The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD: releng/6.3/sys/vm/vm_pageout.c 171981 2007-08-26 00:27:48Z alc $");
   77 
   78 #include "opt_vm.h"
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/eventhandler.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/kthread.h>
   87 #include <sys/ktr.h>
   88 #include <sys/mount.h>
   89 #include <sys/resourcevar.h>
   90 #include <sys/sched.h>
   91 #include <sys/signalvar.h>
   92 #include <sys/vnode.h>
   93 #include <sys/vmmeter.h>
   94 #include <sys/sx.h>
   95 #include <sys/sysctl.h>
   96 
   97 #include <vm/vm.h>
   98 #include <vm/vm_param.h>
   99 #include <vm/vm_object.h>
  100 #include <vm/vm_page.h>
  101 #include <vm/vm_map.h>
  102 #include <vm/vm_pageout.h>
  103 #include <vm/vm_pager.h>
  104 #include <vm/swap_pager.h>
  105 #include <vm/vm_extern.h>
  106 #include <vm/uma.h>
  107 
  108 #include <machine/mutex.h>
  109 
  110 /*
  111  * System initialization
  112  */
  113 
  114 /* the kernel process "vm_pageout"*/
  115 static void vm_pageout(void);
  116 static int vm_pageout_clean(vm_page_t);
  117 static void vm_pageout_pmap_collect(void);
  118 static void vm_pageout_scan(int pass);
  119 
  120 struct proc *pageproc;
  121 
  122 static struct kproc_desc page_kp = {
  123         "pagedaemon",
  124         vm_pageout,
  125         &pageproc
  126 };
  127 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
  128 
  129 #if !defined(NO_SWAPPING)
  130 /* the kernel process "vm_daemon"*/
  131 static void vm_daemon(void);
  132 static struct   proc *vmproc;
  133 
  134 static struct kproc_desc vm_kp = {
  135         "vmdaemon",
  136         vm_daemon,
  137         &vmproc
  138 };
  139 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
  140 #endif
  141 
  142 
  143 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  144 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  145 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  146 
  147 #if !defined(NO_SWAPPING)
  148 static int vm_pageout_req_swapout;      /* XXX */
  149 static int vm_daemon_needed;
  150 static struct mtx vm_daemon_mtx;
  151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  152 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  153 #endif
  154 static int vm_max_launder = 32;
  155 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
  156 static int vm_pageout_full_stats_interval = 0;
  157 static int vm_pageout_algorithm=0;
  158 static int defer_swap_pageouts=0;
  159 static int disable_swap_pageouts=0;
  160 
  161 #if defined(NO_SWAPPING)
  162 static int vm_swap_enabled=0;
  163 static int vm_swap_idle_enabled=0;
  164 #else
  165 static int vm_swap_enabled=1;
  166 static int vm_swap_idle_enabled=0;
  167 #endif
  168 
  169 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
  170         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
  171 
  172 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  173         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  174 
  175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
  176         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
  177 
  178 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
  179         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
  180 
  181 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
  182         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
  183 
  184 #if defined(NO_SWAPPING)
  185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  186         CTLFLAG_RD, &vm_swap_enabled, 0, "");
  187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  188         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
  189 #else
  190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  191         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  193         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  194 #endif
  195 
  196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  197         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  198 
  199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  200         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  201 
  202 static int pageout_lock_miss;
  203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  204         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  205 
  206 #define VM_PAGEOUT_PAGE_COUNT 16
  207 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  208 
  209 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  210 
  211 #if !defined(NO_SWAPPING)
  212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  214 static void vm_req_vmdaemon(int req);
  215 #endif
  216 static void vm_pageout_page_stats(void);
  217 
  218 /*
  219  * vm_pageout_fallback_object_lock:
  220  * 
  221  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
  222  * known to have failed and page queue must be either PQ_ACTIVE or
  223  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
  224  * while locking the vm object.  Use marker page to detect page queue
  225  * changes and maintain notion of next page on page queue.  Return
  226  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  227  * locked on return.
  228  * 
  229  * This function depends on both the lock portion of struct vm_object
  230  * and normal struct vm_page being type stable.
