FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD: releng/6.2/sys/vm/vm_pageout.c 156457 2006-03-09 00:02:51Z tegge $");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94 #include <sys/sysctl.h>
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/uma.h>
106
107 #include <machine/mutex.h>
108
109 /*
110 * System initialization
111 */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_pmap_collect(void);
117 static void vm_pageout_scan(int pass);
118
119 struct proc *pageproc;
120
121 static struct kproc_desc page_kp = {
122 "pagedaemon",
123 vm_pageout,
124 &pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134 "vmdaemon",
135 vm_daemon,
136 &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
139 #endif
140
141
142 int vm_pages_needed; /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit; /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout; /* XXX */
148 static int vm_daemon_needed;
149 #endif
150 static int vm_max_launder = 32;
151 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
152 static int vm_pageout_full_stats_interval = 0;
153 static int vm_pageout_algorithm=0;
154 static int defer_swap_pageouts=0;
155 static int disable_swap_pageouts=0;
156
157 #if defined(NO_SWAPPING)
158 static int vm_swap_enabled=0;
159 static int vm_swap_idle_enabled=0;
160 #else
161 static int vm_swap_enabled=1;
162 static int vm_swap_idle_enabled=0;
163 #endif
164
165 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
166 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
167
168 SYSCTL_INT(_vm, OID_AUTO, max_launder,
169 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
170
171 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
172 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
175 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
178 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
179
180 #if defined(NO_SWAPPING)
181 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
182 CTLFLAG_RD, &vm_swap_enabled, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
184 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
185 #else
186 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
187 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
188 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
189 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
190 #endif
191
192 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
193 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
194
195 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
196 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
197
198 static int pageout_lock_miss;
199 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
200 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
201
202 #define VM_PAGEOUT_PAGE_COUNT 16
203 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
204
205 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
206
207 #if !defined(NO_SWAPPING)
208 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
209 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
210 static void vm_req_vmdaemon(void);
211 #endif
212 static void vm_pageout_page_stats(void);
213
214 /*
215 * vm_pageout_fallback_object_lock:
216 *
217 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
218 * known to have failed and page queue must be either PQ_ACTIVE or
219 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues
220 * while locking the vm object. Use marker page to detect page queue
221 * changes and maintain notion of next page on page queue. Return
222 * TRUE if no changes were detected, FALSE otherwise. vm object is
223 * locked on return.
224 *
225 * This function depends on both the lock portion of struct vm_object
226 * and normal struct vm_page being type stable.
227 */
228 static boolean_t
229 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
230 {
231 struct vm_page marker;
232 boolean_t unchanged;
233 u_short queue;
234 vm_object_t object;
235
236 /*
237 * Initialize our marker
238 */
239 bzero(&marker, sizeof(marker));
240 marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
241 marker.queue = m->queue;
242 marker.wire_count = 1;
243
244 queue = m->queue;
245 object = m->object;
246
247 TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
248 m, &marker, pageq);
249 vm_page_unlock_queues();
250 VM_OBJECT_LOCK(object);
251 vm_page_lock_queues();
252
253 /* Page queue might have changed. */
254 *next = TAILQ_NEXT(&marker, pageq);
255 unchanged = (m->queue == queue &&
256 m->object == object &&
257 &marker == TAILQ_NEXT(m, pageq));
258 TAILQ_REMOVE(&vm_page_queues[queue].pl,
259 &marker, pageq);
260 return (unchanged);
261 }
262
263 /*
264 * vm_pageout_clean:
265 *
266 * Clean the page and remove it from the laundry.
267 *
268 * We set the busy bit to cause potential page faults on this page to
269 * block. Note the careful timing, however, the busy bit isn't set till
270 * late and we cannot do anything that will mess with the page.
271 */
272 static int
273 vm_pageout_clean(m)
274 vm_page_t m;
275 {
276 vm_object_t object;
277 vm_page_t mc[2*vm_pageout_page_count];
278 int pageout_count;
279 int ib, is, page_base;
280 vm_pindex_t pindex = m->pindex;
281
282 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
283 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
284
285 /*
286 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
287 * with the new swapper, but we could have serious problems paging
288 * out other object types if there is insufficient memory.
289 *
290 * Unfortunately, checking free memory here is far too late, so the
291 * check has been moved up a procedural level.
292 */
293
294 /*
295 * Don't mess with the page if it's busy, held, or special
296 */
297 if ((m->hold_count != 0) ||
298 ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
299 return 0;
300 }
301
302 mc[vm_pageout_page_count] = m;
303 pageout_count = 1;
304 page_base = vm_pageout_page_count;
305 ib = 1;
306 is = 1;
307
308 /*
309 * Scan object for clusterable pages.
310 *
311 * We can cluster ONLY if: ->> the page is NOT
312 * clean, wired, busy, held, or mapped into a
313 * buffer, and one of the following:
314 * 1) The page is inactive, or a seldom used
315 * active page.
316 * -or-
317 * 2) we force the issue.
318 *
319 * During heavy mmap/modification loads the pageout
320 * daemon can really fragment the underlying file
321 * due to flushing pages out of order and not trying
322 * align the clusters (which leave sporatic out-of-order
323 * holes). To solve this problem we do the reverse scan
324 * first and attempt to align our cluster, then do a
325 * forward scan if room remains.
326 */
327 object = m->object;
328 more:
329 while (ib && pageout_count < vm_pageout_page_count) {
330 vm_page_t p;
331
332 if (ib > pindex) {
333 ib = 0;
334 break;
335 }
336
337 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
338 ib = 0;
339 break;
340 }
341 if (((p->queue - p->pc) == PQ_CACHE) ||
342 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
343 ib = 0;
344 break;
345 }
346 vm_page_test_dirty(p);
347 if ((p->dirty & p->valid) == 0 ||
348 p->queue != PQ_INACTIVE ||
349 p->wire_count != 0 || /* may be held by buf cache */
350 p->hold_count != 0) { /* may be undergoing I/O */
351 ib = 0;
352 break;
353 }
354 mc[--page_base] = p;
355 ++pageout_count;
356 ++ib;
357 /*
358 * alignment boundry, stop here and switch directions. Do
359 * not clear ib.
