1350                                  */
 1351                                 if (page_shortage <= 0) {
 1352                                         nqueue = PQ_INACTIVE;
 1353                                         ps_delta = 0;
 1354                                 } else if (m->dirty == 0) {
 1355                                         nqueue = PQ_INACTIVE;
 1356                                         ps_delta = act_scan_laundry_weight;
 1357                                 } else {
 1358                                         nqueue = PQ_LAUNDRY;
 1359                                         ps_delta = 1;
 1360                                 }
 1361 
 1362                                 new.flags &= ~PGA_QUEUE_OP_MASK;
 1363                                 new.flags |= PGA_REQUEUE;
 1364                                 new.queue = nqueue;
 1365                         }
 1366                 } while (!vm_page_pqstate_commit(m, &old, new));
 1367 
 1368                 page_shortage -= ps_delta;
 1369         }
 1370         vm_pagequeue_lock(pq);
 1371         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
 1372         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
 1373         vm_pageout_end_scan(&ss);
 1374         vm_pagequeue_unlock(pq);
 1375 }
 1376 
 1377 static int
 1378 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
 1379     vm_page_t m)
 1380 {
 1381         vm_page_astate_t as;
 1382 
 1383         vm_pagequeue_assert_locked(pq);
 1384 
 1385         as = vm_page_astate_load(m);
 1386         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
 1387                 return (0);
 1388         vm_page_aflag_set(m, PGA_ENQUEUED);
 1389         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
 1390         return (1);
 1391 }
 1392 
 1393 /*
 1394  * Re-add stuck pages to the inactive queue.  We will examine them again
 1395  * during the next scan.  If the queue state of a page has changed since
 1396  * it was physically removed from the page queue in
 1397  * vm_pageout_collect_batch(), don't do anything with that page.
 1398  */
 1399 static void
 1400 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
 1401     vm_page_t m)
 1402 {
 1403         struct vm_pagequeue *pq;
 1404         vm_page_t marker;
 1405         int delta;
 1406 
 1407         delta = 0;
 1408         marker = ss->marker;
 1409         pq = ss->pq;
 1410 
 1411         if (m != NULL) {
 1412                 if (vm_batchqueue_insert(bq, m))
 1413                         return;
 1414                 vm_pagequeue_lock(pq);
 1415                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
 1416         } else
 1417                 vm_pagequeue_lock(pq);
 1418         while ((m = vm_batchqueue_pop(bq)) != NULL)
 1419                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
 1420         vm_pagequeue_cnt_add(pq, delta);
 1421         vm_pagequeue_unlock(pq);
 1422         vm_batchqueue_init(bq);
 1423 }
 1424 
 1425 static void
 1426 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
 1427 {
 1428         struct timeval start, end;
 1429         struct scan_state ss;
 1430         struct vm_batchqueue rq;
 1431         struct vm_page marker_page;
 1432         vm_page_t m, marker;
 1433         struct vm_pagequeue *pq;
 1434         vm_object_t object;
 1435         vm_page_astate_t old, new;
 1436         int act_delta, addl_page_shortage, starting_page_shortage, refs;
 1437 
 1438         object = NULL;
 1439         vm_batchqueue_init(&rq);
 1440         getmicrouptime(&start);
 1441 
 1442         /*
 1443          * The addl_page_shortage is an estimate of the number of temporarily
 1444          * stuck pages in the inactive queue.  In other words, the
 1445          * number of pages from the inactive count that should be
 1446          * discounted in setting the target for the active queue scan.
 1447          */
 1448         addl_page_shortage = 0;
 1449 
 1450         /*
 1451          * Start scanning the inactive queue for pages that we can free.  The
 1452          * scan will stop when we reach the target or we have scanned the
 1453          * entire queue.  (Note that m->a.act_count is not used to make
 1454          * decisions for the inactive queue, only for the active queue.)
 1455          */
 1456         starting_page_shortage = page_shortage;
 1457         marker = &marker_page;
 1458         vm_page_init_marker(marker, PQ_INACTIVE, 0);
 1459         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
 1460         vm_pagequeue_lock(pq);
 1461         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
 1462         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
 1463                 KASSERT((m->flags & PG_MARKER) == 0,
 1464                     ("marker page %p was dequeued", m));
 1465 
 1466                 /*
 1467                  * Don't touch a page that was removed from the queue after the
 1468                  * page queue lock was released.  Otherwise, ensure that any
 1469                  * pending queue operations, such as dequeues for wired pages,
 1470                  * are handled.
 1471                  */
 1472                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
 1473                         continue;
 1474 
 1475                 /*
 1476                  * Lock the page's object.