  231  */
  232 static boolean_t
  233 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  234 {
  235         struct vm_page marker;
  236         boolean_t unchanged;
  237         u_short queue;
  238         vm_object_t object;
  239 
  240         /*
  241          * Initialize our marker
  242          */
  243         bzero(&marker, sizeof(marker));
  244         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
  245         marker.queue = m->queue;
  246         marker.wire_count = 1;
  247 
  248         queue = m->queue;
  249         object = m->object;
  250         
  251         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
  252                            m, &marker, pageq);
  253         vm_page_unlock_queues();
  254         VM_OBJECT_LOCK(object);
  255         vm_page_lock_queues();
  256 
  257         /* Page queue might have changed. */
  258         *next = TAILQ_NEXT(&marker, pageq);
  259         unchanged = (m->queue == queue &&
  260                      m->object == object &&
  261                      &marker == TAILQ_NEXT(m, pageq));
  262         TAILQ_REMOVE(&vm_page_queues[queue].pl,
  263                      &marker, pageq);
  264         return (unchanged);
  265 }
  266 
  267 /*
  268  * vm_pageout_clean:
  269  *
  270  * Clean the page and remove it from the laundry.
  271  * 
  272  * We set the busy bit to cause potential page faults on this page to
  273  * block.  Note the careful timing, however, the busy bit isn't set till
  274  * late and we cannot do anything that will mess with the page.
  275  */
  276 static int
  277 vm_pageout_clean(m)
  278         vm_page_t m;
  279 {
  280         vm_object_t object;
  281         vm_page_t mc[2*vm_pageout_page_count];
  282         int pageout_count;
  283         int ib, is, page_base;
  284         vm_pindex_t pindex = m->pindex;
  285 
  286         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  287         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  288 
  289         /*
  290          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  291          * with the new swapper, but we could have serious problems paging
  292          * out other object types if there is insufficient memory.  
  293          *
  294          * Unfortunately, checking free memory here is far too late, so the
  295          * check has been moved up a procedural level.
  296          */
  297 
  298         /*
  299          * Don't mess with the page if it's busy, held, or special
  300          */
  301         if ((m->hold_count != 0) ||
  302             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
  303                 return 0;
  304         }
  305 
  306         mc[vm_pageout_page_count] = m;
  307         pageout_count = 1;
  308         page_base = vm_pageout_page_count;
  309         ib = 1;
  310         is = 1;
  311 
  312         /*
  313          * Scan object for clusterable pages.
  314          *
  315          * We can cluster ONLY if: ->> the page is NOT
  316          * clean, wired, busy, held, or mapped into a
  317          * buffer, and one of the following:
  318          * 1) The page is inactive, or a seldom used
  319          *    active page.
  320          * -or-
  321          * 2) we force the issue.
  322          *
  323          * During heavy mmap/modification loads the pageout
  324          * daemon can really fragment the underlying file
  325          * due to flushing pages out of order and not trying
  326          * align the clusters (which leave sporatic out-of-order
  327          * holes).  To solve this problem we do the reverse scan
  328          * first and attempt to align our cluster, then do a 
  329          * forward scan if room remains.
  330          */
  331         object = m->object;
  332 more:
  333         while (ib && pageout_count < vm_pageout_page_count) {
  334                 vm_page_t p;
  335 
  336                 if (ib > pindex) {
  337                         ib = 0;
  338                         break;
  339                 }
  340 
  341                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
  342                         ib = 0;
  343                         break;
  344                 }
  345                 if (((p->queue - p->pc) == PQ_CACHE) ||
  346                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
  347                         ib = 0;
  348                         break;
  349                 }
  350                 vm_page_test_dirty(p);
  351                 if ((p->dirty & p->valid) == 0 ||
  352                     p->queue != PQ_INACTIVE ||
  353                     p->wire_count != 0 ||       /* may be held by buf cache */
  354                     p->hold_count != 0) {       /* may be undergoing I/O */
  355                         ib = 0;
  356                         break;
  357                 }
  358                 mc[--page_base] = p;
  359                 ++pageout_count;
  360                 ++ib;
  361                 /*
  362                  * alignment boundry, stop here and switch directions.  Do
  363                  * not clear ib.