360 */
361 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
362 break;
363 }
364
365 while (pageout_count < vm_pageout_page_count &&
366 pindex + is < object->size) {
367 vm_page_t p;
368
369 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
370 break;
371 if (((p->queue - p->pc) == PQ_CACHE) ||
372 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
373 break;
374 }
375 vm_page_test_dirty(p);
376 if ((p->dirty & p->valid) == 0 ||
377 p->queue != PQ_INACTIVE ||
378 p->wire_count != 0 || /* may be held by buf cache */
379 p->hold_count != 0) { /* may be undergoing I/O */
380 break;
381 }
382 mc[page_base + pageout_count] = p;
383 ++pageout_count;
384 ++is;
385 }
386
387 /*
388 * If we exhausted our forward scan, continue with the reverse scan
389 * when possible, even past a page boundry. This catches boundry
390 * conditions.
391 */
392 if (ib && pageout_count < vm_pageout_page_count)
393 goto more;
394
395 /*
396 * we allow reads during pageouts...
397 */
398 return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
399 }
400
401 /*
402 * vm_pageout_flush() - launder the given pages
403 *
404 * The given pages are laundered. Note that we setup for the start of
405 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
406 * reference count all in here rather then in the parent. If we want
407 * the parent to do more sophisticated things we may have to change
408 * the ordering.
409 */
410 int
411 vm_pageout_flush(vm_page_t *mc, int count, int flags)
412 {
413 vm_object_t object = mc[0]->object;
414 int pageout_status[count];
415 int numpagedout = 0;
416 int i;
417
418 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
419 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
420 /*
421 * Initiate I/O. Bump the vm_page_t->busy counter and
422 * mark the pages read-only.
423 *
424 * We do not have to fixup the clean/dirty bits here... we can
425 * allow the pager to do it after the I/O completes.
426 *
427 * NOTE! mc[i]->dirty may be partial or fragmented due to an
428 * edge case with file fragments.
429 */
430 for (i = 0; i < count; i++) {
431 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
432 ("vm_pageout_flush: partially invalid page %p index %d/%d",
433 mc[i], i, count));
434 vm_page_io_start(mc[i]);
435 pmap_page_protect(mc[i], VM_PROT_READ);
436 }
437 vm_page_unlock_queues();
438 vm_object_pip_add(object, count);
439
440 vm_pager_put_pages(object, mc, count,
441 (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
442 pageout_status);
443
444 vm_page_lock_queues();
445 for (i = 0; i < count; i++) {
446 vm_page_t mt = mc[i];
447
448 KASSERT((mt->flags & PG_WRITEABLE) == 0,
449 ("vm_pageout_flush: page %p is not write protected", mt));
450 switch (pageout_status[i]) {
451 case VM_PAGER_OK:
452 case VM_PAGER_PEND:
453 numpagedout++;
454 break;
455 case VM_PAGER_BAD:
456 /*
457 * Page outside of range of object. Right now we
458 * essentially lose the changes by pretending it
459 * worked.
460 */
461 pmap_clear_modify(mt);
462 vm_page_undirty(mt);
463 break;
464 case VM_PAGER_ERROR:
465 case VM_PAGER_FAIL:
466 /*
467 * If page couldn't be paged out, then reactivate the
468 * page so it doesn't clog the inactive list. (We
469 * will try paging out it again later).
470 */
471 vm_page_activate(mt);
472 break;
473 case VM_PAGER_AGAIN:
474 break;
475 }
476
477 /*
478 * If the operation is still going, leave the page busy to
479 * block all other accesses. Also, leave the paging in
480 * progress indicator set so that we don't attempt an object
481 * collapse.
482 */
483 if (pageout_status[i] != VM_PAGER_PEND) {
484 vm_object_pip_wakeup(object);
485 vm_page_io_finish(mt);
486 if (vm_page_count_severe())
487 vm_page_try_to_cache(mt);
488 }
489 }
490 return numpagedout;
491 }
492
493 #if !defined(NO_SWAPPING)
494 /*
495 * vm_pageout_object_deactivate_pages
496 *
497 * deactivate enough pages to satisfy the inactive target
498 * requirements or if vm_page_proc_limit is set, then
499 * deactivate all of the pages in the object and its
500 * backing_objects.
501 *
502 * The object and map must be locked.
503 */
504 static void
505 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
506 pmap_t pmap;
507 vm_object_t first_object;
508 long desired;
509 {
510 vm_object_t backing_object, object;
511 vm_page_t p, next;
512 int actcount, rcount, remove_mode;
513
514 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
515 if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
516 return;
517 for (object = first_object;; object = backing_object) {
518 if (pmap_resident_count(pmap) <= desired)
519 goto unlock_return;
520 if (object->paging_in_progress)
521 goto unlock_return;
522
523 remove_mode = 0;
524 if (object->shadow_count > 1)
525 remove_mode = 1;
526 /*
527 * scan the objects entire memory queue
528 */
529 rcount = object->resident_page_count;
530 p = TAILQ_FIRST(&object->memq);
531 vm_page_lock_queues();
532 while (p && (rcount-- > 0)) {
533 if (pmap_resident_count(pmap) <= desired) {
534 vm_page_unlock_queues();
535 goto unlock_return;
536 }
537 next = TAILQ_NEXT(p, listq);
538 cnt.v_pdpages++;
539 if (p->wire_count != 0 ||
540 p->hold_count != 0 ||
541 p->busy != 0 ||
542 (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543 !pmap_page_exists_quick(pmap, p)) {
544 p = next;
545 continue;
546 }
547 actcount = pmap_ts_referenced(p);
548 if (actcount) {
549 vm_page_flag_set(p, PG_REFERENCED);
550 } else if (p->flags & PG_REFERENCED) {
551 actcount = 1;
552 }
553 if ((p->queue != PQ_ACTIVE) &&
554 (p->flags & PG_REFERENCED)) {
555 vm_page_activate(p);
556 p->act_count += actcount;
557 vm_page_flag_clear(p, PG_REFERENCED);
558 } else if (p->queue == PQ_ACTIVE) {
559 if ((p->flags & PG_REFERENCED) == 0) {
560 p->act_count -= min(p->act_count, ACT_DECLINE);
561 if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
562 pmap_remove_all(p);
563 vm_page_deactivate(p);
564 } else {
565 vm_pageq_requeue(p);
566 }
567 } else {
568 vm_page_activate(p);
569 vm_page_flag_clear(p, PG_REFERENCED);
570 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
571 p->act_count += ACT_ADVANCE;
572 vm_pageq_requeue(p);
573 }
574 } else if (p->queue == PQ_INACTIVE) {
575 pmap_remove_all(p);
576 }
577 p = next;
578 }
579 vm_page_unlock_queues();
580 if ((backing_object = object->backing_object) == NULL)
581 goto unlock_return;
582 VM_OBJECT_LOCK(backing_object);
583 if (object != first_object)
584 VM_OBJECT_UNLOCK(object);
585 }
586 unlock_return:
587 if (object != first_object)
588 VM_OBJECT_UNLOCK(object);
589 }
590
591 /*
592 * deactivate some number of pages in a map, try to do it fairly, but
593 * that is really hard to do.
