FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD$
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include "opt_vm.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/signalvar.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sysctl.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_prot.h>
89 #include <sys/lock.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_extern.h>
97
98 /*
99 * System initialization
100 */
101
102 /* the kernel process "vm_pageout"*/
103 static void vm_pageout __P((void));
104 static int vm_pageout_clean __P((vm_page_t));
105 static int vm_pageout_scan __P((void));
106 static int vm_pageout_free_page_calc __P((vm_size_t count));
107 struct proc *pageproc;
108
109 static struct kproc_desc page_kp = {
110 "pagedaemon",
111 vm_pageout,
112 &pageproc
113 };
114 SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
115
116 #if !defined(NO_SWAPPING)
117 /* the kernel process "vm_daemon"*/
118 static void vm_daemon __P((void));
119 static struct proc *vmproc;
120
121 static struct kproc_desc vm_kp = {
122 "vmdaemon",
123 vm_daemon,
124 &vmproc
125 };
126 SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
127 #endif
128
129
130 int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
131 int vm_pageout_deficit=0; /* Estimated number of pages deficit */
132 int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
133
134 extern int npendingio;
135 #if !defined(NO_SWAPPING)
136 static int vm_pageout_req_swapout; /* XXX */
137 static int vm_daemon_needed;
138 #endif
139 extern int nswiodone;
140 extern int vm_swap_size;
141 extern int vfs_update_wakeup;
142 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143 static int vm_pageout_full_stats_interval = 0;
144 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
145 static int defer_swap_pageouts=0;
146 static int disable_swap_pageouts=0;
147
148 static int max_page_launder=100;
149 #if defined(NO_SWAPPING)
150 static int vm_swap_enabled=0;
151 static int vm_swap_idle_enabled=0;
152 #else
153 static int vm_swap_enabled=1;
154 static int vm_swap_idle_enabled=0;
155 #endif
156
157 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
158 CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "LRU page mgmt");
159
160 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
161 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
164 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
165
166 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
167 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
168
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
170 CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
171
172 #if defined(NO_SWAPPING)
173 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
174 CTLFLAG_RD, &vm_swap_enabled, 0, "");
175 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
176 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
177 #else
178 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
179 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
180 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
181 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
182 #endif
183
184 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
185 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
186
187 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
188 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
189
190 SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
191 CTLFLAG_RW, &max_page_launder, 0, "Maximum number of pages to clean per pass");
192
193
194 #define VM_PAGEOUT_PAGE_COUNT 16
195 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
196
197 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
198
199 #if !defined(NO_SWAPPING)
200 typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
201 static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
202 static freeer_fcn_t vm_pageout_object_deactivate_pages;
203 static void vm_req_vmdaemon __P((void));
204 #endif
205 static void vm_pageout_page_stats(void);
206 void pmap_collect(void);
207
208 /*
209 * vm_pageout_clean:
210 *
211 * Clean the page and remove it from the laundry.
212 *
213 * We set the busy bit to cause potential page faults on this page to
214 * block. Note the careful timing, however, the busy bit isn't set till
215 * late and we cannot do anything that will mess with the page.
216 */
217
218 static int
219 vm_pageout_clean(m)
220 vm_page_t m;
221 {
222 register vm_object_t object;
223 vm_page_t mc[2*vm_pageout_page_count];
224 int pageout_count;
225 int i, forward_okay, backward_okay, page_base;
226 vm_pindex_t pindex = m->pindex;
227
228 object = m->object;
229
230 /*
231 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
232 * with the new swapper, but we could have serious problems paging
233 * out other object types if there is insufficient memory.
234 *
235 * Unfortunately, checking free memory here is far too late, so the
236 * check has been moved up a procedural level.
237 */
238
239 #if 1
240 /*
241 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
242 * Try to avoid the deadlock.
243 */
244 if ((object->type == OBJT_DEFAULT) &&
245 ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
246 return 0;
247 #endif
248
249 /*
250 * Don't mess with the page if it's busy.
251 */
252 if ((m->hold_count != 0) ||
253 ((m->busy != 0) || (m->flags & PG_BUSY)))
254 return 0;
255
256 #if 0
257 /*
258 * XXX REMOVED XXX. vm_object_collapse() can block, which can
259 * change the page state. Calling vm_object_collapse() might also
260 * destroy or rename the page because we have not busied it yet!!!
261 * So this code segment is removed.
262 */
263 /*
264 * Try collapsing before it's too late. XXX huh? Why are we doing
265 * this here?
266 */
267 if (object->backing_object) {
268 vm_object_collapse(object);
269 }
270 #endif
271
272 mc[vm_pageout_page_count] = m;
273 pageout_count = 1;
274 page_base = vm_pageout_page_count;
275 forward_okay = TRUE;
276 if (pindex != 0)
277 backward_okay = TRUE;
278 else
279 backward_okay = FALSE;
280 /*
281 * Scan object for clusterable pages.