 1477                  */
 1478                 if (object == NULL || object != m->object) {
 1479                         if (object != NULL)
 1480                                 VM_OBJECT_WUNLOCK(object);
 1481                         object = atomic_load_ptr(&m->object);
 1482                         if (__predict_false(object == NULL))
 1483                                 /* The page is being freed by another thread. */
 1484                                 continue;
 1485 
 1486                         /* Depends on type-stability. */
 1487                         VM_OBJECT_WLOCK(object);
 1488                         if (__predict_false(m->object != object)) {
 1489                                 VM_OBJECT_WUNLOCK(object);
 1490                                 object = NULL;
 1491                                 goto reinsert;
 1492                         }
 1493                 }
 1494 
 1495                 if (vm_page_tryxbusy(m) == 0) {
 1496                         /*
 1497                          * Don't mess with busy pages.  Leave them at
 1498                          * the front of the queue.  Most likely, they
 1499                          * are being paged out and will leave the
 1500                          * queue shortly after the scan finishes.  So,
 1501                          * they ought to be discounted from the
 1502                          * inactive count.
 1503                          */
 1504                         addl_page_shortage++;
 1505                         goto reinsert;
 1506                 }
 1507 
 1508                 /* Deferred free of swap space. */
 1509                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
 1510                         vm_pager_page_unswapped(m);
 1511 
 1512                 /*
 1513                  * Check for wirings now that we hold the object lock and have
 1514                  * exclusively busied the page.  If the page is mapped, it may
 1515                  * still be wired by pmap lookups.  The call to
 1516                  * vm_page_try_remove_all() below atomically checks for such
 1517                  * wirings and removes mappings.  If the page is unmapped, the
 1518                  * wire count is guaranteed not to increase after this check.
 1519                  */
 1520                 if (__predict_false(vm_page_wired(m)))
 1521                         goto skip_page;
 1522 
 1523                 /*
 1524                  * Invalid pages can be easily freed. They cannot be
 1525                  * mapped, vm_page_free() asserts this.
 1526                  */
 1527                 if (vm_page_none_valid(m))
 1528                         goto free_page;
 1529 
 1530                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
 1531 
 1532                 for (old = vm_page_astate_load(m);;) {
 1533                         /*
 1534                          * Check to see if the page has been removed from the
 1535                          * queue since the first such check.  Leave it alone if
 1536                          * so, discarding any references collected by
 1537                          * pmap_ts_referenced().
 1538                          */
 1539                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
 1540                                 goto skip_page;
 1541 
 1542                         new = old;
 1543                         act_delta = refs;
 1544                         if ((old.flags & PGA_REFERENCED) != 0) {
 1545                                 new.flags &= ~PGA_REFERENCED;
 1546                                 act_delta++;
 1547                         }
 1548                         if (act_delta == 0) {
 1549                                 ;
 1550                         } else if (object->ref_count != 0) {
 1551                                 /*
 1552                                  * Increase the activation count if the
 1553                                  * page was referenced while in the
 1554                                  * inactive queue.  This makes it less
 1555                                  * likely that the page will be returned
 1556                                  * prematurely to the inactive queue.
 1557                                  */
 1558                                 new.act_count += ACT_ADVANCE +
 1559                                     act_delta;
 1560                                 if (new.act_count > ACT_MAX)
 1561                                         new.act_count = ACT_MAX;
 1562 
 1563                                 new.flags &= ~PGA_QUEUE_OP_MASK;
 1564                                 new.flags |= PGA_REQUEUE;
 1565                                 new.queue = PQ_ACTIVE;
 1566                                 if (!vm_page_pqstate_commit(m, &old, new))
 1567                                         continue;
 1568 
 1569                                 VM_CNT_INC(v_reactivated);
 1570                                 goto skip_page;
 1571                         } else if ((object->flags & OBJ_DEAD) == 0) {
 1572                                 new.queue = PQ_INACTIVE;
 1573                                 new.flags |= PGA_REQUEUE;
 1574                                 if (!vm_page_pqstate_commit(m, &old, new))
 1575                                         continue;
 1576                                 goto skip_page;
 1577                         }
 1578                         break;
 1579                 }
 1580 
 1581                 /*
 1582                  * If the page appears to be clean at the machine-independent
 1583                  * layer, then remove all of its mappings from the pmap in
 1584                  * anticipation of freeing it.  If, however, any of the page's
 1585                  * mappings allow write access, then the page may still be
 1586                  * modified until the last of those mappings are removed.
 1587                  */
 1588                 if (object->ref_count != 0) {
 1589                         vm_page_test_dirty(m);
 1590                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
 1591                                 goto skip_page;
 1592                 }
 1593 
 1594                 /*
 1595                  * Clean pages can be freed, but dirty pages must be sent back
 1596                  * to the laundry, unless they belong to a dead object.
 1597                  * Requeueing dirty pages from dead objects is pointless, as
 1598                  * they are being paged out and freed by the thread that
 1599                  * destroyed the object.