  364                  */
  365                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  366                         break;
  367         }
  368 
  369         while (pageout_count < vm_pageout_page_count && 
  370             pindex + is < object->size) {
  371                 vm_page_t p;
  372 
  373                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
  374                         break;
  375                 if (((p->queue - p->pc) == PQ_CACHE) ||
  376                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
  377                         break;
  378                 }
  379                 vm_page_test_dirty(p);
  380                 if ((p->dirty & p->valid) == 0 ||
  381                     p->queue != PQ_INACTIVE ||
  382                     p->wire_count != 0 ||       /* may be held by buf cache */
  383                     p->hold_count != 0) {       /* may be undergoing I/O */
  384                         break;
  385                 }
  386                 mc[page_base + pageout_count] = p;
  387                 ++pageout_count;
  388                 ++is;
  389         }
  390 
  391         /*
  392          * If we exhausted our forward scan, continue with the reverse scan
  393          * when possible, even past a page boundry.  This catches boundry
  394          * conditions.
  395          */
  396         if (ib && pageout_count < vm_pageout_page_count)
  397                 goto more;
  398 
  399         /*
  400          * we allow reads during pageouts...
  401          */
  402         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
  403 }
  404 
  405 /*
  406  * vm_pageout_flush() - launder the given pages
  407  *
  408  *      The given pages are laundered.  Note that we setup for the start of
  409  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  410  *      reference count all in here rather then in the parent.  If we want
  411  *      the parent to do more sophisticated things we may have to change
  412  *      the ordering.
  413  */
  414 int
  415 vm_pageout_flush(vm_page_t *mc, int count, int flags)
  416 {
  417         vm_object_t object = mc[0]->object;
  418         int pageout_status[count];
  419         int numpagedout = 0;
  420         int i;
  421 
  422         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  423         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  424         /*
  425          * Initiate I/O.  Bump the vm_page_t->busy counter and
  426          * mark the pages read-only.
  427          *
  428          * We do not have to fixup the clean/dirty bits here... we can
  429          * allow the pager to do it after the I/O completes.
  430          *
  431          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  432          * edge case with file fragments.
  433          */
  434         for (i = 0; i < count; i++) {
  435                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  436                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  437                         mc[i], i, count));
  438                 vm_page_io_start(mc[i]);
  439                 pmap_page_protect(mc[i], VM_PROT_READ);
  440         }
  441         vm_page_unlock_queues();
  442         vm_object_pip_add(object, count);
  443 
  444         vm_pager_put_pages(object, mc, count,
  445             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
  446             pageout_status);
  447 
  448         vm_page_lock_queues();
  449         for (i = 0; i < count; i++) {
  450                 vm_page_t mt = mc[i];
  451 
  452                 KASSERT((mt->flags & PG_WRITEABLE) == 0,
  453                     ("vm_pageout_flush: page %p is not write protected", mt));
  454                 switch (pageout_status[i]) {
  455                 case VM_PAGER_OK:
  456                 case VM_PAGER_PEND:
  457                         numpagedout++;
  458                         break;
  459                 case VM_PAGER_BAD:
  460                         /*
  461                          * Page outside of range of object. Right now we
  462                          * essentially lose the changes by pretending it
  463                          * worked.
  464                          */
  465                         pmap_clear_modify(mt);
  466                         vm_page_undirty(mt);
  467                         break;
  468                 case VM_PAGER_ERROR:
  469                 case VM_PAGER_FAIL:
  470                         /*
  471                          * If page couldn't be paged out, then reactivate the
  472                          * page so it doesn't clog the inactive list.  (We
  473                          * will try paging out it again later).
  474                          */
  475                         vm_page_activate(mt);
  476                         break;
  477                 case VM_PAGER_AGAIN:
  478                         break;
  479                 }
  480 
  481                 /*
  482                  * If the operation is still going, leave the page busy to
  483                  * block all other accesses. Also, leave the paging in
  484                  * progress indicator set so that we don't attempt an object
  485                  * collapse.