282 *
283 * We can cluster ONLY if: ->> the page is NOT
284 * clean, wired, busy, held, or mapped into a
285 * buffer, and one of the following:
286 * 1) The page is inactive, or a seldom used
287 * active page.
288 * -or-
289 * 2) we force the issue.
290 */
291 for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
292 vm_page_t p;
293
294 /*
295 * See if forward page is clusterable.
296 */
297 if (forward_okay) {
298 /*
299 * Stop forward scan at end of object.
300 */
301 if ((pindex + i) > object->size) {
302 forward_okay = FALSE;
303 goto do_backward;
304 }
305 p = vm_page_lookup(object, pindex + i);
306 if (p) {
307 if (((p->queue - p->pc) == PQ_CACHE) ||
308 (p->flags & PG_BUSY) || p->busy) {
309 forward_okay = FALSE;
310 goto do_backward;
311 }
312 vm_page_test_dirty(p);
313 if ((p->dirty & p->valid) != 0 &&
314 (p->queue == PQ_INACTIVE) &&
315 (p->wire_count == 0) &&
316 (p->hold_count == 0)) {
317 mc[vm_pageout_page_count + i] = p;
318 pageout_count++;
319 if (pageout_count == vm_pageout_page_count)
320 break;
321 } else {
322 forward_okay = FALSE;
323 }
324 } else {
325 forward_okay = FALSE;
326 }
327 }
328 do_backward:
329 /*
330 * See if backward page is clusterable.
331 */
332 if (backward_okay) {
333 /*
334 * Stop backward scan at beginning of object.
335 */
336 if ((pindex - i) == 0) {
337 backward_okay = FALSE;
338 }
339 p = vm_page_lookup(object, pindex - i);
340 if (p) {
341 if (((p->queue - p->pc) == PQ_CACHE) ||
342 (p->flags & PG_BUSY) || p->busy) {
343 backward_okay = FALSE;
344 continue;
345 }
346 vm_page_test_dirty(p);
347 if ((p->dirty & p->valid) != 0 &&
348 (p->queue == PQ_INACTIVE) &&
349 (p->wire_count == 0) &&
350 (p->hold_count == 0)) {
351 mc[vm_pageout_page_count - i] = p;
352 pageout_count++;
353 page_base--;
354 if (pageout_count == vm_pageout_page_count)
355 break;
356 } else {
357 backward_okay = FALSE;
358 }
359 } else {
360 backward_okay = FALSE;
361 }
362 }
363 }
364
365 /*
366 * we allow reads during pageouts...
367 */
368 return vm_pageout_flush(&mc[page_base], pageout_count, 0);
369 }
370
371 /*
372 * vm_pageout_flush() - launder the given pages
373 *
374 * The given pages are laundered. Note that we setup for the start of
375 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
376 * reference count all in here rather then in the parent. If we want
377 * the parent to do more sophisticated things we may have to change
378 * the ordering.
379 */
380
381 int
382 vm_pageout_flush(mc, count, flags)
383 vm_page_t *mc;
384 int count;
385 int flags;
386 {
387 register vm_object_t object;
388 int pageout_status[count];
389 int numpagedout = 0;
390 int i;
391
392 /*
393 * Initiate I/O. Bump the vm_page_t->busy counter and
394 * mark the pages read-only.
395 *
396 * We do not have to fixup the clean/dirty bits here... we can
397 * allow the pager to do it after the I/O completes.
398 */
399
400 for (i = 0; i < count; i++) {
401 vm_page_io_start(mc[i]);
402 vm_page_protect(mc[i], VM_PROT_READ);
403 }
404
405 object = mc[0]->object;
406 vm_object_pip_add(object, count);
407
408 vm_pager_put_pages(object, mc, count,
409 (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
410 pageout_status);
411
412 for (i = 0; i < count; i++) {
413 vm_page_t mt = mc[i];
414
415 switch (pageout_status[i]) {
416 case VM_PAGER_OK:
417 numpagedout++;
418 break;
419 case VM_PAGER_PEND:
420 numpagedout++;
421 break;
422 case VM_PAGER_BAD:
423 /*
424 * Page outside of range of object. Right now we
425 * essentially lose the changes by pretending it
426 * worked.
427 */
428 pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
429 mt->dirty = 0;
430 break;
431 case VM_PAGER_ERROR:
432 case VM_PAGER_FAIL:
433 /*
434 * If page couldn't be paged out, then reactivate the
435 * page so it doesn't clog the inactive list. (We
436 * will try paging out it again later).
437 */
438 vm_page_activate(mt);
439 break;
440 case VM_PAGER_AGAIN:
441 break;
442 }
443
444 /*
445 * If the operation is still going, leave the page busy to
446 * block all other accesses. Also, leave the paging in
447 * progress indicator set so that we don't attempt an object
448 * collapse.