 1600                  */
 1601                 if (m->dirty == 0) {
 1602 free_page:
 1603                         /*
 1604                          * Now we are guaranteed that no other threads are
 1605                          * manipulating the page, check for a last-second
 1606                          * reference that would save it from doom.
 1607                          */
 1608                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
 1609                                 goto skip_page;
 1610 
 1611                         /*
 1612                          * Because we dequeued the page and have already checked
 1613                          * for pending dequeue and enqueue requests, we can
 1614                          * safely disassociate the page from the inactive queue
 1615                          * without holding the queue lock.
 1616                          */
 1617                         m->a.queue = PQ_NONE;
 1618                         vm_page_free(m);
 1619                         page_shortage--;
 1620                         continue;
 1621                 }
 1622                 if ((object->flags & OBJ_DEAD) == 0)
 1623                         vm_page_launder(m);
 1624 skip_page:
 1625                 vm_page_xunbusy(m);
 1626                 continue;
 1627 reinsert:
 1628                 vm_pageout_reinsert_inactive(&ss, &rq, m);
 1629         }
 1630         if (object != NULL)
 1631                 VM_OBJECT_WUNLOCK(object);
 1632         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
 1633         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
 1634         vm_pagequeue_lock(pq);
 1635         vm_pageout_end_scan(&ss);
 1636         vm_pagequeue_unlock(pq);
 1637 
 1638         /*
 1639          * Record the remaining shortage and the progress and rate it was made.
 1640          */
 1641         atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
 1642         getmicrouptime(&end);
 1643         timevalsub(&end, &start);
 1644         atomic_add_int(&vmd->vmd_inactive_us,
 1645             end.tv_sec * 1000000 + end.tv_usec);
 1646         atomic_add_int(&vmd->vmd_inactive_freed,
 1647             starting_page_shortage - page_shortage);
 1648 }
 1649 
 1650 /*
 1651  * Dispatch a number of inactive threads according to load and collect the
 1652  * results to present a coherent view of paging activity on this domain.
 1653  */
 1654 static int
 1655 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
 1656 {
 1657         u_int freed, pps, slop, threads, us;
 1658 
 1659         vmd->vmd_inactive_shortage = shortage;
 1660         slop = 0;
 1661 
 1662         /*
 1663          * If we have more work than we can do in a quarter of our interval, we
 1664          * fire off multiple threads to process it.
 1665          */
 1666         threads = vmd->vmd_inactive_threads;
 1667         if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
 1668             shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
 1669                 vmd->vmd_inactive_shortage /= threads;
 1670                 slop = shortage % threads;
 1671                 vm_domain_pageout_lock(vmd);
 1672                 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
 1673                 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
 1674                 wakeup(&vmd->vmd_inactive_shortage);
 1675                 vm_domain_pageout_unlock(vmd);
 1676         }
 1677 
 1678         /* Run the local thread scan. */
 1679         vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
 1680 
 1681         /*
 1682          * Block until helper threads report results and then accumulate
 1683          * totals.
 1684          */
 1685         blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
 1686         freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
 1687         VM_CNT_ADD(v_dfree, freed);
 1688 
 1689         /*
 1690          * Calculate the per-thread paging rate with an exponential decay of
 1691          * prior results.  Careful to avoid integer rounding errors with large
 1692          * us values.
 1693          */
 1694         us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
 1695         if (us > 1000000)
 1696                 /* Keep rounding to tenths */
 1697                 pps = (freed * 10) / ((us * 10) / 1000000);
 1698         else
 1699                 pps = (1000000 / us) * freed;
 1700         vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
 1701 
 1702         return (shortage - freed);
 1703 }
 1704 
 1705 /*
 1706  * Attempt to reclaim the requested number of pages from the inactive queue.
 1707  * Returns true if the shortage was addressed.
 1708  */
 1709 static int
 1710 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
 1711 {
 1712         struct vm_pagequeue *pq;
 1713         u_int addl_page_shortage, deficit, page_shortage;
 1714         u_int starting_page_shortage;
 1715 
 1716         /*
 1717          * vmd_pageout_deficit counts the number of pages requested in
 1718          * allocations that failed because of a free page shortage.  We assume
 1719          * that the allocations will be reattempted and thus include the deficit
 1720          * in our scan target.
 1721          */
 1722         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
 1723         starting_page_shortage = shortage + deficit;
 1724 
 1725         /*
 1726          * Run the inactive scan on as many threads as is necessary.
 1727          */
 1728         page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
 1729         addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
 1730 
 1731         /*
 1732          * Wake up the laundry thread so that it can perform any needed
 1733          * laundering.  If we didn't meet our target, we're in shortfall and
 1734          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
 1735          * swap devices are configured, the laundry thread has no work to do, so
 1736          * don't bother waking it up.
 1737          *
 1738          * The laundry thread uses the number of inactive queue scans elapsed
 1739          * since the last laundering to determine whether to launder again, so
 1740          * keep count.
