The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * The Mach Operating System project at Carnegie-Mellon University.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   41  *
   42  *
   43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   44  * All rights reserved.
   45  *
   46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   47  *
   48  * Permission to use, copy, modify and distribute this software and
   49  * its documentation is hereby granted, provided that both the copyright
   50  * notice and this permission notice appear in all copies of the
   51  * software, derivative works or modified versions, and any portions
   52  * thereof, and that both notices appear in supporting documentation.
   53  *
   54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   57  *
   58  * Carnegie Mellon requests users of this software to return to
   59  *
   60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   61  *  School of Computer Science
   62  *  Carnegie Mellon University
   63  *  Pittsburgh PA 15213-3890
   64  *
   65  * any improvements or extensions that they make and grant Carnegie the
   66  * rights to redistribute these changes.
   67  */
   68 
   69 /*
   70  *      The proverbial page-out daemon.
   71  */
   72 
   73 #include <sys/cdefs.h>
   74 __FBSDID("$FreeBSD: releng/5.4/sys/vm/vm_pageout.c 142737 2005-02-28 01:29:46Z alc $");
   75 
   76 #include "opt_vm.h"
   77 #include <sys/param.h>
   78 #include <sys/systm.h>
   79 #include <sys/kernel.h>
   80 #include <sys/eventhandler.h>
   81 #include <sys/lock.h>
   82 #include <sys/mutex.h>
   83 #include <sys/proc.h>
   84 #include <sys/kthread.h>
   85 #include <sys/ktr.h>
   86 #include <sys/resourcevar.h>
   87 #include <sys/sched.h>
   88 #include <sys/signalvar.h>
   89 #include <sys/vnode.h>
   90 #include <sys/vmmeter.h>
   91 #include <sys/sx.h>
   92 #include <sys/sysctl.h>
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/vm_object.h>
   97 #include <vm/vm_page.h>
   98 #include <vm/vm_map.h>
   99 #include <vm/vm_pageout.h>
  100 #include <vm/vm_pager.h>
  101 #include <vm/swap_pager.h>
  102 #include <vm/vm_extern.h>
  103 #include <vm/uma.h>
  104 
  105 #include <machine/mutex.h>
  106 
  107 /*
  108  * System initialization
  109  */
  110 
  111 /* the kernel process "vm_pageout"*/
  112 static void vm_pageout(void);
  113 static int vm_pageout_clean(vm_page_t);
  114 static void vm_pageout_pmap_collect(void);
  115 static void vm_pageout_scan(int pass);
  116 
  117 struct proc *pageproc;
  118 
  119 static struct kproc_desc page_kp = {
  120         "pagedaemon",
  121         vm_pageout,
  122         &pageproc
  123 };
  124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
  125 
  126 #if !defined(NO_SWAPPING)
  127 /* the kernel process "vm_daemon"*/
  128 static void vm_daemon(void);
  129 static struct   proc *vmproc;
  130 
  131 static struct kproc_desc vm_kp = {
  132         "vmdaemon",
  133         vm_daemon,
  134         &vmproc
  135 };
  136 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
  137 #endif
  138 
  139 
  140 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  141 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  142 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  143 
  144 #if !defined(NO_SWAPPING)
  145 static int vm_pageout_req_swapout;      /* XXX */
  146 static int vm_daemon_needed;
  147 #endif
  148 static int vm_max_launder = 32;
  149 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
  150 static int vm_pageout_full_stats_interval = 0;
  151 static int vm_pageout_algorithm=0;
  152 static int defer_swap_pageouts=0;
  153 static int disable_swap_pageouts=0;
  154 
  155 #if defined(NO_SWAPPING)
  156 static int vm_swap_enabled=0;
  157 static int vm_swap_idle_enabled=0;
  158 #else
  159 static int vm_swap_enabled=1;
  160 static int vm_swap_idle_enabled=0;
  161 #endif
  162 
  163 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
  164         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
  165 
  166 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  167         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  168 
  169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
  170         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
  171 
  172 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
  173         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
  174 
  175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
  176         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
  177 
  178 #if defined(NO_SWAPPING)
  179 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  180         CTLFLAG_RD, &vm_swap_enabled, 0, "");
  181 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  182         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
  183 #else
  184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  185         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  187         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  188 #endif
  189 
  190 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  191         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  192 
  193 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  194         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  195 
  196 static int pageout_lock_miss;
  197 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  198         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  199 
  200 #define VM_PAGEOUT_PAGE_COUNT 16
  201 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  202 
  203 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  204 
  205 #if !defined(NO_SWAPPING)
  206 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  207 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  208 static void vm_req_vmdaemon(void);
  209 #endif
  210 static void vm_pageout_page_stats(void);
  211 
  212 /*
  213  * vm_pageout_clean:
  214  *
  215  * Clean the page and remove it from the laundry.
  216  * 
  217  * We set the busy bit to cause potential page faults on this page to
  218  * block.  Note the careful timing, however, the busy bit isn't set till
  219  * late and we cannot do anything that will mess with the page.
  220  */
  221 static int
  222 vm_pageout_clean(m)
  223         vm_page_t m;
  224 {
  225         vm_object_t object;
  226         vm_page_t mc[2*vm_pageout_page_count];
  227         int pageout_count;
  228         int ib, is, page_base;
  229         vm_pindex_t pindex = m->pindex;
  230 
  231         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  232         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  233 
  234         /*
  235          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  236          * with the new swapper, but we could have serious problems paging
  237          * out other object types if there is insufficient memory.  
  238          *
  239          * Unfortunately, checking free memory here is far too late, so the
  240          * check has been moved up a procedural level.
  241          */
  242 
  243         /*
  244          * Don't mess with the page if it's busy, held, or special
  245          */
  246         if ((m->hold_count != 0) ||
  247             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
  248                 return 0;
  249         }
  250 
  251         mc[vm_pageout_page_count] = m;
  252         pageout_count = 1;
  253         page_base = vm_pageout_page_count;
  254         ib = 1;
  255         is = 1;
  256 
  257         /*
  258          * Scan object for clusterable pages.
  259          *
  260          * We can cluster ONLY if: ->> the page is NOT
  261          * clean, wired, busy, held, or mapped into a
  262          * buffer, and one of the following:
  263          * 1) The page is inactive, or a seldom used
  264          *    active page.
  265          * -or-
  266          * 2) we force the issue.
  267          *
  268          * During heavy mmap/modification loads the pageout
  269          * daemon can really fragment the underlying file
  270          * due to flushing pages out of order and not trying
  271          * align the clusters (which leave sporatic out-of-order
  272          * holes).  To solve this problem we do the reverse scan
  273          * first and attempt to align our cluster, then do a 
  274          * forward scan if room remains.