449 */
450 if (pageout_status[i] != VM_PAGER_PEND) {
451 vm_object_pip_wakeup(object);
452 vm_page_io_finish(mt);
453 }
454 }
455 return numpagedout;
456 }
457
458 #if !defined(NO_SWAPPING)
459 /*
460 * vm_pageout_object_deactivate_pages
461 *
462 * deactivate enough pages to satisfy the inactive target
463 * requirements or if vm_page_proc_limit is set, then
464 * deactivate all of the pages in the object and its
465 * backing_objects.
466 *
467 * The object and map must be locked.
468 */
469 static void
470 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
471 vm_map_t map;
472 vm_object_t object;
473 vm_pindex_t desired;
474 int map_remove_only;
475 {
476 register vm_page_t p, next;
477 int rcount;
478 int remove_mode;
479 int s;
480
481 if (object->type == OBJT_DEVICE)
482 return;
483
484 while (object) {
485 if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
486 return;
487 if (object->paging_in_progress)
488 return;
489
490 remove_mode = map_remove_only;
491 if (object->shadow_count > 1)
492 remove_mode = 1;
493 /*
494 * scan the objects entire memory queue
495 */
496 rcount = object->resident_page_count;
497 p = TAILQ_FIRST(&object->memq);
498 while (p && (rcount-- > 0)) {
499 int actcount;
500 if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
501 return;
502 next = TAILQ_NEXT(p, listq);
503 cnt.v_pdpages++;
504 if (p->wire_count != 0 ||
505 p->hold_count != 0 ||
506 p->busy != 0 ||
507 (p->flags & PG_BUSY) ||
508 !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
509 p = next;
510 continue;
511 }
512
513 actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
514 if (actcount) {
515 vm_page_flag_set(p, PG_REFERENCED);
516 } else if (p->flags & PG_REFERENCED) {
517 actcount = 1;
518 }
519
520 if ((p->queue != PQ_ACTIVE) &&
521 (p->flags & PG_REFERENCED)) {
522 vm_page_activate(p);
523 p->act_count += actcount;
524 vm_page_flag_clear(p, PG_REFERENCED);
525 } else if (p->queue == PQ_ACTIVE) {
526 if ((p->flags & PG_REFERENCED) == 0) {
527 p->act_count -= min(p->act_count, ACT_DECLINE);
528 if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
529 vm_page_protect(p, VM_PROT_NONE);
530 vm_page_deactivate(p);
531 } else {
532 s = splvm();
533 TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
534 TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
535 splx(s);
536 }
537 } else {
538 vm_page_activate(p);
539 vm_page_flag_clear(p, PG_REFERENCED);
540 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
541 p->act_count += ACT_ADVANCE;
542 s = splvm();
543 TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
544 TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
545 splx(s);
546 }
547 } else if (p->queue == PQ_INACTIVE) {
548 vm_page_protect(p, VM_PROT_NONE);
549 }
550 p = next;
551 }
552 object = object->backing_object;
553 }
554 return;
555 }
556
557 /*
558 * deactivate some number of pages in a map, try to do it fairly, but
559 * that is really hard to do.
560 */
561 static void
562 vm_pageout_map_deactivate_pages(map, desired)
563 vm_map_t map;
564 vm_pindex_t desired;
565 {
566 vm_map_entry_t tmpe;
567 vm_object_t obj, bigobj;
568
569 if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
570 return;
571 }
572
573 bigobj = NULL;
574
575 /*
576 * first, search out the biggest object, and try to free pages from
577 * that.
578 */
579 tmpe = map->header.next;
580 while (tmpe != &map->header) {
581 if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
582 obj = tmpe->object.vm_object;
583 if ((obj != NULL) && (obj->shadow_count <= 1) &&
584 ((bigobj == NULL) ||
585 (bigobj->resident_page_count < obj->resident_page_count))) {
586 bigobj = obj;
587 }
588 }
589 tmpe = tmpe->next;
590 }
591
592 if (bigobj)
593 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
594
595 /*
596 * Next, hunt around for other pages to deactivate. We actually
597 * do this search sort of wrong -- .text first is not the best idea.
598 */
599 tmpe = map->header.next;
600 while (tmpe != &map->header) {
601 if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
602 break;
603 if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
604 obj = tmpe->object.vm_object;
605 if (obj)
606 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
607 }
608 tmpe = tmpe->next;
609 };
610
611 /*
612 * Remove all mappings if a process is swapped out, this will free page
613 * table pages.
614 */
615 if (desired == 0)
616 pmap_remove(vm_map_pmap(map),
617 VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
618 vm_map_unlock(map);
619 return;
620 }
621 #endif
622
623 /*
624 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
625 * to vnode deadlocks. We only do it for OBJT_DEFAULT and OBJT_SWAP objects
626 * which we know can be trivially freed.