 1741          */
 1742         if (starting_page_shortage > 0) {
 1743                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
 1744                 vm_pagequeue_lock(pq);
 1745                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
 1746                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
 1747                         if (page_shortage > 0) {
 1748                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
 1749                                 VM_CNT_INC(v_pdshortfalls);
 1750                         } else if (vmd->vmd_laundry_request !=
 1751                             VM_LAUNDRY_SHORTFALL)
 1752                                 vmd->vmd_laundry_request =
 1753                                     VM_LAUNDRY_BACKGROUND;
 1754                         wakeup(&vmd->vmd_laundry_request);
 1755                 }
 1756                 vmd->vmd_clean_pages_freed +=
 1757                     starting_page_shortage - page_shortage;
 1758                 vm_pagequeue_unlock(pq);
 1759         }
 1760 
 1761         /*
 1762          * Wakeup the swapout daemon if we didn't free the targeted number of
 1763          * pages.
 1764          */
 1765         if (page_shortage > 0)
 1766                 vm_swapout_run();
 1767 
 1768         /*
 1769          * If the inactive queue scan fails repeatedly to meet its
 1770          * target, kill the largest process.
 1771          */
 1772         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
 1773 
 1774         /*
 1775          * Reclaim pages by swapping out idle processes, if configured to do so.
 1776          */
 1777         vm_swapout_run_idle();
 1778 
 1779         /*
 1780          * See the description of addl_page_shortage above.
 1781          */
 1782         *addl_shortage = addl_page_shortage + deficit;
 1783 
 1784         return (page_shortage <= 0);
 1785 }
 1786 
 1787 static int vm_pageout_oom_vote;
 1788 
 1789 /*
 1790  * The pagedaemon threads randlomly select one to perform the
 1791  * OOM.  Trying to kill processes before all pagedaemons
 1792  * failed to reach free target is premature.
 1793  */
 1794 static void
 1795 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
 1796     int starting_page_shortage)
 1797 {
 1798         int old_vote;
 1799 
 1800         if (starting_page_shortage <= 0 || starting_page_shortage !=
 1801             page_shortage)
 1802                 vmd->vmd_oom_seq = 0;
 1803         else
 1804                 vmd->vmd_oom_seq++;
 1805         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
 1806                 if (vmd->vmd_oom) {
 1807                         vmd->vmd_oom = FALSE;
 1808                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1809                 }
 1810                 return;
 1811         }
 1812 
 1813         /*
 1814          * Do not follow the call sequence until OOM condition is
 1815          * cleared.
 1816          */
 1817         vmd->vmd_oom_seq = 0;
 1818 
 1819         if (vmd->vmd_oom)
 1820                 return;
 1821 
 1822         vmd->vmd_oom = TRUE;
 1823         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
 1824         if (old_vote != vm_ndomains - 1)
 1825                 return;
 1826 
 1827         /*
 1828          * The current pagedaemon thread is the last in the quorum to
 1829          * start OOM.  Initiate the selection and signaling of the
 1830          * victim.
 1831          */
 1832         vm_pageout_oom(VM_OOM_MEM);
 1833 
 1834         /*
 1835          * After one round of OOM terror, recall our vote.  On the
 1836          * next pass, current pagedaemon would vote again if the low
 1837          * memory condition is still there, due to vmd_oom being
 1838          * false.
 1839          */
 1840         vmd->vmd_oom = FALSE;
 1841         atomic_subtract_int(&vm_pageout_oom_vote, 1);
 1842 }
 1843 
 1844 /*
 1845  * The OOM killer is the page daemon's action of last resort when
 1846  * memory allocation requests have been stalled for a prolonged period
 1847  * of time because it cannot reclaim memory.  This function computes
 1848  * the approximate number of physical pages that could be reclaimed if
 1849  * the specified address space is destroyed.
 1850  *
 1851  * Private, anonymous memory owned by the address space is the
 1852  * principal resource that we expect to recover after an OOM kill.
 1853  * Since the physical pages mapped by the address space's COW entries
 1854  * are typically shared pages, they are unlikely to be released and so
 1855  * they are not counted.
 1856  *
 1857  * To get to the point where the page daemon runs the OOM killer, its
 1858  * efforts to write-back vnode-backed pages may have stalled.  This
 1859  * could be caused by a memory allocation deadlock in the write path
 1860  * that might be resolved by an OOM kill.  Therefore, physical pages
 1861  * belonging to vnode-backed objects are counted, because they might
 1862  * be freed without being written out first if the address space holds
 1863  * the last reference to an unlinked vnode.
 1864  *
 1865  * Similarly, physical pages belonging to OBJT_PHYS objects are
 1866  * counted because the address space might hold the last reference to
 1867  * the object.