  275          */
  276         object = m->object;
  277 more:
  278         while (ib && pageout_count < vm_pageout_page_count) {
  279                 vm_page_t p;
  280 
  281                 if (ib > pindex) {
  282                         ib = 0;
  283                         break;
  284                 }
  285 
  286                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
  287                         ib = 0;
  288                         break;
  289                 }
  290                 if (((p->queue - p->pc) == PQ_CACHE) ||
  291                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
  292                         ib = 0;
  293                         break;
  294                 }
  295                 vm_page_test_dirty(p);
  296                 if ((p->dirty & p->valid) == 0 ||
  297                     p->queue != PQ_INACTIVE ||
  298                     p->wire_count != 0 ||       /* may be held by buf cache */
  299                     p->hold_count != 0) {       /* may be undergoing I/O */
  300                         ib = 0;
  301                         break;
  302                 }
  303                 mc[--page_base] = p;
  304                 ++pageout_count;
  305                 ++ib;
  306                 /*
  307                  * alignment boundry, stop here and switch directions.  Do
  308                  * not clear ib.
  309                  */
  310                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  311                         break;
  312         }
  313 
  314         while (pageout_count < vm_pageout_page_count && 
  315             pindex + is < object->size) {
  316                 vm_page_t p;
  317 
  318                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
  319                         break;
  320                 if (((p->queue - p->pc) == PQ_CACHE) ||
  321                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
  322                         break;
  323                 }
  324                 vm_page_test_dirty(p);
  325                 if ((p->dirty & p->valid) == 0 ||
  326                     p->queue != PQ_INACTIVE ||
  327                     p->wire_count != 0 ||       /* may be held by buf cache */
  328                     p->hold_count != 0) {       /* may be undergoing I/O */
  329                         break;
  330                 }
  331                 mc[page_base + pageout_count] = p;
  332                 ++pageout_count;
  333                 ++is;
  334         }
  335 
  336         /*
  337          * If we exhausted our forward scan, continue with the reverse scan
  338          * when possible, even past a page boundry.  This catches boundry
  339          * conditions.
  340          */
  341         if (ib && pageout_count < vm_pageout_page_count)
  342                 goto more;
  343 
  344         /*
  345          * we allow reads during pageouts...
  346          */
  347         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
  348 }
  349 
  350 /*
  351  * vm_pageout_flush() - launder the given pages
  352  *
  353  *      The given pages are laundered.  Note that we setup for the start of
  354  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  355  *      reference count all in here rather then in the parent.  If we want
  356  *      the parent to do more sophisticated things we may have to change
  357  *      the ordering.
  358  */
  359 int
  360 vm_pageout_flush(vm_page_t *mc, int count, int flags)
  361 {
  362         vm_object_t object = mc[0]->object;
  363         int pageout_status[count];
  364         int numpagedout = 0;
  365         int i;
  366 
  367         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  368         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  369         /*
  370          * Initiate I/O.  Bump the vm_page_t->busy counter and
  371          * mark the pages read-only.
  372          *
  373          * We do not have to fixup the clean/dirty bits here... we can
  374          * allow the pager to do it after the I/O completes.
  375          *
  376          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  377          * edge case with file fragments.
  378          */
  379         for (i = 0; i < count; i++) {
  380                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  381                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  382                         mc[i], i, count));
  383                 vm_page_io_start(mc[i]);
  384                 pmap_page_protect(mc[i], VM_PROT_READ);
  385         }
  386         vm_page_unlock_queues();
  387         vm_object_pip_add(object, count);
  388 
  389         vm_pager_put_pages(object, mc, count,
  390             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
  391             pageout_status);
  392 
  393         vm_page_lock_queues();
  394         for (i = 0; i < count; i++) {
  395                 vm_page_t mt = mc[i];
  396 
  397                 KASSERT((mt->flags & PG_WRITEABLE) == 0,
  398                     ("vm_pageout_flush: page %p is not write protected", mt));
  399                 switch (pageout_status[i]) {
  400                 case VM_PAGER_OK:
  401                 case VM_PAGER_PEND:
  402                         numpagedout++;
  403                         break;
  404                 case VM_PAGER_BAD:
  405                         /*
  406                          * Page outside of range of object. Right now we
  407                          * essentially lose the changes by pretending it
  408                          * worked.
  409                          */
  410                         pmap_clear_modify(mt);
  411                         vm_page_undirty(mt);
  412                         break;
  413                 case VM_PAGER_ERROR:
  414                 case VM_PAGER_FAIL:
  415                         /*
  416                          * If page couldn't be paged out, then reactivate the
  417                          * page so it doesn't clog the inactive list.  (We
  418                          * will try paging out it again later).
  419                          */
  420                         vm_page_activate(mt);
  421                         break;
  422                 case VM_PAGER_AGAIN:
  423                         break;
  424                 }
  425 
  426                 /*
  427                  * If the operation is still going, leave the page busy to
  428                  * block all other accesses. Also, leave the paging in
  429                  * progress indicator set so that we don't attempt an object
  430                  * collapse.
  431                  */
  432                 if (pageout_status[i] != VM_PAGER_PEND) {
  433                         vm_object_pip_wakeup(object);
  434                         vm_page_io_finish(mt);
  435                         if (vm_page_count_severe())
  436                                 vm_page_try_to_cache(mt);
  437                 }
  438         }
  439         return numpagedout;
  440 }
  441 
  442 #if !defined(NO_SWAPPING)
  443 /*
  444  *      vm_pageout_object_deactivate_pages
  445  *
  446  *      deactivate enough pages to satisfy the inactive target
  447  *      requirements or if vm_page_proc_limit is set, then
  448  *      deactivate all of the pages in the object and its
  449  *      backing_objects.
  450  *
  451  *      The object and map must be locked.