627 */
628
629 void
630 vm_pageout_page_free(vm_page_t m) {
631 vm_object_t object = m->object;
632 int type = object->type;
633
634 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
635 vm_object_reference(object);
636 vm_page_busy(m);
637 vm_page_protect(m, VM_PROT_NONE);
638 vm_page_free(m);
639 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
640 vm_object_deallocate(object);
641 }
642
643 /*
644 * vm_pageout_scan does the dirty work for the pageout daemon.
645 */
646 static int
647 vm_pageout_scan()
648 {
649 vm_page_t m, next;
650 int page_shortage, maxscan, pcount;
651 int addl_page_shortage, addl_page_shortage_init;
652 int maxlaunder;
653 int launder_loop = 0;
654 struct proc *p, *bigproc;
655 vm_offset_t size, bigsize;
656 vm_object_t object;
657 int force_wakeup = 0;
658 int actcount;
659 int vnodes_skipped = 0;
660 int s;
661
662 /*
663 * Do whatever cleanup that the pmap code can.
664 */
665 pmap_collect();
666
667 addl_page_shortage_init = vm_pageout_deficit;
668 vm_pageout_deficit = 0;
669
670 if (max_page_launder == 0)
671 max_page_launder = 1;
672
673 /*
674 * Calculate the number of pages we want to either free or move
675 * to the cache.
676 */
677
678 page_shortage = (cnt.v_free_target + cnt.v_cache_min) -
679 (cnt.v_free_count + cnt.v_cache_count);
680 page_shortage += addl_page_shortage_init;
681
682 /*
683 * Figure out what to do with dirty pages when they are encountered.
684 * Assume that 1/3 of the pages on the inactive list are clean. If
685 * we think we can reach our target, disable laundering (do not
686 * clean any dirty pages). If we miss the target we will loop back
687 * up and do a laundering run.
688 */
689
690 if (cnt.v_inactive_count / 3 > page_shortage) {
691 maxlaunder = 0;
692 launder_loop = 0;
693 } else {
694 maxlaunder =
695 (cnt.v_inactive_target > max_page_launder) ?
696 max_page_launder : cnt.v_inactive_target;
697 launder_loop = 1;
698 }
699
700 /*
701 * Start scanning the inactive queue for pages we can move to the
702 * cache or free. The scan will stop when the target is reached or
703 * we have scanned the entire inactive queue.
704 */
705
706 rescan0:
707 addl_page_shortage = addl_page_shortage_init;
708 maxscan = cnt.v_inactive_count;
709 for (
710 m = TAILQ_FIRST(&vm_page_queue_inactive);
711 m != NULL && maxscan-- > 0 && page_shortage > 0;
712 m = next
713 ) {
714
715 cnt.v_pdpages++;
716
717 if (m->queue != PQ_INACTIVE) {
718 goto rescan0;
719 }
720
721 next = TAILQ_NEXT(m, pageq);
722
723 if (m->hold_count) {
724 s = splvm();
725 TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
726 TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
727 splx(s);
728 addl_page_shortage++;
729 continue;
730 }
731 /*
732 * Dont mess with busy pages, keep in the front of the
733 * queue, most likely are being paged out.
734 */
735 if (m->busy || (m->flags & PG_BUSY)) {
736 addl_page_shortage++;
737 continue;
738 }
739
740 /*
741 * If the object is not being used, we ignore previous
742 * references.
743 */
744 if (m->object->ref_count == 0) {
745 vm_page_flag_clear(m, PG_REFERENCED);
746 pmap_clear_reference(VM_PAGE_TO_PHYS(m));
747
748 /*
749 * Otherwise, if the page has been referenced while in the
750 * inactive queue, we bump the "activation count" upwards,
751 * making it less likely that the page will be added back to
752 * the inactive queue prematurely again. Here we check the
753 * page tables (or emulated bits, if any), given the upper
754 * level VM system not knowing anything about existing
755 * references.
756 */
757 } else if (((m->flags & PG_REFERENCED) == 0) &&
758 (actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
759 vm_page_activate(m);
760 m->act_count += (actcount + ACT_ADVANCE);
761 continue;
762 }
763
764 /*
765 * If the upper level VM system knows about any page
766 * references, we activate the page. We also set the
767 * "activation count" higher than normal so that we will less
768 * likely place pages back onto the inactive queue again.
769 */
770 if ((m->flags & PG_REFERENCED) != 0) {
771 vm_page_flag_clear(m, PG_REFERENCED);
772 actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
773 vm_page_activate(m);
774 m->act_count += (actcount + ACT_ADVANCE + 1);
775 continue;
776 }
777
778 /*
779 * If the upper level VM system doesn't know anything about
780 * the page being dirty, we have to check for it again. As
781 * far as the VM code knows, any partially dirty pages are
782 * fully dirty.
783 */
784 if (m->dirty == 0) {
785 vm_page_test_dirty(m);
786 } else {
787 m->dirty = VM_PAGE_BITS_ALL;
788 }
789
790 /*
791 * Invalid pages can be easily freed
792 */
793 if (m->valid == 0) {
794 vm_pageout_page_free(m);
795 cnt.v_dfree++;
796 --page_shortage;
797
798 /*
799 * Clean pages can be placed onto the cache queue.