 1868  */
 1869 static long
 1870 vm_pageout_oom_pagecount(struct vmspace *vmspace)
 1871 {
 1872         vm_map_t map;
 1873         vm_map_entry_t entry;
 1874         vm_object_t obj;
 1875         long res;
 1876 
 1877         map = &vmspace->vm_map;
 1878         KASSERT(!map->system_map, ("system map"));
 1879         sx_assert(&map->lock, SA_LOCKED);
 1880         res = 0;
 1881         VM_MAP_ENTRY_FOREACH(entry, map) {
 1882                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 1883                         continue;
 1884                 obj = entry->object.vm_object;
 1885                 if (obj == NULL)
 1886                         continue;
 1887                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
 1888                     obj->ref_count != 1)
 1889                         continue;
 1890                 switch (obj->type) {
 1891                 case OBJT_DEFAULT:
 1892                 case OBJT_SWAP:
 1893                 case OBJT_PHYS:
 1894                 case OBJT_VNODE:
 1895                         res += obj->resident_page_count;
 1896                         break;
 1897                 }
 1898         }
 1899         return (res);
 1900 }
 1901 
 1902 static int vm_oom_ratelim_last;
 1903 static int vm_oom_pf_secs = 10;
 1904 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
 1905     "");
 1906 static struct mtx vm_oom_ratelim_mtx;
 1907 
 1908 void
 1909 vm_pageout_oom(int shortage)
 1910 {
 1911         struct proc *p, *bigproc;
 1912         vm_offset_t size, bigsize;
 1913         struct thread *td;
 1914         struct vmspace *vm;
 1915         int now;
 1916         bool breakout;
 1917 
 1918         /*
 1919          * For OOM requests originating from vm_fault(), there is a high
 1920          * chance that a single large process faults simultaneously in
 1921          * several threads.  Also, on an active system running many
 1922          * processes of middle-size, like buildworld, all of them
 1923          * could fault almost simultaneously as well.
 1924          *
 1925          * To avoid killing too many processes, rate-limit OOMs
 1926          * initiated by vm_fault() time-outs on the waits for free
 1927          * pages.
 1928          */
 1929         mtx_lock(&vm_oom_ratelim_mtx);
 1930         now = ticks;
 1931         if (shortage == VM_OOM_MEM_PF &&
 1932             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
 1933                 mtx_unlock(&vm_oom_ratelim_mtx);
 1934                 return;
 1935         }
 1936         vm_oom_ratelim_last = now;
 1937         mtx_unlock(&vm_oom_ratelim_mtx);
 1938 
 1939         /*
 1940          * We keep the process bigproc locked once we find it to keep anyone
 1941          * from messing with it; however, there is a possibility of
 1942          * deadlock if process B is bigproc and one of its child processes
 1943          * attempts to propagate a signal to B while we are waiting for A's
 1944          * lock while walking this list.  To avoid this, we don't block on
 1945          * the process lock but just skip a process if it is already locked.
 1946          */
 1947         bigproc = NULL;
 1948         bigsize = 0;
 1949         sx_slock(&allproc_lock);
 1950         FOREACH_PROC_IN_SYSTEM(p) {
 1951                 PROC_LOCK(p);
 1952 
 1953                 /*
 1954                  * If this is a system, protected or killed process, skip it.
 1955                  */
 1956                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
 1957                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
 1958                     p->p_pid == 1 || P_KILLED(p) ||
 1959                     (p->p_pid < 48 && swap_pager_avail != 0)) {
 1960                         PROC_UNLOCK(p);
 1961                         continue;
 1962                 }
 1963                 /*
 1964                  * If the process is in a non-running type state,
 1965                  * don't touch it.  Check all the threads individually.
 1966                  */
 1967                 breakout = false;
 1968                 FOREACH_THREAD_IN_PROC(p, td) {
 1969                         thread_lock(td);
 1970                         if (!TD_ON_RUNQ(td) &&
 1971                             !TD_IS_RUNNING(td) &&
 1972                             !TD_IS_SLEEPING(td) &&
 1973                             !TD_IS_SUSPENDED(td) &&
 1974                             !TD_IS_SWAPPED(td)) {
 1975                                 thread_unlock(td);
 1976                                 breakout = true;
 1977                                 break;
 1978                         }
 1979                         thread_unlock(td);
 1980                 }
 1981                 if (breakout) {
 1982                         PROC_UNLOCK(p);
 1983                         continue;
 1984                 }
 1985                 /*
 1986                  * get the process size
 1987                  */
 1988                 vm = vmspace_acquire_ref(p);
 1989                 if (vm == NULL) {
 1990                         PROC_UNLOCK(p);
 1991                         continue;
 1992                 }
 1993                 _PHOLD_LITE(p);
 1994                 PROC_UNLOCK(p);
 1995                 sx_sunlock(&allproc_lock);
 1996                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1997                         vmspace_free(vm);
 1998                         sx_slock(&allproc_lock);
 1999                         PRELE(p);
 2000                         continue;
 2001                 }
 2002                 size = vmspace_swap_count(vm);
 2003                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
 2004                         size += vm_pageout_oom_pagecount(vm);
 2005                 vm_map_unlock_read(&vm->vm_map);
 2006                 vmspace_free(vm);
 2007                 sx_slock(&allproc_lock);
 2008 
 2009                 /*
 2010                  * If this process is bigger than the biggest one,
 2011                  * remember it.