  452  */
  453 static void
  454 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
  455         pmap_t pmap;
  456         vm_object_t first_object;
  457         long desired;
  458 {
  459         vm_object_t backing_object, object;
  460         vm_page_t p, next;
  461         int actcount, rcount, remove_mode;
  462 
  463         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
  464         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
  465                 return;
  466         for (object = first_object;; object = backing_object) {
  467                 if (pmap_resident_count(pmap) <= desired)
  468                         goto unlock_return;
  469                 if (object->paging_in_progress)
  470                         goto unlock_return;
  471 
  472                 remove_mode = 0;
  473                 if (object->shadow_count > 1)
  474                         remove_mode = 1;
  475                 /*
  476                  * scan the objects entire memory queue
  477                  */
  478                 rcount = object->resident_page_count;
  479                 p = TAILQ_FIRST(&object->memq);
  480                 vm_page_lock_queues();
  481                 while (p && (rcount-- > 0)) {
  482                         if (pmap_resident_count(pmap) <= desired) {
  483                                 vm_page_unlock_queues();
  484                                 goto unlock_return;
  485                         }
  486                         next = TAILQ_NEXT(p, listq);
  487                         cnt.v_pdpages++;
  488                         if (p->wire_count != 0 ||
  489                             p->hold_count != 0 ||
  490                             p->busy != 0 ||
  491                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
  492                             !pmap_page_exists_quick(pmap, p)) {
  493                                 p = next;
  494                                 continue;
  495                         }
  496                         actcount = pmap_ts_referenced(p);
  497                         if (actcount) {
  498                                 vm_page_flag_set(p, PG_REFERENCED);
  499                         } else if (p->flags & PG_REFERENCED) {
  500                                 actcount = 1;
  501                         }
  502                         if ((p->queue != PQ_ACTIVE) &&
  503                                 (p->flags & PG_REFERENCED)) {
  504                                 vm_page_activate(p);
  505                                 p->act_count += actcount;
  506                                 vm_page_flag_clear(p, PG_REFERENCED);
  507                         } else if (p->queue == PQ_ACTIVE) {
  508                                 if ((p->flags & PG_REFERENCED) == 0) {
  509                                         p->act_count -= min(p->act_count, ACT_DECLINE);
  510                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
  511                                                 pmap_remove_all(p);
  512                                                 vm_page_deactivate(p);
  513                                         } else {
  514                                                 vm_pageq_requeue(p);
  515                                         }
  516                                 } else {
  517                                         vm_page_activate(p);
  518                                         vm_page_flag_clear(p, PG_REFERENCED);
  519                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
  520                                                 p->act_count += ACT_ADVANCE;
  521                                         vm_pageq_requeue(p);
  522                                 }
  523                         } else if (p->queue == PQ_INACTIVE) {
  524                                 pmap_remove_all(p);
  525                         }
  526                         p = next;
  527                 }
  528                 vm_page_unlock_queues();
  529                 if ((backing_object = object->backing_object) == NULL)
  530                         goto unlock_return;
  531                 VM_OBJECT_LOCK(backing_object);
  532                 if (object != first_object)
  533                         VM_OBJECT_UNLOCK(object);
  534         }
  535 unlock_return:
  536         if (object != first_object)
  537                 VM_OBJECT_UNLOCK(object);
  538 }
  539 
  540 /*
  541  * deactivate some number of pages in a map, try to do it fairly, but
  542  * that is really hard to do.
  543  */
  544 static void
  545 vm_pageout_map_deactivate_pages(map, desired)
  546         vm_map_t map;
  547         long desired;
  548 {
  549         vm_map_entry_t tmpe;
  550         vm_object_t obj, bigobj;
  551         int nothingwired;
  552 
  553         if (!vm_map_trylock(map))
  554                 return;
  555 
  556         bigobj = NULL;
  557         nothingwired = TRUE;
  558 
  559         /*
  560          * first, search out the biggest object, and try to free pages from
  561          * that.
  562          */
  563         tmpe = map->header.next;
  564         while (tmpe != &map->header) {
  565                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  566                         obj = tmpe->object.vm_object;
  567                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
  568                                 if (obj->shadow_count <= 1 &&
  569                                     (bigobj == NULL ||
  570                                      bigobj->resident_page_count < obj->resident_page_count)) {
  571                                         if (bigobj != NULL)
  572                                                 VM_OBJECT_UNLOCK(bigobj);
  573                                         bigobj = obj;
  574                                 } else
  575                                         VM_OBJECT_UNLOCK(obj);
  576                         }
  577                 }
  578                 if (tmpe->wired_count > 0)
  579                         nothingwired = FALSE;
  580                 tmpe = tmpe->next;
  581         }
  582 
  583         if (bigobj != NULL) {
  584                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  585                 VM_OBJECT_UNLOCK(bigobj);
  586         }
  587         /*
  588          * Next, hunt around for other pages to deactivate.  We actually
  589          * do this search sort of wrong -- .text first is not the best idea.
  590          */
  591         tmpe = map->header.next;
  592         while (tmpe != &map->header) {
  593                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  594                         break;
  595                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  596                         obj = tmpe->object.vm_object;
  597                         if (obj != NULL) {
  598                                 VM_OBJECT_LOCK(obj);
  599                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  600                                 VM_OBJECT_UNLOCK(obj);
  601                         }
  602                 }
  603                 tmpe = tmpe->next;
  604         }
  605 
  606         /*
  607          * Remove all mappings if a process is swapped out, this will free page
  608          * table pages.
  609          */
  610         if (desired == 0 && nothingwired) {
  611                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  612                     vm_map_max(map));
  613         }
  614         vm_map_unlock(map);
  615 }
  616 #endif          /* !defined(NO_SWAPPING) */
  617 
  618 /*
  619  * This routine is very drastic, but can save the system
  620  * in a pinch.
  621  */
  622 static void
  623 vm_pageout_pmap_collect(void)
  624 {
  625         int i;
  626         vm_page_t m;
  627         static int warningdone;
  628 
  629         if (pmap_pagedaemon_waken == 0)
  630                 return;
  631         if (warningdone < 5) {
  632                 printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
  633                 warningdone++;
  634         }
  635         vm_page_lock_queues();
  636         for (i = 0; i < vm_page_array_size; i++) {
  637                 m = &vm_page_array[i];
  638                 if (m->wire_count || m->hold_count || m->busy ||
  639                     (m->flags & (PG_BUSY | PG_UNMANAGED)))
  640                         continue;
  641                 pmap_remove_all(m);
  642         }
  643         vm_page_unlock_queues();
  644         pmap_pagedaemon_waken = 0;
  645 }
  646         
  647 /*
  648  *      vm_pageout_scan does the dirty work for the pageout daemon.
  649  */
  650 static void
  651 vm_pageout_scan(int pass)
  652 {
  653         vm_page_t m, next;
  654         struct vm_page marker;
  655         int page_shortage, maxscan, pcount;
  656         int addl_page_shortage, addl_page_shortage_init;
  657         struct proc *p, *bigproc;
  658         struct thread *td;
  659         vm_offset_t size, bigsize;
  660         vm_object_t object;
  661         int actcount, cache_cur, cache_first_failure;
  662         static int cache_last_free;
  663         int vnodes_skipped = 0;
  664         int maxlaunder;
  665 
  666         mtx_lock(&Giant);
  667         /*
  668          * Decrease registered cache sizes.
  669          */
  670         EVENTHANDLER_INVOKE(vm_lowmem, 0);
  671         /*
  672          * We do this explicitly after the caches have been drained above.
  673          */
  674         uma_reclaim();
  675         /*
  676          * Do whatever cleanup that the pmap code can.
  677          */
  678         vm_pageout_pmap_collect();
  679 
  680         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
  681 
  682         /*
  683          * Calculate the number of pages we want to either free or move
  684          * to the cache.