  486                  */
  487                 if (pageout_status[i] != VM_PAGER_PEND) {
  488                         vm_object_pip_wakeup(object);
  489                         vm_page_io_finish(mt);
  490                         if (vm_page_count_severe())
  491                                 vm_page_try_to_cache(mt);
  492                 }
  493         }
  494         return numpagedout;
  495 }
  496 
  497 #if !defined(NO_SWAPPING)
  498 /*
  499  *      vm_pageout_object_deactivate_pages
  500  *
  501  *      deactivate enough pages to satisfy the inactive target
  502  *      requirements or if vm_page_proc_limit is set, then
  503  *      deactivate all of the pages in the object and its
  504  *      backing_objects.
  505  *
  506  *      The object and map must be locked.
  507  */
  508 static void
  509 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
  510         pmap_t pmap;
  511         vm_object_t first_object;
  512         long desired;
  513 {
  514         vm_object_t backing_object, object;
  515         vm_page_t p, next;
  516         int actcount, rcount, remove_mode;
  517 
  518         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
  519         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
  520                 return;
  521         for (object = first_object;; object = backing_object) {
  522                 if (pmap_resident_count(pmap) <= desired)
  523                         goto unlock_return;
  524                 if (object->paging_in_progress)
  525                         goto unlock_return;
  526 
  527                 remove_mode = 0;
  528                 if (object->shadow_count > 1)
  529                         remove_mode = 1;
  530                 /*
  531                  * scan the objects entire memory queue
  532                  */
  533                 rcount = object->resident_page_count;
  534                 p = TAILQ_FIRST(&object->memq);
  535                 vm_page_lock_queues();
  536                 while (p && (rcount-- > 0)) {
  537                         if (pmap_resident_count(pmap) <= desired) {
  538                                 vm_page_unlock_queues();
  539                                 goto unlock_return;
  540                         }
  541                         next = TAILQ_NEXT(p, listq);
  542                         cnt.v_pdpages++;
  543                         if (p->wire_count != 0 ||
  544                             p->hold_count != 0 ||
  545                             p->busy != 0 ||
  546                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
  547                             !pmap_page_exists_quick(pmap, p)) {
  548                                 p = next;
  549                                 continue;
  550                         }
  551                         actcount = pmap_ts_referenced(p);
  552                         if (actcount) {
  553                                 vm_page_flag_set(p, PG_REFERENCED);
  554                         } else if (p->flags & PG_REFERENCED) {
  555                                 actcount = 1;
  556                         }
  557                         if ((p->queue != PQ_ACTIVE) &&
  558                                 (p->flags & PG_REFERENCED)) {
  559                                 vm_page_activate(p);
  560                                 p->act_count += actcount;
  561                                 vm_page_flag_clear(p, PG_REFERENCED);
  562                         } else if (p->queue == PQ_ACTIVE) {
  563                                 if ((p->flags & PG_REFERENCED) == 0) {
  564                                         p->act_count -= min(p->act_count, ACT_DECLINE);
  565                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
  566                                                 pmap_remove_all(p);
  567                                                 vm_page_deactivate(p);
  568                                         } else {
  569                                                 vm_pageq_requeue(p);
  570                                         }
  571                                 } else {
  572                                         vm_page_activate(p);
  573                                         vm_page_flag_clear(p, PG_REFERENCED);
  574                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
  575                                                 p->act_count += ACT_ADVANCE;
  576                                         vm_pageq_requeue(p);
  577                                 }
  578                         } else if (p->queue == PQ_INACTIVE) {
  579                                 pmap_remove_all(p);
  580                         }
  581                         p = next;
  582                 }
  583                 vm_page_unlock_queues();
  584                 if ((backing_object = object->backing_object) == NULL)
  585                         goto unlock_return;
  586                 VM_OBJECT_LOCK(backing_object);
  587                 if (object != first_object)
  588                         VM_OBJECT_UNLOCK(object);
  589         }
  590 unlock_return:
  591         if (object != first_object)
  592                 VM_OBJECT_UNLOCK(object);
  593 }
  594 
  595 /*
  596  * deactivate some number of pages in a map, try to do it fairly, but
  597  * that is really hard to do.