800 */
801 } else if (m->dirty == 0) {
802 vm_page_cache(m);
803 --page_shortage;
804
805 /*
806 * Dirty pages need to be paged out. Note that we clean
807 * only a limited number of pages per pagedaemon pass.
808 */
809 } else if (maxlaunder > 0) {
810 int written;
811 int swap_pageouts_ok;
812 struct vnode *vp = NULL;
813
814 object = m->object;
815
816 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
817 swap_pageouts_ok = 1;
818 } else {
819 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
820 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
821 (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min);
822
823 }
824
825 /*
826 * We don't bother paging objects that are "dead".
827 * Those objects are in a "rundown" state.
828 */
829 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
830 s = splvm();
831 TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
832 TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
833 splx(s);
834 continue;
835 }
836
837 /*
838 * For now we protect against potential memory
839 * deadlocks by requiring significant memory to be
840 * free if the object is not OBJT_DEFAULT or OBJT_SWAP.
841 * We do not 'trust' any other object type to operate
842 * with low memory, not even OBJT_DEVICE. The VM
843 * allocator will special case allocations done by
844 * the pageout daemon so the check below actually
845 * does have some hysteresis in it. It isn't the best
846 * solution, though.
847 */
848
849 if (
850 object->type != OBJT_DEFAULT &&
851 object->type != OBJT_SWAP &&
852 cnt.v_free_count < cnt.v_free_reserved
853 ) {
854 s = splvm();
855 TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
856 TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
857 splx(s);
858 continue;
859 }
860
861 /*
862 * Presumably we have sufficient free memory to do
863 * the more sophisticated checks and locking required
864 * for vnodes.
865 *
866 * The object is already known NOT to be dead. The
867 * vget() may still block, though, because
868 * VOP_ISLOCKED() doesn't check to see if an inode
869 * (v_data) is associated with the vnode. If it isn't,
870 * vget() will load in it from disk. Worse, vget()
871 * may actually get stuck waiting on "inode" if another
872 * process is in the process of bringing the inode in.
873 * This is bad news for us either way.
874 *
875 * So for the moment we check v_data == NULL as a
876 * workaround. This means that vnodes which do not
877 * use v_data in the way we expect probably will not
878 * wind up being paged out by the pager and it will be
879 * up to the syncer to get them. That's better then
880 * us blocking here.
881 *
882 * This whole code section is bogus - we need to fix
883 * the vnode pager to handle vm_page_t's without us
884 * having to do any sophisticated VOP tests.
885 */
886
887 if (object->type == OBJT_VNODE) {
888 vp = object->handle;
889
890 if (VOP_ISLOCKED(vp) ||
891 vp->v_data == NULL ||
892 vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
893 if ((m->queue == PQ_INACTIVE) &&
894 (m->hold_count == 0) &&
895 (m->busy == 0) &&
896 (m->flags & PG_BUSY) == 0) {
897 s = splvm();
898 TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
899 TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
900 splx(s);
901 }
902 if (object->flags & OBJ_MIGHTBEDIRTY)
903 vnodes_skipped++;
904 continue;
905 }
906
907 /*
908 * The page might have been moved to another queue
909 * during potential blocking in vget() above.
910 */
911 if (m->queue != PQ_INACTIVE) {
912 if (object->flags & OBJ_MIGHTBEDIRTY)
913 vnodes_skipped++;
914 vput(vp);
915 continue;
916 }
917
918 /*
919 * The page may have been busied during the blocking in
920 * vput(); We don't move the page back onto the end of
921 * the queue so that statistics are more correct if we don't.
922 */
923 if (m->busy || (m->flags & PG_BUSY)) {
924 vput(vp);
925 continue;
926 }
927
928 /*
929 * If the page has become held, then skip it
930 */
931 if (m->hold_count) {
932 s = splvm();
933 TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
934 TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
935 splx(s);
936 if (object->flags & OBJ_MIGHTBEDIRTY)
937 vnodes_skipped++;
938 vput(vp);
939 continue;
940 }
941 }
942
943 /*
944 * If a page is dirty, then it is either being washed
945 * (but not yet cleaned) or it is still in the
946 * laundry. If it is still in the laundry, then we
947 * start the cleaning operation.
948 */
949 written = vm_pageout_clean(m);
950 if (vp)
951 vput(vp);
952
953 maxlaunder -= written;
954 }
955 }
956
957 /*
958 * If we still have a page shortage and we didn't launder anything,
959 * run the inactive scan again and launder something this time.
960 */
961
962 if (launder_loop == 0 && page_shortage > 0) {
963 launder_loop = 1;
964 maxlaunder =
965 (cnt.v_inactive_target > max_page_launder) ?
966 max_page_launder : cnt.v_inactive_target;
967 goto rescan0;
968 }
969
970 /*
971 * Compute the page shortage from the point of view of having to
972 * move pages from the active queue to the inactive queue.