  685          */
  686         page_shortage = vm_paging_target() + addl_page_shortage_init;
  687 
  688         /*
  689          * Initialize our marker
  690          */
  691         bzero(&marker, sizeof(marker));
  692         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
  693         marker.queue = PQ_INACTIVE;
  694         marker.wire_count = 1;
  695 
  696         /*
  697          * Start scanning the inactive queue for pages we can move to the
  698          * cache or free.  The scan will stop when the target is reached or
  699          * we have scanned the entire inactive queue.  Note that m->act_count
  700          * is not used to form decisions for the inactive queue, only for the
  701          * active queue.
  702          *
  703          * maxlaunder limits the number of dirty pages we flush per scan.
  704          * For most systems a smaller value (16 or 32) is more robust under
  705          * extreme memory and disk pressure because any unnecessary writes
  706          * to disk can result in extreme performance degredation.  However,
  707          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  708          * used) will die horribly with limited laundering.  If the pageout
  709          * daemon cannot clean enough pages in the first pass, we let it go
  710          * all out in succeeding passes.
  711          */
  712         if ((maxlaunder = vm_max_launder) <= 1)
  713                 maxlaunder = 1;
  714         if (pass)
  715                 maxlaunder = 10000;
  716         vm_page_lock_queues();
  717 rescan0:
  718         addl_page_shortage = addl_page_shortage_init;
  719         maxscan = cnt.v_inactive_count;
  720 
  721         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
  722              m != NULL && maxscan-- > 0 && page_shortage > 0;
  723              m = next) {
  724 
  725                 cnt.v_pdpages++;
  726 
  727                 if (m->queue != PQ_INACTIVE) {
  728                         goto rescan0;
  729                 }
  730 
  731                 next = TAILQ_NEXT(m, pageq);
  732                 object = m->object;
  733 
  734                 /*
  735                  * skip marker pages
  736                  */
  737                 if (m->flags & PG_MARKER)
  738                         continue;
  739 
  740                 /*
  741                  * A held page may be undergoing I/O, so skip it.
  742                  */
  743                 if (m->hold_count) {
  744                         vm_pageq_requeue(m);
  745                         addl_page_shortage++;
  746                         continue;
  747                 }
  748                 /*
  749                  * Don't mess with busy pages, keep in the front of the
  750                  * queue, most likely are being paged out.
  751                  */
  752                 if (!VM_OBJECT_TRYLOCK(object)) {
  753                         addl_page_shortage++;
  754                         continue;
  755                 }
  756                 if (m->busy || (m->flags & PG_BUSY)) {
  757                         VM_OBJECT_UNLOCK(object);
  758                         addl_page_shortage++;
  759                         continue;
  760                 }
  761 
  762                 /*
  763                  * If the object is not being used, we ignore previous 
  764                  * references.
  765                  */
  766                 if (object->ref_count == 0) {
  767                         vm_page_flag_clear(m, PG_REFERENCED);
  768                         pmap_clear_reference(m);
  769 
  770                 /*
  771                  * Otherwise, if the page has been referenced while in the 
  772                  * inactive queue, we bump the "activation count" upwards, 
  773                  * making it less likely that the page will be added back to 
  774                  * the inactive queue prematurely again.  Here we check the 
  775                  * page tables (or emulated bits, if any), given the upper 
  776                  * level VM system not knowing anything about existing 
  777                  * references.
  778                  */
  779                 } else if (((m->flags & PG_REFERENCED) == 0) &&
  780                         (actcount = pmap_ts_referenced(m))) {
  781                         vm_page_activate(m);
  782                         VM_OBJECT_UNLOCK(object);
  783                         m->act_count += (actcount + ACT_ADVANCE);
  784                         continue;
  785                 }
  786 
  787                 /*
  788                  * If the upper level VM system knows about any page 
  789                  * references, we activate the page.  We also set the 
  790                  * "activation count" higher than normal so that we will less 
  791                  * likely place pages back onto the inactive queue again.
  792                  */
  793                 if ((m->flags & PG_REFERENCED) != 0) {
  794                         vm_page_flag_clear(m, PG_REFERENCED);
  795                         actcount = pmap_ts_referenced(m);
  796                         vm_page_activate(m);
  797                         VM_OBJECT_UNLOCK(object);
  798                         m->act_count += (actcount + ACT_ADVANCE + 1);
  799                         continue;
  800                 }
  801 
  802                 /*
  803                  * If the upper level VM system doesn't know anything about 
  804                  * the page being dirty, we have to check for it again.  As 
  805                  * far as the VM code knows, any partially dirty pages are 
  806                  * fully dirty.
  807                  */
  808                 if (m->dirty == 0 && !pmap_is_modified(m)) {
  809                         /*
  810                          * Avoid a race condition: Unless write access is
  811                          * removed from the page, another processor could
  812                          * modify it before all access is removed by the call
  813                          * to vm_page_cache() below.  If vm_page_cache() finds
  814                          * that the page has been modified when it removes all
  815                          * access, it panics because it cannot cache dirty
  816                          * pages.  In principle, we could eliminate just write
  817                          * access here rather than all access.  In the expected
  818                          * case, when there are no last instant modifications
  819                          * to the page, removing all access will be cheaper
  820                          * overall.
  821                          */
  822                         if ((m->flags & PG_WRITEABLE) != 0)
  823                                 pmap_remove_all(m);
  824                 } else {
  825                         vm_page_dirty(m);
  826                 }
  827 
  828                 if (m->valid == 0) {
  829                         /*
  830                          * Invalid pages can be easily freed
  831                          */
  832                         pmap_remove_all(m);
  833                         vm_page_free(m);
  834                         cnt.v_dfree++;
  835                         --page_shortage;
  836                 } else if (m->dirty == 0) {
  837                         /*
  838                          * Clean pages can be placed onto the cache queue.
  839                          * This effectively frees them.
  840                          */
  841                         vm_page_cache(m);
  842                         --page_shortage;
  843                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
  844                         /*
  845                          * Dirty pages need to be paged out, but flushing
  846                          * a page is extremely expensive verses freeing
  847                          * a clean page.  Rather then artificially limiting
  848                          * the number of pages we can flush, we instead give
  849                          * dirty pages extra priority on the inactive queue
  850                          * by forcing them to be cycled through the queue
  851                          * twice before being flushed, after which the
  852                          * (now clean) page will cycle through once more
  853                          * before being freed.  This significantly extends
  854                          * the thrash point for a heavily loaded machine.
  855                          */
  856                         vm_page_flag_set(m, PG_WINATCFLS);
  857                         vm_pageq_requeue(m);
  858                 } else if (maxlaunder > 0) {
  859                         /*
  860                          * We always want to try to flush some dirty pages if
  861                          * we encounter them, to keep the system stable.