 2012                  */
 2013                 if (size > bigsize) {
 2014                         if (bigproc != NULL)
 2015                                 PRELE(bigproc);
 2016                         bigproc = p;
 2017                         bigsize = size;
 2018                 } else {
 2019                         PRELE(p);
 2020                 }
 2021         }
 2022         sx_sunlock(&allproc_lock);
 2023         if (bigproc != NULL) {
 2024                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
 2025                         panic("out of swap space");
 2026                 PROC_LOCK(bigproc);
 2027                 killproc(bigproc, "out of swap space");
 2028                 sched_nice(bigproc, PRIO_MIN);
 2029                 _PRELE(bigproc);
 2030                 PROC_UNLOCK(bigproc);
 2031         }
 2032 }
 2033 
 2034 /*
 2035  * Signal a free page shortage to subsystems that have registered an event
 2036  * handler.  Reclaim memory from UMA in the event of a severe shortage.
 2037  * Return true if the free page count should be re-evaluated.
 2038  */
 2039 static bool
 2040 vm_pageout_lowmem(void)
 2041 {
 2042         static int lowmem_ticks = 0;
 2043         int last;
 2044         bool ret;
 2045 
 2046         ret = false;
 2047 
 2048         last = atomic_load_int(&lowmem_ticks);
 2049         while ((u_int)(ticks - last) / hz >= lowmem_period) {
 2050                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
 2051                         continue;
 2052 
 2053                 /*
 2054                  * Decrease registered cache sizes.
 2055                  */
 2056                 SDT_PROBE0(vm, , , vm__lowmem_scan);
 2057                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
 2058 
 2059                 /*
 2060                  * We do this explicitly after the caches have been
 2061                  * drained above.
 2062                  */
 2063                 uma_reclaim(UMA_RECLAIM_TRIM);
 2064                 ret = true;
 2065                 break;
 2066         }
 2067 
 2068         /*
 2069          * Kick off an asynchronous reclaim of cached memory if one of the
 2070          * page daemons is failing to keep up with demand.  Use the "severe"
 2071          * threshold instead of "min" to ensure that we do not blow away the
 2072          * caches if a subset of the NUMA domains are depleted by kernel memory
 2073          * allocations; the domainset iterators automatically skip domains
 2074          * below the "min" threshold on the first pass.
 2075          *
 2076          * UMA reclaim worker has its own rate-limiting mechanism, so don't
 2077          * worry about kicking it too often.
 2078          */
 2079         if (vm_page_count_severe())
 2080                 uma_reclaim_wakeup();
 2081 
 2082         return (ret);
 2083 }
 2084 
 2085 static void
 2086 vm_pageout_worker(void *arg)
 2087 {
 2088         struct vm_domain *vmd;
 2089         u_int ofree;
 2090         int addl_shortage, domain, shortage;
 2091         bool target_met;
 2092 
 2093         domain = (uintptr_t)arg;
 2094         vmd = VM_DOMAIN(domain);
 2095         shortage = 0;
 2096         target_met = true;
 2097 
 2098         /*
 2099          * XXXKIB It could be useful to bind pageout daemon threads to
 2100          * the cores belonging to the domain, from which vm_page_array
 2101          * is allocated.
 2102          */
 2103 
 2104         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
 2105         vmd->vmd_last_active_scan = ticks;
 2106 
 2107         /*
 2108          * The pageout daemon worker is never done, so loop forever.
 2109          */
 2110         while (TRUE) {
 2111                 vm_domain_pageout_lock(vmd);
 2112 
 2113                 /*
 2114                  * We need to clear wanted before we check the limits.  This
 2115                  * prevents races with wakers who will check wanted after they
 2116                  * reach the limit.
 2117                  */
 2118                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
 2119 
 2120                 /*
 2121                  * Might the page daemon need to run again?
 2122                  */
 2123                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
 2124                         /*
 2125                          * Yes.  If the scan failed to produce enough free
 2126                          * pages, sleep uninterruptibly for some time in the
 2127                          * hope that the laundry thread will clean some pages.
 2128                          */
 2129                         vm_domain_pageout_unlock(vmd);
 2130                         if (!target_met)
 2131                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
 2132                 } else {
 2133                         /*
 2134                          * No, sleep until the next wakeup or until pages
 2135                          * need to have their reference stats updated.