594 */
595 static void
596 vm_pageout_map_deactivate_pages(map, desired)
597 vm_map_t map;
598 long desired;
599 {
600 vm_map_entry_t tmpe;
601 vm_object_t obj, bigobj;
602 int nothingwired;
603
604 if (!vm_map_trylock(map))
605 return;
606
607 bigobj = NULL;
608 nothingwired = TRUE;
609
610 /*
611 * first, search out the biggest object, and try to free pages from
612 * that.
613 */
614 tmpe = map->header.next;
615 while (tmpe != &map->header) {
616 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
617 obj = tmpe->object.vm_object;
618 if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
619 if (obj->shadow_count <= 1 &&
620 (bigobj == NULL ||
621 bigobj->resident_page_count < obj->resident_page_count)) {
622 if (bigobj != NULL)
623 VM_OBJECT_UNLOCK(bigobj);
624 bigobj = obj;
625 } else
626 VM_OBJECT_UNLOCK(obj);
627 }
628 }
629 if (tmpe->wired_count > 0)
630 nothingwired = FALSE;
631 tmpe = tmpe->next;
632 }
633
634 if (bigobj != NULL) {
635 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
636 VM_OBJECT_UNLOCK(bigobj);
637 }
638 /*
639 * Next, hunt around for other pages to deactivate. We actually
640 * do this search sort of wrong -- .text first is not the best idea.
641 */
642 tmpe = map->header.next;
643 while (tmpe != &map->header) {
644 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
645 break;
646 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
647 obj = tmpe->object.vm_object;
648 if (obj != NULL) {
649 VM_OBJECT_LOCK(obj);
650 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
651 VM_OBJECT_UNLOCK(obj);
652 }
653 }
654 tmpe = tmpe->next;
655 }
656
657 /*
658 * Remove all mappings if a process is swapped out, this will free page
659 * table pages.
660 */
661 if (desired == 0 && nothingwired) {
662 pmap_remove(vm_map_pmap(map), vm_map_min(map),
663 vm_map_max(map));
664 }
665 vm_map_unlock(map);
666 }
667 #endif /* !defined(NO_SWAPPING) */
668
669 /*
670 * This routine is very drastic, but can save the system
671 * in a pinch.
672 */
673 static void
674 vm_pageout_pmap_collect(void)
675 {
676 int i;
677 vm_page_t m;
678 static int warningdone;
679
680 if (pmap_pagedaemon_waken == 0)
681 return;
682 if (warningdone < 5) {
683 printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
684 warningdone++;
685 }
686 vm_page_lock_queues();
687 for (i = 0; i < vm_page_array_size; i++) {
688 m = &vm_page_array[i];
689 if (m->wire_count || m->hold_count || m->busy ||
690 (m->flags & (PG_BUSY | PG_UNMANAGED)))
691 continue;
692 pmap_remove_all(m);
693 }
694 vm_page_unlock_queues();
695 pmap_pagedaemon_waken = 0;
696 }
697
698 /*
699 * vm_pageout_scan does the dirty work for the pageout daemon.
700 */
701 static void
702 vm_pageout_scan(int pass)
703 {
704 vm_page_t m, next;
705 struct vm_page marker;
706 int page_shortage, maxscan, pcount;
707 int addl_page_shortage, addl_page_shortage_init;
708 struct proc *p, *bigproc;
709 struct thread *td;
710 vm_offset_t size, bigsize;
711 vm_object_t object;
712 int actcount, cache_cur, cache_first_failure;
713 static int cache_last_free;
714 int vnodes_skipped = 0;
715 int maxlaunder;
716
717 mtx_lock(&Giant);
718 /*
719 * Decrease registered cache sizes.
720 */
721 EVENTHANDLER_INVOKE(vm_lowmem, 0);
722 /*
723 * We do this explicitly after the caches have been drained above.
724 */
725 uma_reclaim();
726 /*
727 * Do whatever cleanup that the pmap code can.
728 */
729 vm_pageout_pmap_collect();
730
731 addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
732
733 /*
734 * Calculate the number of pages we want to either free or move
735 * to the cache.
736 */
737 page_shortage = vm_paging_target() + addl_page_shortage_init;
738
739 /*
740 * Initialize our marker
741 */
742 bzero(&marker, sizeof(marker));
743 marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
744 marker.queue = PQ_INACTIVE;
745 marker.wire_count = 1;
746
747 /*
748 * Start scanning the inactive queue for pages we can move to the
749 * cache or free. The scan will stop when the target is reached or
750 * we have scanned the entire inactive queue. Note that m->act_count
751 * is not used to form decisions for the inactive queue, only for the
752 * active queue.
753 *
754 * maxlaunder limits the number of dirty pages we flush per scan.