  598  */
  599 static void
  600 vm_pageout_map_deactivate_pages(map, desired)
  601         vm_map_t map;
  602         long desired;
  603 {
  604         vm_map_entry_t tmpe;
  605         vm_object_t obj, bigobj;
  606         int nothingwired;
  607 
  608         if (!vm_map_trylock(map))
  609                 return;
  610 
  611         bigobj = NULL;
  612         nothingwired = TRUE;
  613 
  614         /*
  615          * first, search out the biggest object, and try to free pages from
  616          * that.
  617          */
  618         tmpe = map->header.next;
  619         while (tmpe != &map->header) {
  620                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  621                         obj = tmpe->object.vm_object;
  622                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
  623                                 if (obj->shadow_count <= 1 &&
  624                                     (bigobj == NULL ||
  625                                      bigobj->resident_page_count < obj->resident_page_count)) {
  626                                         if (bigobj != NULL)
  627                                                 VM_OBJECT_UNLOCK(bigobj);
  628                                         bigobj = obj;
  629                                 } else
  630                                         VM_OBJECT_UNLOCK(obj);
  631                         }
  632                 }
  633                 if (tmpe->wired_count > 0)
  634                         nothingwired = FALSE;
  635                 tmpe = tmpe->next;
  636         }
  637 
  638         if (bigobj != NULL) {
  639                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  640                 VM_OBJECT_UNLOCK(bigobj);
  641         }
  642         /*
  643          * Next, hunt around for other pages to deactivate.  We actually
  644          * do this search sort of wrong -- .text first is not the best idea.
  645          */
  646         tmpe = map->header.next;
  647         while (tmpe != &map->header) {
  648                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  649                         break;
  650                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  651                         obj = tmpe->object.vm_object;
  652                         if (obj != NULL) {
  653                                 VM_OBJECT_LOCK(obj);
  654                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  655                                 VM_OBJECT_UNLOCK(obj);
  656                         }
  657                 }
  658                 tmpe = tmpe->next;
  659         }
  660 
  661         /*
  662          * Remove all mappings if a process is swapped out, this will free page
  663          * table pages.
  664          */
  665         if (desired == 0 && nothingwired) {
  666                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  667                     vm_map_max(map));
  668         }
  669         vm_map_unlock(map);
  670 }
  671 #endif          /* !defined(NO_SWAPPING) */
  672 
  673 /*
  674  * This routine is very drastic, but can save the system
  675  * in a pinch.
  676  */
  677 static void
  678 vm_pageout_pmap_collect(void)
  679 {
  680         int i;
  681         vm_page_t m;
  682         static int warningdone;
  683 
  684         if (pmap_pagedaemon_waken == 0)
  685                 return;
  686         if (warningdone < 5) {
  687                 printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
  688                 warningdone++;
  689         }
  690         vm_page_lock_queues();
  691         for (i = 0; i < vm_page_array_size; i++) {
  692                 m = &vm_page_array[i];
  693                 if (m->wire_count || m->hold_count || m->busy ||
  694                     (m->flags & (PG_BUSY | PG_UNMANAGED)))
  695                         continue;
  696                 pmap_remove_all(m);
  697         }
  698         vm_page_unlock_queues();
  699         pmap_pagedaemon_waken = 0;
  700 }
  701         
  702 /*
  703  *      vm_pageout_scan does the dirty work for the pageout daemon.
  704  */
  705 static void
  706 vm_pageout_scan(int pass)
  707 {
  708         vm_page_t m, next;
  709         struct vm_page marker;
  710         int page_shortage, maxscan, pcount;
  711         int addl_page_shortage, addl_page_shortage_init;
  712         struct proc *p, *bigproc;
  713         struct thread *td;
  714         vm_offset_t size, bigsize;
  715         vm_object_t object;
  716         int actcount, cache_cur, cache_first_failure;
  717         static int cache_last_free;
  718         int vnodes_skipped = 0;
  719         int maxlaunder;
  720 
  721         /*
  722          * Decrease registered cache sizes.
  723          */
  724         EVENTHANDLER_INVOKE(vm_lowmem, 0);
  725         /*
  726          * We do this explicitly after the caches have been drained above.
  727          */
  728         uma_reclaim();
  729         /*
  730          * Do whatever cleanup that the pmap code can.
  731          */
  732         vm_pageout_pmap_collect();
  733 
  734         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
  735 
  736         /*
  737          * Calculate the number of pages we want to either free or move
  738          * to the cache.