973 */
974
975 page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
976 (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
977 page_shortage += addl_page_shortage;
978
979 /*
980 * Scan the active queue for things we can deactivate
981 */
982
983 pcount = cnt.v_active_count;
984 m = TAILQ_FIRST(&vm_page_queue_active);
985
986 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
987
988 /*
989 * This is a consistancy check, and should likely be a panic
990 * or warning.
991 */
992 if (m->queue != PQ_ACTIVE) {
993 break;
994 }
995
996 next = TAILQ_NEXT(m, pageq);
997 /*
998 * Don't deactivate pages that are busy.
999 */
1000 if ((m->busy != 0) ||
1001 (m->flags & PG_BUSY) ||
1002 (m->hold_count != 0)) {
1003 s = splvm();
1004 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1005 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1006 splx(s);
1007 m = next;
1008 continue;
1009 }
1010
1011 /*
1012 * The count for pagedaemon pages is done after checking the
1013 * page for eligbility...
1014 */
1015 cnt.v_pdpages++;
1016
1017 /*
1018 * Check to see "how much" the page has been used.
1019 */
1020 actcount = 0;
1021 if (m->object->ref_count != 0) {
1022 if (m->flags & PG_REFERENCED) {
1023 actcount += 1;
1024 }
1025 actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1026 if (actcount) {
1027 m->act_count += ACT_ADVANCE + actcount;
1028 if (m->act_count > ACT_MAX)
1029 m->act_count = ACT_MAX;
1030 }
1031 }
1032
1033 /*
1034 * Since we have "tested" this bit, we need to clear it now.
1035 */
1036 vm_page_flag_clear(m, PG_REFERENCED);
1037
1038 /*
1039 * Only if an object is currently being used, do we use the
1040 * page activation count stats.
1041 */
1042 if (actcount && (m->object->ref_count != 0)) {
1043 s = splvm();
1044 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1045 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1046 splx(s);
1047 } else {
1048 m->act_count -= min(m->act_count, ACT_DECLINE);
1049 if (vm_pageout_algorithm_lru ||
1050 (m->object->ref_count == 0) || (m->act_count == 0)) {
1051 page_shortage--;
1052 if (m->object->ref_count == 0) {
1053 vm_page_protect(m, VM_PROT_NONE);
1054 if (m->dirty == 0)
1055 vm_page_cache(m);
1056 else
1057 vm_page_deactivate(m);
1058 } else {
1059 vm_page_deactivate(m);
1060 }
1061 } else {
1062 s = splvm();
1063 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1064 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1065 splx(s);
1066 }
1067 }
1068 m = next;
1069 }
1070
1071 s = splvm();
1072
1073 /*
1074 * We try to maintain some *really* free pages, this allows interrupt
1075 * code to be guaranteed space. Since both cache and free queues
1076 * are considered basically 'free', moving pages from cache to free
1077 * does not effect other calculations.
1078 */
1079
1080 while (cnt.v_free_count < cnt.v_free_reserved) {
1081 static int cache_rover = 0;
1082 m = vm_page_list_find(PQ_CACHE, cache_rover);
1083 if (!m)
1084 break;
1085 if ((m->flags & PG_BUSY) || m->busy || m->hold_count || m->wire_count) {
1086 #ifdef INVARIANTS
1087 printf("Warning: busy page %p found in cache\n", m);
1088 #endif
1089 vm_page_deactivate(m);
1090 continue;
1091 }
1092 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1093 vm_pageout_page_free(m);
1094 cnt.v_dfree++;
1095 }
1096 splx(s);
1097
1098 #if !defined(NO_SWAPPING)
1099 /*
1100 * Idle process swapout -- run once per second.
1101 */
1102 if (vm_swap_idle_enabled) {
1103 static long lsec;
1104 if (time_second != lsec) {
1105 vm_pageout_req_swapout |= VM_SWAP_IDLE;
1106 vm_req_vmdaemon();
1107 lsec = time_second;
1108 }
1109 }
1110 #endif
1111
1112 /*
1113 * If we didn't get enough free pages, and we have skipped a vnode
1114 * in a writeable object, wakeup the sync daemon. And kick swapout
1115 * if we did not get enough free pages.
1116 */
1117 if ((cnt.v_cache_count + cnt.v_free_count) <
1118 (cnt.v_free_target + cnt.v_cache_min) ) {
1119 if (vnodes_skipped &&
1120 (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
1121 if (!vfs_update_wakeup) {
1122 vfs_update_wakeup = 1;
1123 wakeup(&vfs_update_wakeup);
1124 }
1125 }
1126 #if !defined(NO_SWAPPING)
1127 if (vm_swap_enabled &&
1128 (cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
1129 vm_req_vmdaemon();
1130 vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1131 }
1132 #endif
1133 }
1134
1135 /*
1136 * make sure that we have swap space -- if we are low on memory and
1137 * swap -- then kill the biggest process.