755 * For most systems a smaller value (16 or 32) is more robust under
756 * extreme memory and disk pressure because any unnecessary writes
757 * to disk can result in extreme performance degredation. However,
758 * systems with excessive dirty pages (especially when MAP_NOSYNC is
759 * used) will die horribly with limited laundering. If the pageout
760 * daemon cannot clean enough pages in the first pass, we let it go
761 * all out in succeeding passes.
762 */
763 if ((maxlaunder = vm_max_launder) <= 1)
764 maxlaunder = 1;
765 if (pass)
766 maxlaunder = 10000;
767 vm_page_lock_queues();
768 rescan0:
769 addl_page_shortage = addl_page_shortage_init;
770 maxscan = cnt.v_inactive_count;
771
772 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
773 m != NULL && maxscan-- > 0 && page_shortage > 0;
774 m = next) {
775
776 cnt.v_pdpages++;
777
778 if (m->queue != PQ_INACTIVE) {
779 goto rescan0;
780 }
781
782 next = TAILQ_NEXT(m, pageq);
783 object = m->object;
784
785 /*
786 * skip marker pages
787 */
788 if (m->flags & PG_MARKER)
789 continue;
790
791 /*
792 * A held page may be undergoing I/O, so skip it.
793 */
794 if (m->hold_count) {
795 vm_pageq_requeue(m);
796 addl_page_shortage++;
797 continue;
798 }
799 /*
800 * Don't mess with busy pages, keep in the front of the
801 * queue, most likely are being paged out.
802 */
803 if (!VM_OBJECT_TRYLOCK(object) &&
804 (!vm_pageout_fallback_object_lock(m, &next) ||
805 m->hold_count != 0)) {
806 VM_OBJECT_UNLOCK(object);
807 addl_page_shortage++;
808 continue;
809 }
810 if (m->busy || (m->flags & PG_BUSY)) {
811 VM_OBJECT_UNLOCK(object);
812 addl_page_shortage++;
813 continue;
814 }
815
816 /*
817 * If the object is not being used, we ignore previous
818 * references.
819 */
820 if (object->ref_count == 0) {
821 vm_page_flag_clear(m, PG_REFERENCED);
822 pmap_clear_reference(m);
823
824 /*
825 * Otherwise, if the page has been referenced while in the
826 * inactive queue, we bump the "activation count" upwards,
827 * making it less likely that the page will be added back to
828 * the inactive queue prematurely again. Here we check the
829 * page tables (or emulated bits, if any), given the upper
830 * level VM system not knowing anything about existing
831 * references.
832 */
833 } else if (((m->flags & PG_REFERENCED) == 0) &&
834 (actcount = pmap_ts_referenced(m))) {
835 vm_page_activate(m);
836 VM_OBJECT_UNLOCK(object);
837 m->act_count += (actcount + ACT_ADVANCE);
838 continue;
839 }
840
841 /*
842 * If the upper level VM system knows about any page
843 * references, we activate the page. We also set the
844 * "activation count" higher than normal so that we will less
845 * likely place pages back onto the inactive queue again.
846 */
847 if ((m->flags & PG_REFERENCED) != 0) {
848 vm_page_flag_clear(m, PG_REFERENCED);
849 actcount = pmap_ts_referenced(m);
850 vm_page_activate(m);
851 VM_OBJECT_UNLOCK(object);
852 m->act_count += (actcount + ACT_ADVANCE + 1);
853 continue;
854 }
855
856 /*
857 * If the upper level VM system doesn't know anything about
858 * the page being dirty, we have to check for it again. As
859 * far as the VM code knows, any partially dirty pages are
860 * fully dirty.
861 */
862 if (m->dirty == 0 && !pmap_is_modified(m)) {
863 /*
864 * Avoid a race condition: Unless write access is
865 * removed from the page, another processor could
866 * modify it before all access is removed by the call
867 * to vm_page_cache() below. If vm_page_cache() finds
868 * that the page has been modified when it removes all
869 * access, it panics because it cannot cache dirty
870 * pages. In principle, we could eliminate just write
871 * access here rather than all access. In the expected
872 * case, when there are no last instant modifications
873 * to the page, removing all access will be cheaper
874 * overall.
875 */
876 if ((m->flags & PG_WRITEABLE) != 0)
877 pmap_remove_all(m);
878 } else {
879 vm_page_dirty(m);
880 }
881
882 if (m->valid == 0) {
883 /*
884 * Invalid pages can be easily freed
885 */
886 pmap_remove_all(m);
887 vm_page_free(m);
888 cnt.v_dfree++;
889 --page_shortage;
890 } else if (m->dirty == 0) {
891 /*
892 * Clean pages can be placed onto the cache queue.
893 * This effectively frees them.
894 */
895 vm_page_cache(m);
896 --page_shortage;
897 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
898 /*
899 * Dirty pages need to be paged out, but flushing
900 * a page is extremely expensive verses freeing
901 * a clean page. Rather then artificially limiting
902 * the number of pages we can flush, we instead give
903 * dirty pages extra priority on the inactive queue
904 * by forcing them to be cycled through the queue
905 * twice before being flushed, after which the
906 * (now clean) page will cycle through once more
907 * before being freed. This significantly extends
908 * the thrash point for a heavily loaded machine.
909 */
910 vm_page_flag_set(m, PG_WINATCFLS);
911 vm_pageq_requeue(m);
912 } else if (maxlaunder > 0) {
913 /*
914 * We always want to try to flush some dirty pages if
915 * we encounter them, to keep the system stable.
916 * Normally this number is small, but under extreme
917 * pressure where there are insufficient clean pages
918 * on the inactive queue, we may have to go all out.
919 */
920 int swap_pageouts_ok;
921 struct vnode *vp = NULL;
922 struct mount *mp;
923
924 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
925 swap_pageouts_ok = 1;
926 } else {
927 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
928 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
929 vm_page_count_min());
930
931 }
932
933 /*
934 * We don't bother paging objects that are "dead".
935 * Those objects are in a "rundown" state.
936 */
937 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
938 VM_OBJECT_UNLOCK(object);
939 vm_pageq_requeue(m);
940 continue;
941 }
942
943 /*
944 * Following operations may unlock
945 * vm_page_queue_mtx, invalidating the 'next'
946 * pointer. To prevent an inordinate number
947 * of restarts we use our marker to remember
948 * our place.