  862                          * Normally this number is small, but under extreme
  863                          * pressure where there are insufficient clean pages
  864                          * on the inactive queue, we may have to go all out.
  865                          */
  866                         int swap_pageouts_ok;
  867                         struct vnode *vp = NULL;
  868                         struct mount *mp;
  869 
  870                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
  871                                 swap_pageouts_ok = 1;
  872                         } else {
  873                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
  874                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
  875                                 vm_page_count_min());
  876                                                                                 
  877                         }
  878 
  879                         /*
  880                          * We don't bother paging objects that are "dead".  
  881                          * Those objects are in a "rundown" state.
  882                          */
  883                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
  884                                 VM_OBJECT_UNLOCK(object);
  885                                 vm_pageq_requeue(m);
  886                                 continue;
  887                         }
  888 
  889                         /*
  890                          * The object is already known NOT to be dead.   It
  891                          * is possible for the vget() to block the whole
  892                          * pageout daemon, but the new low-memory handling
  893                          * code should prevent it.
  894                          *
  895                          * The previous code skipped locked vnodes and, worse,
  896                          * reordered pages in the queue.  This results in
  897                          * completely non-deterministic operation and, on a
  898                          * busy system, can lead to extremely non-optimal
  899                          * pageouts.  For example, it can cause clean pages
  900                          * to be freed and dirty pages to be moved to the end
  901                          * of the queue.  Since dirty pages are also moved to
  902                          * the end of the queue once-cleaned, this gives
  903                          * way too large a weighting to defering the freeing
  904                          * of dirty pages.
  905                          *
  906                          * We can't wait forever for the vnode lock, we might
  907                          * deadlock due to a vn_read() getting stuck in
  908                          * vm_wait while holding this vnode.  We skip the 
  909                          * vnode if we can't get it in a reasonable amount
  910                          * of time.
  911                          */
  912                         if (object->type == OBJT_VNODE) {
  913                                 vp = object->handle;
  914                                 mp = NULL;
  915                                 if (vp->v_type == VREG)
  916                                         vn_start_write(vp, &mp, V_NOWAIT);
  917                                 vm_page_unlock_queues();
  918                                 VI_LOCK(vp);
  919                                 VM_OBJECT_UNLOCK(object);
  920                                 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
  921                                     LK_TIMELOCK, curthread)) {
  922                                         VM_OBJECT_LOCK(object);
  923                                         vm_page_lock_queues();
  924                                         ++pageout_lock_miss;
  925                                         vn_finished_write(mp);
  926                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  927                                                 vnodes_skipped++;
  928                                         VM_OBJECT_UNLOCK(object);
  929                                         continue;
  930                                 }
  931                                 VM_OBJECT_LOCK(object);
  932                                 vm_page_lock_queues();
  933                                 /*
  934                                  * The page might have been moved to another
  935                                  * queue during potential blocking in vget()
  936                                  * above.  The page might have been freed and
  937                                  * reused for another vnode.  The object might
  938                                  * have been reused for another vnode.
  939                                  */
  940                                 if (m->queue != PQ_INACTIVE ||
  941                                     m->object != object ||
  942                                     object->handle != vp) {
  943                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  944                                                 vnodes_skipped++;
  945                                         goto unlock_and_continue;
  946                                 }
  947         
  948                                 /*
  949                                  * The page may have been busied during the
  950                                  * blocking in vput();  We don't move the
  951                                  * page back onto the end of the queue so that
  952                                  * statistics are more correct if we don't.
  953                                  */
  954                                 if (m->busy || (m->flags & PG_BUSY)) {
  955                                         goto unlock_and_continue;
  956                                 }
  957 
  958                                 /*
  959                                  * If the page has become held it might
  960                                  * be undergoing I/O, so skip it
  961                                  */
  962                                 if (m->hold_count) {
  963                                         vm_pageq_requeue(m);
  964                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  965                                                 vnodes_skipped++;
  966                                         goto unlock_and_continue;
  967                                 }
  968                         }
  969 
  970                         /*
  971                          * If a page is dirty, then it is either being washed
  972                          * (but not yet cleaned) or it is still in the
  973                          * laundry.  If it is still in the laundry, then we
  974                          * start the cleaning operation. 
  975                          *
  976                          * This operation may cluster, invalidating the 'next'
  977                          * pointer.  To prevent an inordinate number of
  978                          * restarts we use our marker to remember our place.
  979                          *
  980                          * decrement page_shortage on success to account for
  981                          * the (future) cleaned page.  Otherwise we could wind
  982                          * up laundering or cleaning too many pages.
  983                          */
  984                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
  985                         if (vm_pageout_clean(m) != 0) {
  986                                 --page_shortage;
  987                                 --maxlaunder;
  988                         }
  989                         next = TAILQ_NEXT(&marker, pageq);
  990                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
  991 unlock_and_continue:
  992                         VM_OBJECT_UNLOCK(object);
  993                         if (vp) {
  994                                 vm_page_unlock_queues();
  995                                 vput(vp);
  996                                 vn_finished_write(mp);
  997                                 vm_page_lock_queues();
  998                         }
  999                         continue;
 1000                 }
 1001                 VM_OBJECT_UNLOCK(object);
 1002         }
 1003 
 1004         /*
 1005          * Compute the number of pages we want to try to move from the
 1006          * active queue to the inactive queue.
 1007          */
 1008         page_shortage = vm_paging_target() +
 1009                 cnt.v_inactive_target - cnt.v_inactive_count;
 1010         page_shortage += addl_page_shortage;
 1011 
 1012         /*
 1013          * Scan the active queue for things we can deactivate. We nominally
 1014          * track the per-page activity counter and use it to locate
 1015          * deactivation candidates.
 1016          */
 1017         pcount = cnt.v_active_count;
 1018         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1019 
 1020         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
 1021 
 1022                 KASSERT(m->queue == PQ_ACTIVE,
 1023                     ("vm_pageout_scan: page %p isn't active", m));
 1024 
 1025                 next = TAILQ_NEXT(m, pageq);
 1026                 object = m->object;
 1027                 if (!VM_OBJECT_TRYLOCK(object)) {
 1028                         vm_pageq_requeue(m);
 1029                         m = next;
 1030                         continue;
 1031                 }
 1032 
 1033                 /*
 1034                  * Don't deactivate pages that are busy.
 1035                  */
 1036                 if ((m->busy != 0) ||
 1037                     (m->flags & PG_BUSY) ||
 1038                     (m->hold_count != 0)) {
 1039                         VM_OBJECT_UNLOCK(object);
 1040                         vm_pageq_requeue(m);
 1041                         m = next;
 1042                         continue;
 1043                 }
 1044 
 1045                 /*
 1046                  * The count for pagedaemon pages is done after checking the
 1047                  * page for eligibility...