 2136                          */
 2137                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
 2138                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
 2139                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
 2140                                 VM_CNT_INC(v_pdwakeups);
 2141                 }
 2142 
 2143                 /* Prevent spurious wakeups by ensuring that wanted is set. */
 2144                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
 2145 
 2146                 /*
 2147                  * Use the controller to calculate how many pages to free in
 2148                  * this interval, and scan the inactive queue.  If the lowmem
 2149                  * handlers appear to have freed up some pages, subtract the
 2150                  * difference from the inactive queue scan target.
 2151                  */
 2152                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
 2153                 if (shortage > 0) {
 2154                         ofree = vmd->vmd_free_count;
 2155                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
 2156                                 shortage -= min(vmd->vmd_free_count - ofree,
 2157                                     (u_int)shortage);
 2158                         target_met = vm_pageout_inactive(vmd, shortage,
 2159                             &addl_shortage);
 2160                 } else
 2161                         addl_shortage = 0;
 2162 
 2163                 /*
 2164                  * Scan the active queue.  A positive value for shortage
 2165                  * indicates that we must aggressively deactivate pages to avoid
 2166                  * a shortfall.
 2167                  */
 2168                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
 2169                 vm_pageout_scan_active(vmd, shortage);
 2170         }
 2171 }
 2172 
 2173 /*
 2174  * vm_pageout_helper runs additional pageout daemons in times of high paging
 2175  * activity.
 2176  */
 2177 static void
 2178 vm_pageout_helper(void *arg)
 2179 {
 2180         struct vm_domain *vmd;
 2181         int domain;
 2182 
 2183         domain = (uintptr_t)arg;
 2184         vmd = VM_DOMAIN(domain);
 2185 
 2186         vm_domain_pageout_lock(vmd);
 2187         for (;;) {
 2188                 msleep(&vmd->vmd_inactive_shortage,
 2189                     vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
 2190                 blockcount_release(&vmd->vmd_inactive_starting, 1);
 2191 
 2192                 vm_domain_pageout_unlock(vmd);
 2193                 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
 2194                 vm_domain_pageout_lock(vmd);
 2195 
 2196                 /*
 2197                  * Release the running count while the pageout lock is held to
 2198                  * prevent wakeup races.
 2199                  */
 2200                 blockcount_release(&vmd->vmd_inactive_running, 1);
 2201         }
 2202 }
 2203 
 2204 static int
 2205 get_pageout_threads_per_domain(const struct vm_domain *vmd)
 2206 {
 2207         unsigned total_pageout_threads, eligible_cpus, domain_cpus;
 2208 
 2209         if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
 2210                 return (0);
 2211 
 2212         /*
 2213          * Semi-arbitrarily constrain pagedaemon threads to less than half the
 2214          * total number of CPUs in the system as an upper limit.
 2215          */
 2216         if (pageout_cpus_per_thread < 2)
 2217                 pageout_cpus_per_thread = 2;
 2218         else if (pageout_cpus_per_thread > mp_ncpus)
 2219                 pageout_cpus_per_thread = mp_ncpus;
 2220 
 2221         total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
 2222         domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
 2223 
 2224         /* Pagedaemons are not run in empty domains. */
 2225         eligible_cpus = mp_ncpus;
 2226         for (unsigned i = 0; i < vm_ndomains; i++)
 2227                 if (VM_DOMAIN_EMPTY(i))
 2228                         eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
 2229 
 2230         /*
 2231          * Assign a portion of the total pageout threads to this domain
 2232          * corresponding to the fraction of pagedaemon-eligible CPUs in the
 2233          * domain.  In asymmetric NUMA systems, domains with more CPUs may be
 2234          * allocated more threads than domains with fewer CPUs.
 2235          */
 2236         return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
 2237 }
 2238 
 2239 /*
 2240  * Initialize basic pageout daemon settings.  See the comment above the
 2241  * definition of vm_domain for some explanation of how these thresholds are
 2242  * used.
 2243  */
 2244 static void
 2245 vm_pageout_init_domain(int domain)
 2246 {
 2247         struct vm_domain *vmd;
 2248         struct sysctl_oid *oid;
 2249 
 2250         vmd = VM_DOMAIN(domain);
 2251         vmd->vmd_interrupt_free_min = 2;
 2252 
 2253         /*
 2254          * v_free_reserved needs to include enough for the largest
 2255          * swap pager structures plus enough for any pv_entry structs
 2256          * when paging. 
 2257          */
 2258         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
 2259             vmd->vmd_interrupt_free_min;
 2260         vmd->vmd_free_reserved = vm_pageout_page_count +
 2261             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
 2262         vmd->vmd_free_min = vmd->vmd_page_count / 200;
 2263         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
 2264         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
 2265         vmd->vmd_free_min += vmd->vmd_free_reserved;
 2266         vmd->vmd_free_severe += vmd->vmd_free_reserved;
 2267         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
 2268         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
 2269                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
 2270 
 2271         /*
 2272          * Set the default wakeup threshold to be 10% below the paging
 2273          * target.  This keeps the steady state out of shortfall.