1138 */
1139 if ((vm_swap_size == 0 || swap_pager_full) &&
1140 ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
1141 bigproc = NULL;
1142 bigsize = 0;
1143 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1144 /*
1145 * if this is a system process, skip it
1146 */
1147 if ((p->p_flag & (P_SYSTEM|P_NOSWAP)) || (p->p_pid == 1) ||
1148 ((p->p_pid < 48) && (vm_swap_size != 0))) {
1149 continue;
1150 }
1151 /*
1152 * if the process is in a non-running type state,
1153 * don't touch it.
1154 */
1155 if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1156 continue;
1157 }
1158 /*
1159 * get the process size
1160 */
1161 size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1162 /*
1163 * if the this process is bigger than the biggest one
1164 * remember it.
1165 */
1166 if (size > bigsize) {
1167 bigproc = p;
1168 bigsize = size;
1169 }
1170 }
1171 if (bigproc != NULL) {
1172 killproc(bigproc, "out of swap space");
1173 bigproc->p_estcpu = 0;
1174 bigproc->p_nice = PRIO_MIN;
1175 resetpriority(bigproc);
1176 wakeup(&cnt.v_free_count);
1177 }
1178 }
1179 return force_wakeup;
1180 }
1181
1182 /*
1183 * This routine tries to maintain the pseudo LRU active queue,
1184 * so that during long periods of time where there is no paging,
1185 * that some statistic accumlation still occurs. This code
1186 * helps the situation where paging just starts to occur.
1187 */
1188 static void
1189 vm_pageout_page_stats()
1190 {
1191 int s;
1192 vm_page_t m,next;
1193 int pcount,tpcount; /* Number of pages to check */
1194 static int fullintervalcount = 0;
1195 int page_shortage;
1196
1197 page_shortage = (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1198 (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1199 if (page_shortage <= 0)
1200 return;
1201
1202 pcount = cnt.v_active_count;
1203 fullintervalcount += vm_pageout_stats_interval;
1204 if (fullintervalcount < vm_pageout_full_stats_interval) {
1205 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1206 if (pcount > tpcount)
1207 pcount = tpcount;
1208 }
1209
1210 m = TAILQ_FIRST(&vm_page_queue_active);
1211 while ((m != NULL) && (pcount-- > 0)) {
1212 int actcount;
1213
1214 if (m->queue != PQ_ACTIVE) {
1215 break;
1216 }
1217
1218 next = TAILQ_NEXT(m, pageq);
1219 /*
1220 * Don't deactivate pages that are busy.
1221 */
1222 if ((m->busy != 0) ||
1223 (m->flags & PG_BUSY) ||
1224 (m->hold_count != 0)) {
1225 s = splvm();
1226 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1227 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1228 splx(s);
1229 m = next;
1230 continue;
1231 }
1232
1233 actcount = 0;
1234 if (m->flags & PG_REFERENCED) {
1235 vm_page_flag_clear(m, PG_REFERENCED);
1236 actcount += 1;
1237 }
1238
1239 actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1240 if (actcount) {
1241 m->act_count += ACT_ADVANCE + actcount;
1242 if (m->act_count > ACT_MAX)
1243 m->act_count = ACT_MAX;
1244 s = splvm();
1245 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1246 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1247 splx(s);
1248 } else {
1249 if (m->act_count == 0) {
1250 /*
1251 * We turn off page access, so that we have more accurate
1252 * RSS stats. We don't do this in the normal page deactivation
1253 * when the system is loaded VM wise, because the cost of
1254 * the large number of page protect operations would be higher
1255 * than the value of doing the operation.
1256 */
1257 vm_page_protect(m, VM_PROT_NONE);
1258 vm_page_deactivate(m);
1259 } else {
1260 m->act_count -= min(m->act_count, ACT_DECLINE);
1261 s = splvm();
1262 TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1263 TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1264 splx(s);
1265 }
1266 }
1267
1268 m = next;
1269 }
1270 }
1271
1272 static int
1273 vm_pageout_free_page_calc(count)
1274 vm_size_t count;
1275 {
1276 if (count < cnt.v_page_count)
1277 return 0;
1278 /*
1279 * free_reserved needs to include enough for the largest swap pager
1280 * structures plus enough for any pv_entry structs when paging.
1281 */
1282 if (cnt.v_page_count > 1024)
1283 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1284 else
1285 cnt.v_free_min = 4;
1286 cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1287 cnt.v_interrupt_free_min;
1288 cnt.v_free_reserved = vm_pageout_page_count +
1289 cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1290 cnt.v_free_min += cnt.v_free_reserved;
1291 return 1;
1292 }
1293
1294
1295 /*
1296 * vm_pageout is the high level pageout daemon.
1297 */
1298 static void
1299 vm_pageout()
1300 {
1301 /*
1302 * Initialize some paging parameters.