949 *
950 */
951 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
952 m, &marker, pageq);
953 /*
954 * The object is already known NOT to be dead. It
955 * is possible for the vget() to block the whole
956 * pageout daemon, but the new low-memory handling
957 * code should prevent it.
958 *
959 * The previous code skipped locked vnodes and, worse,
960 * reordered pages in the queue. This results in
961 * completely non-deterministic operation and, on a
962 * busy system, can lead to extremely non-optimal
963 * pageouts. For example, it can cause clean pages
964 * to be freed and dirty pages to be moved to the end
965 * of the queue. Since dirty pages are also moved to
966 * the end of the queue once-cleaned, this gives
967 * way too large a weighting to defering the freeing
968 * of dirty pages.
969 *
970 * We can't wait forever for the vnode lock, we might
971 * deadlock due to a vn_read() getting stuck in
972 * vm_wait while holding this vnode. We skip the
973 * vnode if we can't get it in a reasonable amount
974 * of time.
975 */
976 if (object->type == OBJT_VNODE) {
977 vp = object->handle;
978 mp = NULL;
979 if (vp->v_type == VREG &&
980 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
981 ++pageout_lock_miss;
982 if (object->flags & OBJ_MIGHTBEDIRTY)
983 vnodes_skipped++;
984 vp = NULL;
985 goto unlock_and_continue;
986 }
987 vm_page_unlock_queues();
988 VI_LOCK(vp);
989 VM_OBJECT_UNLOCK(object);
990 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
991 LK_TIMELOCK, curthread)) {
992 VM_OBJECT_LOCK(object);
993 vm_page_lock_queues();
994 ++pageout_lock_miss;
995 vn_finished_write(mp);
996 if (object->flags & OBJ_MIGHTBEDIRTY)
997 vnodes_skipped++;
998 vp = NULL;
999 goto unlock_and_continue;
1000 }
1001 VM_OBJECT_LOCK(object);
1002 vm_page_lock_queues();
1003 /*
1004 * The page might have been moved to another
1005 * queue during potential blocking in vget()
1006 * above. The page might have been freed and
1007 * reused for another vnode. The object might
1008 * have been reused for another vnode.
1009 */
1010 if (m->queue != PQ_INACTIVE ||
1011 m->object != object ||
1012 object->handle != vp ||
1013 TAILQ_NEXT(m, pageq) != &marker) {
1014 if (object->flags & OBJ_MIGHTBEDIRTY)
1015 vnodes_skipped++;
1016 goto unlock_and_continue;
1017 }
1018
1019 /*
1020 * The page may have been busied during the
1021 * blocking in vput(); We don't move the
1022 * page back onto the end of the queue so that
1023 * statistics are more correct if we don't.
1024 */
1025 if (m->busy || (m->flags & PG_BUSY)) {
1026 goto unlock_and_continue;
1027 }
1028
1029 /*
1030 * If the page has become held it might
1031 * be undergoing I/O, so skip it
1032 */
1033 if (m->hold_count) {
1034 vm_pageq_requeue(m);
1035 if (object->flags & OBJ_MIGHTBEDIRTY)
1036 vnodes_skipped++;
1037 goto unlock_and_continue;
1038 }
1039 }
1040
1041 /*
1042 * If a page is dirty, then it is either being washed
1043 * (but not yet cleaned) or it is still in the
1044 * laundry. If it is still in the laundry, then we
1045 * start the cleaning operation.
1046 *
1047 * decrement page_shortage on success to account for
1048 * the (future) cleaned page. Otherwise we could wind
1049 * up laundering or cleaning too many pages.
1050 */
1051 if (vm_pageout_clean(m) != 0) {
1052 --page_shortage;
1053 --maxlaunder;
1054 }
1055 unlock_and_continue:
1056 VM_OBJECT_UNLOCK(object);
1057 if (vp) {
1058 vm_page_unlock_queues();
1059 vput(vp);
1060 vn_finished_write(mp);
1061 vm_page_lock_queues();
1062 }
1063 next = TAILQ_NEXT(&marker, pageq);
1064 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1065 &marker, pageq);
1066 continue;
1067 }
1068 VM_OBJECT_UNLOCK(object);
1069 }
1070
1071 /*
1072 * Compute the number of pages we want to try to move from the
1073 * active queue to the inactive queue.
1074 */
1075 page_shortage = vm_paging_target() +
1076 cnt.v_inactive_target - cnt.v_inactive_count;
1077 page_shortage += addl_page_shortage;
1078
1079 /*
1080 * Scan the active queue for things we can deactivate. We nominally
1081 * track the per-page activity counter and use it to locate
1082 * deactivation candidates.
1083 */
1084 pcount = cnt.v_active_count;
1085 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1086
1087 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1088
1089 KASSERT(m->queue == PQ_ACTIVE,
1090 ("vm_pageout_scan: page %p isn't active", m));
1091
1092 next = TAILQ_NEXT(m, pageq);
1093 object = m->object;
1094 if ((m->flags & PG_MARKER) != 0) {
1095 m = next;
1096 continue;
1097 }
1098 if (!VM_OBJECT_TRYLOCK(object) &&
1099 !vm_pageout_fallback_object_lock(m, &next)) {
1100 VM_OBJECT_UNLOCK(object);
1101 m = next;
1102 continue;
1103 }
1104
1105 /*
1106 * Don't deactivate pages that are busy.
1107 */
1108 if ((m->busy != 0) ||
1109 (m->flags & PG_BUSY) ||
1110 (m->hold_count != 0)) {
1111 VM_OBJECT_UNLOCK(object);
1112 vm_pageq_requeue(m);
1113 m = next;
1114 continue;
1115 }
1116
1117 /*
1118 * The count for pagedaemon pages is done after checking the
1119 * page for eligibility...
1120 */
1121 cnt.v_pdpages++;
1122
1123 /*
1124 * Check to see "how much" the page has been used.