 2274          */
 2275         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
 2276 
 2277         /*
 2278          * Target amount of memory to move out of the laundry queue during a
 2279          * background laundering.  This is proportional to the amount of system
 2280          * memory.
 2281          */
 2282         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
 2283             vmd->vmd_free_min) / 10;
 2284 
 2285         /* Initialize the pageout daemon pid controller. */
 2286         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
 2287             vmd->vmd_free_target, PIDCTRL_BOUND,
 2288             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
 2289         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
 2290             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2291         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
 2292 
 2293         vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
 2294 }
 2295 
 2296 static void
 2297 vm_pageout_init(void)
 2298 {
 2299         u_long freecount;
 2300         int i;
 2301 
 2302         /*
 2303          * Initialize some paging parameters.
 2304          */
 2305         if (vm_cnt.v_page_count < 2000)
 2306                 vm_pageout_page_count = 8;
 2307 
 2308         freecount = 0;
 2309         for (i = 0; i < vm_ndomains; i++) {
 2310                 struct vm_domain *vmd;
 2311 
 2312                 vm_pageout_init_domain(i);
 2313                 vmd = VM_DOMAIN(i);
 2314                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
 2315                 vm_cnt.v_free_target += vmd->vmd_free_target;
 2316                 vm_cnt.v_free_min += vmd->vmd_free_min;
 2317                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
 2318                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
 2319                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
 2320                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
 2321                 freecount += vmd->vmd_free_count;
 2322         }
 2323 
 2324         /*
 2325          * Set interval in seconds for active scan.  We want to visit each
 2326          * page at least once every ten minutes.  This is to prevent worst
 2327          * case paging behaviors with stale active LRU.
 2328          */
 2329         if (vm_pageout_update_period == 0)
 2330                 vm_pageout_update_period = 600;
 2331 
 2332         /*
 2333          * Set the maximum number of user-wired virtual pages.  Historically the
 2334          * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
 2335          * may also request user-wired memory.
 2336          */
 2337         if (vm_page_max_user_wired == 0)
 2338                 vm_page_max_user_wired = 4 * freecount / 5;
 2339 }
 2340 
 2341 /*
 2342  *     vm_pageout is the high level pageout daemon.
 2343  */
 2344 static void
 2345 vm_pageout(void)
 2346 {
 2347         struct proc *p;
 2348         struct thread *td;
 2349         int error, first, i, j, pageout_threads;
 2350 
 2351         p = curproc;
 2352         td = curthread;
 2353 
 2354         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
 2355         swap_pager_swap_init();
 2356         for (first = -1, i = 0; i < vm_ndomains; i++) {
 2357                 if (VM_DOMAIN_EMPTY(i)) {
 2358                         if (bootverbose)
 2359                                 printf("domain %d empty; skipping pageout\n",
 2360                                     i);
 2361                         continue;
 2362                 }
 2363                 if (first == -1)
 2364                         first = i;
 2365                 else {
 2366                         error = kthread_add(vm_pageout_worker,
 2367                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
 2368                         if (error != 0)
 2369                                 panic("starting pageout for domain %d: %d\n",
 2370                                     i, error);
 2371                 }
 2372                 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
 2373                 for (j = 0; j < pageout_threads - 1; j++) {
 2374                         error = kthread_add(vm_pageout_helper,
 2375                             (void *)(uintptr_t)i, p, NULL, 0, 0,
 2376                             "dom%d helper%d", i, j);
 2377                         if (error != 0)
 2378                                 panic("starting pageout helper %d for domain "
 2379                                     "%d: %d\n", j, i, error);
 2380                 }
 2381                 error = kthread_add(vm_pageout_laundry_worker,
 2382                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
 2383                 if (error != 0)
 2384                         panic("starting laundry for domain %d: %d", i, error);
 2385         }
 2386         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
 2387         if (error != 0)
 2388                 panic("starting uma_reclaim helper, error %d\n", error);
 2389 
 2390         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
 2391         vm_pageout_worker((void *)(uintptr_t)first);
 2392 }
 2393 
 2394 /*
 2395  * Perform an advisory wakeup of the page daemon.
 2396  */
 2397 void
 2398 pagedaemon_wakeup(int domain)
 2399 {
 2400         struct vm_domain *vmd;
 2401 
 2402         vmd = VM_DOMAIN(domain);
 2403         vm_domain_pageout_assert_unlocked(vmd);
 2404         if (curproc == pageproc)
 2405                 return;
 2406 
 2407         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
 2408                 vm_domain_pageout_lock(vmd);
 2409                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
 2410                 wakeup(&vmd->vmd_pageout_wanted);
 2411                 vm_domain_pageout_unlock(vmd);
 2412         }
 2413 }

Cache object: d347f9db3a1fd27bceb7c19c6e1c2bdc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.