 1048                  */
 1049                 cnt.v_pdpages++;
 1050 
 1051                 /*
 1052                  * Check to see "how much" the page has been used.
 1053                  */
 1054                 actcount = 0;
 1055                 if (object->ref_count != 0) {
 1056                         if (m->flags & PG_REFERENCED) {
 1057                                 actcount += 1;
 1058                         }
 1059                         actcount += pmap_ts_referenced(m);
 1060                         if (actcount) {
 1061                                 m->act_count += ACT_ADVANCE + actcount;
 1062                                 if (m->act_count > ACT_MAX)
 1063                                         m->act_count = ACT_MAX;
 1064                         }
 1065                 }
 1066 
 1067                 /*
 1068                  * Since we have "tested" this bit, we need to clear it now.
 1069                  */
 1070                 vm_page_flag_clear(m, PG_REFERENCED);
 1071 
 1072                 /*
 1073                  * Only if an object is currently being used, do we use the
 1074                  * page activation count stats.
 1075                  */
 1076                 if (actcount && (object->ref_count != 0)) {
 1077                         vm_pageq_requeue(m);
 1078                 } else {
 1079                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1080                         if (vm_pageout_algorithm ||
 1081                             object->ref_count == 0 ||
 1082                             m->act_count == 0) {
 1083                                 page_shortage--;
 1084                                 if (object->ref_count == 0) {
 1085                                         pmap_remove_all(m);
 1086                                         if (m->dirty == 0)
 1087                                                 vm_page_cache(m);
 1088                                         else
 1089                                                 vm_page_deactivate(m);
 1090                                 } else {
 1091                                         vm_page_deactivate(m);
 1092                                 }
 1093                         } else {
 1094                                 vm_pageq_requeue(m);
 1095                         }
 1096                 }
 1097                 VM_OBJECT_UNLOCK(object);
 1098                 m = next;
 1099         }
 1100 
 1101         /*
 1102          * We try to maintain some *really* free pages, this allows interrupt
 1103          * code to be guaranteed space.  Since both cache and free queues 
 1104          * are considered basically 'free', moving pages from cache to free
 1105          * does not effect other calculations.
 1106          */
 1107         cache_cur = cache_last_free;
 1108         cache_first_failure = -1;
 1109         while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
 1110             (cache_cur + PQ_PRIME2) & PQ_L2_MASK) != cache_first_failure) {
 1111                 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
 1112                     pageq) {
 1113                         KASSERT(m->dirty == 0,
 1114                             ("Found dirty cache page %p", m));
 1115                         KASSERT(!pmap_page_is_mapped(m),
 1116                             ("Found mapped cache page %p", m));
 1117                         KASSERT((m->flags & PG_UNMANAGED) == 0,
 1118                             ("Found unmanaged cache page %p", m));
 1119                         KASSERT(m->wire_count == 0,
 1120                             ("Found wired cache page %p", m));
 1121                         if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
 1122                             m->object)) {
 1123                                 KASSERT((m->flags & PG_BUSY) == 0 &&
 1124                                     m->busy == 0, ("Found busy cache page %p",
 1125                                     m));
 1126                                 vm_page_free(m);
 1127                                 VM_OBJECT_UNLOCK(object);
 1128                                 cnt.v_dfree++;
 1129                                 cache_last_free = cache_cur;
 1130                                 cache_first_failure = -1;
 1131                                 break;
 1132                         }
 1133                 }
 1134                 if (m == NULL && cache_first_failure == -1)
 1135                         cache_first_failure = cache_cur;
 1136         }
 1137         vm_page_unlock_queues();
 1138 #if !defined(NO_SWAPPING)
 1139         /*
 1140          * Idle process swapout -- run once per second.
 1141          */
 1142         if (vm_swap_idle_enabled) {
 1143                 static long lsec;
 1144                 if (time_second != lsec) {
 1145                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
 1146                         vm_req_vmdaemon();
 1147                         lsec = time_second;
 1148                 }
 1149         }
 1150 #endif
 1151                 
 1152         /*
 1153          * If we didn't get enough free pages, and we have skipped a vnode
 1154          * in a writeable object, wakeup the sync daemon.  And kick swapout
 1155          * if we did not get enough free pages.
 1156          */
 1157         if (vm_paging_target() > 0) {
 1158                 if (vnodes_skipped && vm_page_count_min())
 1159                         (void) speedup_syncer();
 1160 #if !defined(NO_SWAPPING)
 1161                 if (vm_swap_enabled && vm_page_count_target()) {
 1162                         vm_req_vmdaemon();
 1163                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
 1164                 }
 1165 #endif
 1166         }
 1167 
 1168         /*
 1169          * If we are critically low on one of RAM or swap and low on
 1170          * the other, kill the largest process.  However, we avoid
 1171          * doing this on the first pass in order to give ourselves a
 1172          * chance to flush out dirty vnode-backed pages and to allow
 1173          * active pages to be moved to the inactive queue and reclaimed.
 1174          *
 1175          * We keep the process bigproc locked once we find it to keep anyone
 1176          * from messing with it; however, there is a possibility of
 1177          * deadlock if process B is bigproc and one of it's child processes
 1178          * attempts to propagate a signal to B while we are waiting for A's
 1179          * lock while walking this list.  To avoid this, we don't block on
 1180          * the process lock but just skip a process if it is already locked.
 1181          */
 1182         if (pass != 0 &&
 1183             ((swap_pager_avail < 64 && vm_page_count_min()) ||
 1184              (swap_pager_full && vm_paging_target() > 0))) {
 1185                 bigproc = NULL;
 1186                 bigsize = 0;
 1187                 sx_slock(&allproc_lock);
 1188                 FOREACH_PROC_IN_SYSTEM(p) {
 1189                         int breakout;
 1190 
 1191                         if (PROC_TRYLOCK(p) == 0)
 1192                                 continue;
 1193                         /*
 1194                          * If this is a system or protected process, skip it.
 1195                          */
 1196                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
 1197                             (p->p_flag & P_PROTECTED) ||
 1198                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
 1199                                 PROC_UNLOCK(p);
 1200                                 continue;
 1201                         }
 1202                         /*
 1203                          * If the process is in a non-running type state,
 1204                          * don't touch it.  Check all the threads individually.