1125 */
1126 actcount = 0;
1127 if (object->ref_count != 0) {
1128 if (m->flags & PG_REFERENCED) {
1129 actcount += 1;
1130 }
1131 actcount += pmap_ts_referenced(m);
1132 if (actcount) {
1133 m->act_count += ACT_ADVANCE + actcount;
1134 if (m->act_count > ACT_MAX)
1135 m->act_count = ACT_MAX;
1136 }
1137 }
1138
1139 /*
1140 * Since we have "tested" this bit, we need to clear it now.
1141 */
1142 vm_page_flag_clear(m, PG_REFERENCED);
1143
1144 /*
1145 * Only if an object is currently being used, do we use the
1146 * page activation count stats.
1147 */
1148 if (actcount && (object->ref_count != 0)) {
1149 vm_pageq_requeue(m);
1150 } else {
1151 m->act_count -= min(m->act_count, ACT_DECLINE);
1152 if (vm_pageout_algorithm ||
1153 object->ref_count == 0 ||
1154 m->act_count == 0) {
1155 page_shortage--;
1156 if (object->ref_count == 0) {
1157 pmap_remove_all(m);
1158 if (m->dirty == 0)
1159 vm_page_cache(m);
1160 else
1161 vm_page_deactivate(m);
1162 } else {
1163 vm_page_deactivate(m);
1164 }
1165 } else {
1166 vm_pageq_requeue(m);
1167 }
1168 }
1169 VM_OBJECT_UNLOCK(object);
1170 m = next;
1171 }
1172
1173 /*
1174 * We try to maintain some *really* free pages, this allows interrupt
1175 * code to be guaranteed space. Since both cache and free queues
1176 * are considered basically 'free', moving pages from cache to free
1177 * does not effect other calculations.
1178 */
1179 cache_cur = cache_last_free;
1180 cache_first_failure = -1;
1181 while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1182 (cache_cur + PQ_PRIME2) & PQ_L2_MASK) != cache_first_failure) {
1183 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1184 pageq) {
1185 KASSERT(m->dirty == 0,
1186 ("Found dirty cache page %p", m));
1187 KASSERT(!pmap_page_is_mapped(m),
1188 ("Found mapped cache page %p", m));
1189 KASSERT((m->flags & PG_UNMANAGED) == 0,
1190 ("Found unmanaged cache page %p", m));
1191 KASSERT(m->wire_count == 0,
1192 ("Found wired cache page %p", m));
1193 if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1194 m->object)) {
1195 KASSERT((m->flags & PG_BUSY) == 0 &&
1196 m->busy == 0, ("Found busy cache page %p",
1197 m));
1198 vm_page_free(m);
1199 VM_OBJECT_UNLOCK(object);
1200 cnt.v_dfree++;
1201 cache_last_free = cache_cur;
1202 cache_first_failure = -1;
1203 break;
1204 }
1205 }
1206 if (m == NULL && cache_first_failure == -1)
1207 cache_first_failure = cache_cur;
1208 }
1209 vm_page_unlock_queues();
1210 #if !defined(NO_SWAPPING)
1211 /*
1212 * Idle process swapout -- run once per second.
1213 */
1214 if (vm_swap_idle_enabled) {
1215 static long lsec;
1216 if (time_second != lsec) {
1217 vm_pageout_req_swapout |= VM_SWAP_IDLE;
1218 vm_req_vmdaemon();
1219 lsec = time_second;
1220 }
1221 }
1222 #endif
1223
1224 /*
1225 * If we didn't get enough free pages, and we have skipped a vnode
1226 * in a writeable object, wakeup the sync daemon. And kick swapout
1227 * if we did not get enough free pages.
1228 */
1229 if (vm_paging_target() > 0) {
1230 if (vnodes_skipped && vm_page_count_min())
1231 (void) speedup_syncer();
1232 #if !defined(NO_SWAPPING)
1233 if (vm_swap_enabled && vm_page_count_target()) {
1234 vm_req_vmdaemon();
1235 vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1236 }
1237 #endif
1238 }
1239
1240 /*
1241 * If we are critically low on one of RAM or swap and low on
1242 * the other, kill the largest process. However, we avoid
1243 * doing this on the first pass in order to give ourselves a
1244 * chance to flush out dirty vnode-backed pages and to allow
1245 * active pages to be moved to the inactive queue and reclaimed.
1246 *
1247 * We keep the process bigproc locked once we find it to keep anyone
1248 * from messing with it; however, there is a possibility of
1249 * deadlock if process B is bigproc and one of it's child processes
1250 * attempts to propagate a signal to B while we are waiting for A's
1251 * lock while walking this list. To avoid this, we don't block on
1252 * the process lock but just skip a process if it is already locked.
1253 */
1254 if (pass != 0 &&
1255 ((swap_pager_avail < 64 && vm_page_count_min()) ||
1256 (swap_pager_full && vm_paging_target() > 0))) {
1257 bigproc = NULL;
1258 bigsize = 0;
1259 sx_slock(&allproc_lock);
1260 FOREACH_PROC_IN_SYSTEM(p) {
1261 int breakout;
1262
1263 if (PROC_TRYLOCK(p) == 0)
1264 continue;
1265 /*
1266 * If this is a system or protected process, skip it.
1267 */
1268 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1269 (p->p_flag & P_PROTECTED) ||
1270 ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1271 PROC_UNLOCK(p);
1272 continue;
1273 }
1274 /*
1275 * If the process is in a non-running type state,
1276 * don't touch it. Check all the threads individually.
1277 */
1278 mtx_lock_spin(&sched_lock);
1279 breakout = 0;
1280 FOREACH_THREAD_IN_PROC(p, td) {
1281 if (!TD_ON_RUNQ(td) &&
1282 !TD_IS_RUNNING(td) &&
1283 !TD_IS_SLEEPING(td)) {
1284 breakout = 1;
1285 break;
1286 }
1287 }
1288 if (breakout) {
1289 mtx_unlock_spin(&sched_lock);
1290 PROC_UNLOCK(p);
1291 continue;
1292 }
1293 mtx_unlock_spin(&sched_lock);
1294 /*
1295 * get the process size
1296 */
1297 if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1298 PROC_UNLOCK(p);
1299 continue;
1300 }
1301 size = vmspace_swap_count(p->p_vmspace);
1302 vm_map_unlock_read(&p->p_vmspace->vm_map);
1303 size += vmspace_resident_count(p->p_vmspace);
1304 /*
1305 * if the this process is bigger than the biggest one
1306 * remember it.