  739          */
  740         page_shortage = vm_paging_target() + addl_page_shortage_init;
  741 
  742         /*
  743          * Initialize our marker
  744          */
  745         bzero(&marker, sizeof(marker));
  746         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
  747         marker.queue = PQ_INACTIVE;
  748         marker.wire_count = 1;
  749 
  750         /*
  751          * Start scanning the inactive queue for pages we can move to the
  752          * cache or free.  The scan will stop when the target is reached or
  753          * we have scanned the entire inactive queue.  Note that m->act_count
  754          * is not used to form decisions for the inactive queue, only for the
  755          * active queue.
  756          *
  757          * maxlaunder limits the number of dirty pages we flush per scan.
  758          * For most systems a smaller value (16 or 32) is more robust under
  759          * extreme memory and disk pressure because any unnecessary writes
  760          * to disk can result in extreme performance degredation.  However,
  761          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  762          * used) will die horribly with limited laundering.  If the pageout
  763          * daemon cannot clean enough pages in the first pass, we let it go
  764          * all out in succeeding passes.
  765          */
  766         if ((maxlaunder = vm_max_launder) <= 1)
  767                 maxlaunder = 1;
  768         if (pass)
  769                 maxlaunder = 10000;
  770         vm_page_lock_queues();
  771 rescan0:
  772         addl_page_shortage = addl_page_shortage_init;
  773         maxscan = cnt.v_inactive_count;
  774 
  775         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
  776              m != NULL && maxscan-- > 0 && page_shortage > 0;
  777              m = next) {
  778 
  779                 cnt.v_pdpages++;
  780 
  781                 if (m->queue != PQ_INACTIVE) {
  782                         goto rescan0;
  783                 }
  784 
  785                 next = TAILQ_NEXT(m, pageq);
  786                 object = m->object;
  787 
  788                 /*
  789                  * skip marker pages
  790                  */
  791                 if (m->flags & PG_MARKER)
  792                         continue;
  793 
  794                 /*
  795                  * A held page may be undergoing I/O, so skip it.
  796                  */
  797                 if (m->hold_count) {
  798                         vm_pageq_requeue(m);
  799                         addl_page_shortage++;
  800                         continue;
  801                 }
  802                 /*
  803                  * Don't mess with busy pages, keep in the front of the
  804                  * queue, most likely are being paged out.
  805                  */
  806                 if (!VM_OBJECT_TRYLOCK(object) &&
  807                     (!vm_pageout_fallback_object_lock(m, &next) ||
  808                      m->hold_count != 0)) {
  809                         VM_OBJECT_UNLOCK(object);
  810                         addl_page_shortage++;
  811                         continue;
  812                 }
  813                 if (m->busy || (m->flags & PG_BUSY)) {
  814                         VM_OBJECT_UNLOCK(object);
  815                         addl_page_shortage++;
  816                         continue;
  817                 }
  818 
  819                 /*
  820                  * If the object is not being used, we ignore previous 
  821                  * references.
  822                  */
  823                 if (object->ref_count == 0) {
  824                         vm_page_flag_clear(m, PG_REFERENCED);
  825                         pmap_clear_reference(m);
  826 
  827                 /*
  828                  * Otherwise, if the page has been referenced while in the 
  829                  * inactive queue, we bump the "activation count" upwards, 
  830                  * making it less likely that the page will be added back to 
  831                  * the inactive queue prematurely again.  Here we check the 
  832                  * page tables (or emulated bits, if any), given the upper 
  833                  * level VM system not knowing anything about existing 
  834                  * references.
  835                  */
  836                 } else if (((m->flags & PG_REFERENCED) == 0) &&
  837                         (actcount = pmap_ts_referenced(m))) {
  838                         vm_page_activate(m);
  839                         VM_OBJECT_UNLOCK(object);
  840                         m->act_count += (actcount + ACT_ADVANCE);
  841                         continue;
  842                 }
  843 
  844                 /*
  845                  * If the upper level VM system knows about any page 
  846                  * references, we activate the page.  We also set the 
  847                  * "activation count" higher than normal so that we will less 
  848                  * likely place pages back onto the inactive queue again.