 1205                          */
 1206                         mtx_lock_spin(&sched_lock);
 1207                         breakout = 0;
 1208                         FOREACH_THREAD_IN_PROC(p, td) {
 1209                                 if (!TD_ON_RUNQ(td) &&
 1210                                     !TD_IS_RUNNING(td) &&
 1211                                     !TD_IS_SLEEPING(td)) {
 1212                                         breakout = 1;
 1213                                         break;
 1214                                 }
 1215                         }
 1216                         if (breakout) {
 1217                                 mtx_unlock_spin(&sched_lock);
 1218                                 PROC_UNLOCK(p);
 1219                                 continue;
 1220                         }
 1221                         mtx_unlock_spin(&sched_lock);
 1222                         /*
 1223                          * get the process size
 1224                          */
 1225                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
 1226                                 PROC_UNLOCK(p);
 1227                                 continue;
 1228                         }
 1229                         size = vmspace_swap_count(p->p_vmspace);
 1230                         vm_map_unlock_read(&p->p_vmspace->vm_map);
 1231                         size += vmspace_resident_count(p->p_vmspace);
 1232                         /*
 1233                          * if the this process is bigger than the biggest one
 1234                          * remember it.
 1235                          */
 1236                         if (size > bigsize) {
 1237                                 if (bigproc != NULL)
 1238                                         PROC_UNLOCK(bigproc);
 1239                                 bigproc = p;
 1240                                 bigsize = size;
 1241                         } else
 1242                                 PROC_UNLOCK(p);
 1243                 }
 1244                 sx_sunlock(&allproc_lock);
 1245                 if (bigproc != NULL) {
 1246                         killproc(bigproc, "out of swap space");
 1247                         mtx_lock_spin(&sched_lock);
 1248                         sched_nice(bigproc, PRIO_MIN);
 1249                         mtx_unlock_spin(&sched_lock);
 1250                         PROC_UNLOCK(bigproc);
 1251                         wakeup(&cnt.v_free_count);
 1252                 }
 1253         }
 1254         mtx_unlock(&Giant);
 1255 }
 1256 
 1257 /*
 1258  * This routine tries to maintain the pseudo LRU active queue,
 1259  * so that during long periods of time where there is no paging,
 1260  * that some statistic accumulation still occurs.  This code
 1261  * helps the situation where paging just starts to occur.
 1262  */
 1263 static void
 1264 vm_pageout_page_stats()
 1265 {
 1266         vm_object_t object;
 1267         vm_page_t m,next;
 1268         int pcount,tpcount;             /* Number of pages to check */
 1269         static int fullintervalcount = 0;
 1270         int page_shortage;
 1271 
 1272         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1273         page_shortage = 
 1274             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
 1275             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
 1276 
 1277         if (page_shortage <= 0)
 1278                 return;
 1279 
 1280         pcount = cnt.v_active_count;
 1281         fullintervalcount += vm_pageout_stats_interval;
 1282         if (fullintervalcount < vm_pageout_full_stats_interval) {
 1283                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
 1284                 if (pcount > tpcount)
 1285                         pcount = tpcount;
 1286         } else {
 1287                 fullintervalcount = 0;
 1288         }
 1289 
 1290         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1291         while ((m != NULL) && (pcount-- > 0)) {
 1292                 int actcount;
 1293 
 1294                 KASSERT(m->queue == PQ_ACTIVE,
 1295                     ("vm_pageout_page_stats: page %p isn't active", m));
 1296 
 1297                 next = TAILQ_NEXT(m, pageq);
 1298                 object = m->object;
 1299                 if (!VM_OBJECT_TRYLOCK(object)) {
 1300                         vm_pageq_requeue(m);
 1301                         m = next;
 1302                         continue;
 1303                 }
 1304 
 1305                 /*
 1306                  * Don't deactivate pages that are busy.
 1307                  */
 1308                 if ((m->busy != 0) ||
 1309                     (m->flags & PG_BUSY) ||
 1310                     (m->hold_count != 0)) {
 1311                         VM_OBJECT_UNLOCK(object);
 1312                         vm_pageq_requeue(m);
 1313                         m = next;
 1314                         continue;
 1315                 }
 1316 
 1317                 actcount = 0;
 1318                 if (m->flags & PG_REFERENCED) {
 1319                         vm_page_flag_clear(m, PG_REFERENCED);
 1320                         actcount += 1;
 1321                 }
 1322 
 1323                 actcount += pmap_ts_referenced(m);
 1324                 if (actcount) {
 1325                         m->act_count += ACT_ADVANCE + actcount;
 1326                         if (m->act_count > ACT_MAX)
 1327                                 m->act_count = ACT_MAX;
 1328                         vm_pageq_requeue(m);
 1329                 } else {
 1330                         if (m->act_count == 0) {
 1331                                 /*
 1332                                  * We turn off page access, so that we have
 1333                                  * more accurate RSS stats.  We don't do this
 1334                                  * in the normal page deactivation when the
 1335                                  * system is loaded VM wise, because the
 1336                                  * cost of the large number of page protect
 1337                                  * operations would be higher than the value
 1338                                  * of doing the operation.
 1339                                  */
 1340                                 pmap_remove_all(m);
 1341                                 vm_page_deactivate(m);
 1342                         } else {
 1343                                 m->act_count -= min(m->act_count, ACT_DECLINE);
 1344                                 vm_pageq_requeue(m);
 1345                         }
 1346                 }
 1347                 VM_OBJECT_UNLOCK(object);
 1348                 m = next;
 1349         }
 1350 }
 1351 
 1352 /*
 1353  *      vm_pageout is the high level pageout daemon.
 1354  */
 1355 static void
 1356 vm_pageout()
 1357 {
 1358         int error, pass;
 1359 
 1360         /*
 1361          * Initialize some paging parameters.
 1362          */
 1363         cnt.v_interrupt_free_min = 2;
 1364         if (cnt.v_page_count < 2000)
 1365                 vm_pageout_page_count = 8;
 1366 
 1367         /*
 1368          * v_free_reserved needs to include enough for the largest
 1369          * swap pager structures plus enough for any pv_entry structs
 1370          * when paging. 
 1371          */
 1372         if (cnt.v_page_count > 1024)
 1373                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1374         else
 1375                 cnt.v_free_min = 4;
 1376         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1377             cnt.v_interrupt_free_min;
 1378         cnt.v_free_reserved = vm_pageout_page_count +
 1379             cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
 1380         cnt.v_free_severe = cnt.v_free_min / 2;
 1381         cnt.v_free_min += cnt.v_free_reserved;
 1382         cnt.v_free_severe += cnt.v_free_reserved;
 1383 
 1384         /*
 1385          * v_free_target and v_cache_min control pageout hysteresis.  Note
 1386          * that these are more a measure of the VM cache queue hysteresis
 1387          * then the VM free queue.  Specifically, v_free_target is the
 1388          * high water mark (free+cache pages).
 1389          *
 1390          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
 1391          * low water mark, while v_free_min is the stop.  v_cache_min must
 1392          * be big enough to handle memory needs while the pageout daemon
 1393          * is signalled and run to free more pages.