1307 */
1308 if (size > bigsize) {
1309 if (bigproc != NULL)
1310 PROC_UNLOCK(bigproc);
1311 bigproc = p;
1312 bigsize = size;
1313 } else
1314 PROC_UNLOCK(p);
1315 }
1316 sx_sunlock(&allproc_lock);
1317 if (bigproc != NULL) {
1318 killproc(bigproc, "out of swap space");
1319 mtx_lock_spin(&sched_lock);
1320 sched_nice(bigproc, PRIO_MIN);
1321 mtx_unlock_spin(&sched_lock);
1322 PROC_UNLOCK(bigproc);
1323 wakeup(&cnt.v_free_count);
1324 }
1325 }
1326 mtx_unlock(&Giant);
1327 }
1328
1329 /*
1330 * This routine tries to maintain the pseudo LRU active queue,
1331 * so that during long periods of time where there is no paging,
1332 * that some statistic accumulation still occurs. This code
1333 * helps the situation where paging just starts to occur.
1334 */
1335 static void
1336 vm_pageout_page_stats()
1337 {
1338 vm_object_t object;
1339 vm_page_t m,next;
1340 int pcount,tpcount; /* Number of pages to check */
1341 static int fullintervalcount = 0;
1342 int page_shortage;
1343
1344 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1345 page_shortage =
1346 (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1347 (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1348
1349 if (page_shortage <= 0)
1350 return;
1351
1352 pcount = cnt.v_active_count;
1353 fullintervalcount += vm_pageout_stats_interval;
1354 if (fullintervalcount < vm_pageout_full_stats_interval) {
1355 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1356 if (pcount > tpcount)
1357 pcount = tpcount;
1358 } else {
1359 fullintervalcount = 0;
1360 }
1361
1362 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1363 while ((m != NULL) && (pcount-- > 0)) {
1364 int actcount;
1365
1366 KASSERT(m->queue == PQ_ACTIVE,
1367 ("vm_pageout_page_stats: page %p isn't active", m));
1368
1369 next = TAILQ_NEXT(m, pageq);
1370 object = m->object;
1371
1372 if ((m->flags & PG_MARKER) != 0) {
1373 m = next;
1374 continue;
1375 }
1376 if (!VM_OBJECT_TRYLOCK(object) &&
1377 !vm_pageout_fallback_object_lock(m, &next)) {
1378 VM_OBJECT_UNLOCK(object);
1379 m = next;
1380 continue;
1381 }
1382
1383 /*
1384 * Don't deactivate pages that are busy.
1385 */
1386 if ((m->busy != 0) ||
1387 (m->flags & PG_BUSY) ||
1388 (m->hold_count != 0)) {
1389 VM_OBJECT_UNLOCK(object);
1390 vm_pageq_requeue(m);
1391 m = next;
1392 continue;
1393 }
1394
1395 actcount = 0;
1396 if (m->flags & PG_REFERENCED) {
1397 vm_page_flag_clear(m, PG_REFERENCED);
1398 actcount += 1;
1399 }
1400
1401 actcount += pmap_ts_referenced(m);
1402 if (actcount) {
1403 m->act_count += ACT_ADVANCE + actcount;
1404 if (m->act_count > ACT_MAX)
1405 m->act_count = ACT_MAX;
1406 vm_pageq_requeue(m);
1407 } else {
1408 if (m->act_count == 0) {
1409 /*
1410 * We turn off page access, so that we have
1411 * more accurate RSS stats. We don't do this
1412 * in the normal page deactivation when the
1413 * system is loaded VM wise, because the
1414 * cost of the large number of page protect
1415 * operations would be higher than the value
1416 * of doing the operation.
1417 */
1418 pmap_remove_all(m);
1419 vm_page_deactivate(m);
1420 } else {
1421 m->act_count -= min(m->act_count, ACT_DECLINE);
1422 vm_pageq_requeue(m);
1423 }
1424 }
1425 VM_OBJECT_UNLOCK(object);
1426 m = next;
1427 }
1428 }
1429
1430 /*
1431 * vm_pageout is the high level pageout daemon.
1432 */
1433 static void
1434 vm_pageout()
1435 {
1436 int error, pass;
1437
1438 /*
1439 * Initialize some paging parameters.
1440 */
1441 cnt.v_interrupt_free_min = 2;
1442 if (cnt.v_page_count < 2000)
1443 vm_pageout_page_count = 8;
1444
1445 /*
1446 * v_free_reserved needs to include enough for the largest
1447 * swap pager structures plus enough for any pv_entry structs
1448 * when paging.
1449 */
1450 if (cnt.v_page_count > 1024)
1451 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1452 else
1453 cnt.v_free_min = 4;
1454 cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1455 cnt.v_interrupt_free_min;
1456 cnt.v_free_reserved = vm_pageout_page_count +
1457 cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1458 cnt.v_free_severe = cnt.v_free_min / 2;
1459 cnt.v_free_min += cnt.v_free_reserved;
1460 cnt.v_free_severe += cnt.v_free_reserved;
1461
1462 /*
1463 * v_free_target and v_cache_min control pageout hysteresis. Note
1464 * that these are more a measure of the VM cache queue hysteresis
1465 * then the VM free queue. Specifically, v_free_target is the
1466 * high water mark (free+cache pages).
1467 *
1468 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1469 * low water mark, while v_free_min is the stop. v_cache_min must
1470 * be big enough to handle memory needs while the pageout daemon
1471 * is signalled and run to free more pages.