1303 */
1304
1305 cnt.v_interrupt_free_min = 2;
1306 if (cnt.v_page_count < 2000)
1307 vm_pageout_page_count = 8;
1308
1309 vm_pageout_free_page_calc(cnt.v_page_count);
1310 /*
1311 * free_reserved needs to include enough for the largest swap pager
1312 * structures plus enough for any pv_entry structs when paging.
1313 */
1314 if (cnt.v_free_count > 6144)
1315 cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1316 else
1317 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1318
1319 if (cnt.v_free_count > 2048) {
1320 cnt.v_cache_min = cnt.v_free_target;
1321 cnt.v_cache_max = 2 * cnt.v_cache_min;
1322 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1323 } else {
1324 cnt.v_cache_min = 0;
1325 cnt.v_cache_max = 0;
1326 cnt.v_inactive_target = cnt.v_free_count / 4;
1327 }
1328 if (cnt.v_inactive_target > cnt.v_free_count / 3)
1329 cnt.v_inactive_target = cnt.v_free_count / 3;
1330
1331 /* XXX does not really belong here */
1332 if (vm_page_max_wired == 0)
1333 vm_page_max_wired = cnt.v_free_count / 3;
1334
1335 if (vm_pageout_stats_max == 0)
1336 vm_pageout_stats_max = cnt.v_free_target;
1337
1338 /*
1339 * Set interval in seconds for stats scan.
1340 */
1341 if (vm_pageout_stats_interval == 0)
1342 vm_pageout_stats_interval = 5;
1343 if (vm_pageout_full_stats_interval == 0)
1344 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1345
1346
1347 /*
1348 * Set maximum free per pass
1349 */
1350 if (vm_pageout_stats_free_max == 0)
1351 vm_pageout_stats_free_max = 5;
1352
1353 max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1354
1355 swap_pager_swap_init();
1356 /*
1357 * The pageout daemon is never done, so loop forever.
1358 */
1359 while (TRUE) {
1360 int error;
1361 int s = splvm();
1362 if (!vm_pages_needed ||
1363 ((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1364 vm_pages_needed = 0;
1365 error = tsleep(&vm_pages_needed,
1366 PVM, "psleep", vm_pageout_stats_interval * hz);
1367 if (error && !vm_pages_needed) {
1368 splx(s);
1369 vm_pageout_page_stats();
1370 continue;
1371 }
1372 } else if (vm_pages_needed) {
1373 vm_pages_needed = 0;
1374 tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1375 }
1376
1377 if (vm_pages_needed)
1378 cnt.v_pdwakeups++;
1379 vm_pages_needed = 0;
1380 splx(s);
1381 vm_pager_sync();
1382 vm_pageout_scan();
1383 vm_pageout_deficit = 0;
1384 vm_pager_sync();
1385 wakeup(&cnt.v_free_count);
1386 }
1387 }
1388
1389 void
1390 pagedaemon_wakeup()
1391 {
1392 if (!vm_pages_needed && curproc != pageproc) {
1393 vm_pages_needed++;
1394 wakeup(&vm_pages_needed);
1395 }
1396 }
1397
1398 #if !defined(NO_SWAPPING)
1399 static void
1400 vm_req_vmdaemon()
1401 {
1402 static int lastrun = 0;
1403
1404 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1405 wakeup(&vm_daemon_needed);
1406 lastrun = ticks;
1407 }
1408 }
1409
1410 static void
1411 vm_daemon()
1412 {
1413 struct proc *p;
1414
1415 while (TRUE) {
1416 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1417 if (vm_pageout_req_swapout) {
1418 swapout_procs(vm_pageout_req_swapout);
1419 vm_pageout_req_swapout = 0;
1420 }
1421 /*
1422 * scan the processes for exceeding their rlimits or if
1423 * process is swapped out -- deactivate pages
1424 */
1425
1426 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1427 vm_pindex_t limit, size;
1428
1429 /*
1430 * if this is a system process or if we have already
1431 * looked at this process, skip it.
1432 */
1433 if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1434 continue;
1435 }
1436 /*
1437 * if the process is in a non-running type state,
1438 * don't touch it.
1439 */
1440 if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1441 continue;
1442 }
1443 /*
1444 * get a limit
1445 */
1446 limit = OFF_TO_IDX(
1447 qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1448 p->p_rlimit[RLIMIT_RSS].rlim_max));
1449
1450 /*
1451 * let processes that are swapped out really be
1452 * swapped out set the limit to nothing (will force a
1453 * swap-out.)
1454 */
1455 if ((p->p_flag & P_INMEM) == 0)
1456 limit = 0; /* XXX */
1457
1458 size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1459 if (limit >= 0 && size >= limit) {
1460 vm_pageout_map_deactivate_pages(
1461 &p->p_vmspace->vm_map, limit);
1462 }
1463 }
1464 }
1465 }
1466 #endif
Cache object: 99fcb0f5e4a770b80675700319b9a7ec
|