 1394          */
 1395         if (cnt.v_free_count > 6144)
 1396                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1397         else
 1398                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
 1399 
 1400         if (cnt.v_free_count > 2048) {
 1401                 cnt.v_cache_min = cnt.v_free_target;
 1402                 cnt.v_cache_max = 2 * cnt.v_cache_min;
 1403                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1404         } else {
 1405                 cnt.v_cache_min = 0;
 1406                 cnt.v_cache_max = 0;
 1407                 cnt.v_inactive_target = cnt.v_free_count / 4;
 1408         }
 1409         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1410                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1411 
 1412         /* XXX does not really belong here */
 1413         if (vm_page_max_wired == 0)
 1414                 vm_page_max_wired = cnt.v_free_count / 3;
 1415 
 1416         if (vm_pageout_stats_max == 0)
 1417                 vm_pageout_stats_max = cnt.v_free_target;
 1418 
 1419         /*
 1420          * Set interval in seconds for stats scan.
 1421          */
 1422         if (vm_pageout_stats_interval == 0)
 1423                 vm_pageout_stats_interval = 5;
 1424         if (vm_pageout_full_stats_interval == 0)
 1425                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
 1426 
 1427         swap_pager_swap_init();
 1428         pass = 0;
 1429         /*
 1430          * The pageout daemon is never done, so loop forever.
 1431          */
 1432         while (TRUE) {
 1433                 vm_page_lock_queues();
 1434                 /*
 1435                  * If we have enough free memory, wakeup waiters.  Do
 1436                  * not clear vm_pages_needed until we reach our target,
 1437                  * otherwise we may be woken up over and over again and
 1438                  * waste a lot of cpu.
 1439                  */
 1440                 if (vm_pages_needed && !vm_page_count_min()) {
 1441                         if (!vm_paging_needed())
 1442                                 vm_pages_needed = 0;
 1443                         wakeup(&cnt.v_free_count);
 1444                 }
 1445                 if (vm_pages_needed) {
 1446                         /*
 1447                          * Still not done, take a second pass without waiting
 1448                          * (unlimited dirty cleaning), otherwise sleep a bit
 1449                          * and try again.
 1450                          */
 1451                         ++pass;
 1452                         if (pass > 1)
 1453                                 msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
 1454                                        "psleep", hz/2);
 1455                 } else {
 1456                         /*
 1457                          * Good enough, sleep & handle stats.  Prime the pass
 1458                          * for the next run.
 1459                          */
 1460                         if (pass > 1)
 1461                                 pass = 1;
 1462                         else
 1463                                 pass = 0;
 1464                         error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
 1465                                     "psleep", vm_pageout_stats_interval * hz);
 1466                         if (error && !vm_pages_needed) {
 1467                                 pass = 0;
 1468                                 vm_pageout_page_stats();
 1469                                 vm_page_unlock_queues();
 1470                                 continue;
 1471                         }
 1472                 }
 1473                 if (vm_pages_needed)
 1474                         cnt.v_pdwakeups++;
 1475                 vm_page_unlock_queues();
 1476                 vm_pageout_scan(pass);
 1477         }
 1478 }
 1479 
 1480 /*
 1481  * Unless the page queue lock is held by the caller, this function
 1482  * should be regarded as advisory.  Specifically, the caller should
 1483  * not msleep() on &cnt.v_free_count following this function unless
 1484  * the page queue lock is held until the msleep() is performed.
 1485  */
 1486 void
 1487 pagedaemon_wakeup()
 1488 {
 1489 
 1490         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1491                 vm_pages_needed = 1;
 1492                 wakeup(&vm_pages_needed);
 1493         }
 1494 }
 1495 
 1496 #if !defined(NO_SWAPPING)
 1497 static void
 1498 vm_req_vmdaemon()
 1499 {
 1500         static int lastrun = 0;
 1501 
 1502         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1503                 wakeup(&vm_daemon_needed);
 1504                 lastrun = ticks;
 1505         }
 1506 }
 1507 
 1508 static void
 1509 vm_daemon()
 1510 {
 1511         struct rlimit rsslim;
 1512         struct proc *p;
 1513         struct thread *td;
 1514         int breakout;
 1515 
 1516         mtx_lock(&Giant);
 1517         while (TRUE) {
 1518                 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
 1519                 if (vm_pageout_req_swapout) {
 1520                         swapout_procs(vm_pageout_req_swapout);
 1521                         vm_pageout_req_swapout = 0;
 1522                 }
 1523                 /*
 1524                  * scan the processes for exceeding their rlimits or if
 1525                  * process is swapped out -- deactivate pages
 1526                  */
 1527                 sx_slock(&allproc_lock);
 1528                 LIST_FOREACH(p, &allproc, p_list) {
 1529                         vm_pindex_t limit, size;
 1530 
 1531                         /*
 1532                          * if this is a system process or if we have already
 1533                          * looked at this process, skip it.
 1534                          */
 1535                         PROC_LOCK(p);
 1536                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
 1537                                 PROC_UNLOCK(p);
 1538                                 continue;
 1539                         }
 1540                         /*
 1541                          * if the process is in a non-running type state,
 1542                          * don't touch it.
 1543                          */
 1544                         mtx_lock_spin(&sched_lock);
 1545                         breakout = 0;
 1546                         FOREACH_THREAD_IN_PROC(p, td) {
 1547                                 if (!TD_ON_RUNQ(td) &&
 1548                                     !TD_IS_RUNNING(td) &&
 1549                                     !TD_IS_SLEEPING(td)) {
 1550                                         breakout = 1;
 1551                                         break;
 1552                                 }
 1553                         }
 1554                         mtx_unlock_spin(&sched_lock);
 1555                         if (breakout) {
 1556                                 PROC_UNLOCK(p);
 1557                                 continue;
 1558                         }
 1559                         /*
 1560                          * get a limit
 1561                          */
 1562                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1563                         limit = OFF_TO_IDX(
 1564                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1565 
 1566                         /*
 1567                          * let processes that are swapped out really be
 1568                          * swapped out set the limit to nothing (will force a
 1569                          * swap-out.)
 1570                          */
 1571                         if ((p->p_sflag & PS_INMEM) == 0)
 1572                                 limit = 0;      /* XXX */
 1573                         PROC_UNLOCK(p);
 1574 
 1575                         size = vmspace_resident_count(p->p_vmspace);
 1576                         if (limit >= 0 && size >= limit) {
 1577                                 vm_pageout_map_deactivate_pages(
 1578                                     &p->p_vmspace->vm_map, limit);
 1579                         }
 1580                 }
 1581                 sx_sunlock(&allproc_lock);
 1582         }
 1583 }
 1584 #endif                  /* !defined(NO_SWAPPING) */

Cache object: 1f26782acf96758b1ae988c49d09c5c7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.