1472 */
1473 if (cnt.v_free_count > 6144)
1474 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1475 else
1476 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1477
1478 if (cnt.v_free_count > 2048) {
1479 cnt.v_cache_min = cnt.v_free_target;
1480 cnt.v_cache_max = 2 * cnt.v_cache_min;
1481 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1482 } else {
1483 cnt.v_cache_min = 0;
1484 cnt.v_cache_max = 0;
1485 cnt.v_inactive_target = cnt.v_free_count / 4;
1486 }
1487 if (cnt.v_inactive_target > cnt.v_free_count / 3)
1488 cnt.v_inactive_target = cnt.v_free_count / 3;
1489
1490 /* XXX does not really belong here */
1491 if (vm_page_max_wired == 0)
1492 vm_page_max_wired = cnt.v_free_count / 3;
1493
1494 if (vm_pageout_stats_max == 0)
1495 vm_pageout_stats_max = cnt.v_free_target;
1496
1497 /*
1498 * Set interval in seconds for stats scan.
1499 */
1500 if (vm_pageout_stats_interval == 0)
1501 vm_pageout_stats_interval = 5;
1502 if (vm_pageout_full_stats_interval == 0)
1503 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1504
1505 swap_pager_swap_init();
1506 pass = 0;
1507 /*
1508 * The pageout daemon is never done, so loop forever.
1509 */
1510 while (TRUE) {
1511 vm_page_lock_queues();
1512 /*
1513 * If we have enough free memory, wakeup waiters. Do
1514 * not clear vm_pages_needed until we reach our target,
1515 * otherwise we may be woken up over and over again and
1516 * waste a lot of cpu.
1517 */
1518 if (vm_pages_needed && !vm_page_count_min()) {
1519 if (!vm_paging_needed())
1520 vm_pages_needed = 0;
1521 wakeup(&cnt.v_free_count);
1522 }
1523 if (vm_pages_needed) {
1524 /*
1525 * Still not done, take a second pass without waiting
1526 * (unlimited dirty cleaning), otherwise sleep a bit
1527 * and try again.
1528 */
1529 ++pass;
1530 if (pass > 1)
1531 msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1532 "psleep", hz/2);
1533 } else {
1534 /*
1535 * Good enough, sleep & handle stats. Prime the pass
1536 * for the next run.
1537 */
1538 if (pass > 1)
1539 pass = 1;
1540 else
1541 pass = 0;
1542 error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1543 "psleep", vm_pageout_stats_interval * hz);
1544 if (error && !vm_pages_needed) {
1545 pass = 0;
1546 vm_pageout_page_stats();
1547 vm_page_unlock_queues();
1548 continue;
1549 }
1550 }
1551 if (vm_pages_needed)
1552 cnt.v_pdwakeups++;
1553 vm_page_unlock_queues();
1554 vm_pageout_scan(pass);
1555 }
1556 }
1557
1558 /*
1559 * Unless the page queue lock is held by the caller, this function
1560 * should be regarded as advisory. Specifically, the caller should
1561 * not msleep() on &cnt.v_free_count following this function unless
1562 * the page queue lock is held until the msleep() is performed.
1563 */
1564 void
1565 pagedaemon_wakeup()
1566 {
1567
1568 if (!vm_pages_needed && curthread->td_proc != pageproc) {
1569 vm_pages_needed = 1;
1570 wakeup(&vm_pages_needed);
1571 }
1572 }
1573
1574 #if !defined(NO_SWAPPING)
1575 static void
1576 vm_req_vmdaemon()
1577 {
1578 static int lastrun = 0;
1579
1580 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1581 wakeup(&vm_daemon_needed);
1582 lastrun = ticks;
1583 }
1584 }
1585
1586 static void
1587 vm_daemon()
1588 {
1589 struct rlimit rsslim;
1590 struct proc *p;
1591 struct thread *td;
1592 int breakout;
1593
1594 mtx_lock(&Giant);
1595 while (TRUE) {
1596 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1597 if (vm_pageout_req_swapout) {
1598 swapout_procs(vm_pageout_req_swapout);
1599 vm_pageout_req_swapout = 0;
1600 }
1601 /*
1602 * scan the processes for exceeding their rlimits or if
1603 * process is swapped out -- deactivate pages
1604 */
1605 sx_slock(&allproc_lock);
1606 LIST_FOREACH(p, &allproc, p_list) {
1607 vm_pindex_t limit, size;
1608
1609 /*
1610 * if this is a system process or if we have already
1611 * looked at this process, skip it.
1612 */
1613 PROC_LOCK(p);
1614 if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1615 PROC_UNLOCK(p);
1616 continue;
1617 }
1618 /*
1619 * if the process is in a non-running type state,
1620 * don't touch it.
1621 */
1622 mtx_lock_spin(&sched_lock);
1623 breakout = 0;
1624 FOREACH_THREAD_IN_PROC(p, td) {
1625 if (!TD_ON_RUNQ(td) &&
1626 !TD_IS_RUNNING(td) &&
1627 !TD_IS_SLEEPING(td)) {
1628 breakout = 1;
1629 break;
1630 }
1631 }
1632 mtx_unlock_spin(&sched_lock);
1633 if (breakout) {
1634 PROC_UNLOCK(p);
1635 continue;
1636 }
1637 /*
1638 * get a limit
1639 */
1640 lim_rlimit(p, RLIMIT_RSS, &rsslim);
1641 limit = OFF_TO_IDX(
1642 qmin(rsslim.rlim_cur, rsslim.rlim_max));
1643
1644 /*
1645 * let processes that are swapped out really be
1646 * swapped out set the limit to nothing (will force a
1647 * swap-out.)
1648 */
1649 if ((p->p_sflag & PS_INMEM) == 0)
1650 limit = 0; /* XXX */
1651 PROC_UNLOCK(p);
1652
1653 size = vmspace_resident_count(p->p_vmspace);
1654 if (limit >= 0 && size >= limit) {
1655 vm_pageout_map_deactivate_pages(
1656 &p->p_vmspace->vm_map, limit);
1657 }
1658 }
1659 sx_sunlock(&allproc_lock);
1660 }
1661 }
1662 #endif /* !defined(NO_SWAPPING) */
Cache object: c6512c4329a38b99cd706f678fd60cbd
|