  849                  */
  850                 if ((m->flags & PG_REFERENCED) != 0) {
  851                         vm_page_flag_clear(m, PG_REFERENCED);
  852                         actcount = pmap_ts_referenced(m);
  853                         vm_page_activate(m);
  854                         VM_OBJECT_UNLOCK(object);
  855                         m->act_count += (actcount + ACT_ADVANCE + 1);
  856                         continue;
  857                 }
  858 
  859                 /*
  860                  * If the upper level VM system doesn't know anything about 
  861                  * the page being dirty, we have to check for it again.  As 
  862                  * far as the VM code knows, any partially dirty pages are 
  863                  * fully dirty.
  864                  */
  865                 if (m->dirty == 0 && !pmap_is_modified(m)) {
  866                         /*
  867                          * Avoid a race condition: Unless write access is
  868                          * removed from the page, another processor could
  869                          * modify it before all access is removed by the call
  870                          * to vm_page_cache() below.  If vm_page_cache() finds
  871                          * that the page has been modified when it removes all
  872                          * access, it panics because it cannot cache dirty
  873                          * pages.  In principle, we could eliminate just write
  874                          * access here rather than all access.  In the expected
  875                          * case, when there are no last instant modifications
  876                          * to the page, removing all access will be cheaper
  877                          * overall.
  878                          */
  879                         if ((m->flags & PG_WRITEABLE) != 0)
  880                                 pmap_remove_all(m);
  881                 } else {
  882                         vm_page_dirty(m);
  883                 }
  884 
  885                 if (m->valid == 0) {
  886                         /*
  887                          * Invalid pages can be easily freed
  888                          */
  889                         pmap_remove_all(m);
  890                         vm_page_free(m);
  891                         cnt.v_dfree++;
  892                         --page_shortage;
  893                 } else if (m->dirty == 0) {
  894                         /*
  895                          * Clean pages can be placed onto the cache queue.
  896                          * This effectively frees them.
  897                          */
  898                         vm_page_cache(m);
  899                         --page_shortage;
  900                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
  901                         /*
  902                          * Dirty pages need to be paged out, but flushing
  903                          * a page is extremely expensive verses freeing
  904                          * a clean page.  Rather then artificially limiting
  905                          * the number of pages we can flush, we instead give
  906                          * dirty pages extra priority on the inactive queue
  907                          * by forcing them to be cycled through the queue
  908                          * twice before being flushed, after which the
  909                          * (now clean) page will cycle through once more
  910                          * before being freed.  This significantly extends
  911                          * the thrash point for a heavily loaded machine.
  912                          */
  913                         vm_page_flag_set(m, PG_WINATCFLS);
  914                         vm_pageq_requeue(m);
  915                 } else if (maxlaunder > 0) {
  916                         /*
  917                          * We always want to try to flush some dirty pages if
  918                          * we encounter them, to keep the system stable.
  919                          * Normally this number is small, but under extreme
  920                          * pressure where there are insufficient clean pages
  921                          * on the inactive queue, we may have to go all out.
  922                          */
  923                         int swap_pageouts_ok, vfslocked = 0;
  924                         struct vnode *vp = NULL;
  925                         struct mount *mp = NULL;
  926 
  927                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
  928                                 swap_pageouts_ok = 1;
  929                         } else {
  930                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
  931                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
  932                                 vm_page_count_min());
  933                                                                                 
  934                         }
  935 
  936                         /*
  937                          * We don't bother paging objects that are "dead".  
  938                          * Those objects are in a "rundown" state.
  939                          */
  940                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
  941                                 VM_OBJECT_UNLOCK(object);
  942                                 vm_pageq_requeue(m);
  943                                 continue;
  944                         }
  945 
  946                         /*
  947                          * Following operations may unlock
  948                          * vm_page_queue_mtx, invalidating the 'next'
  949                          * pointer.  To prevent an inordinate number
  950                          * of restarts we use our marker to remember
  951                          * our place.
  952                          *
  953                          */
  954                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
  955                                            m, &marker, pageq);
  956                         /*
  957                          * The object is already known NOT to be dead.   It
  958                          * is possible for the vget() to block the whole
  959                          * pageout daemon, but the new low-memory handling
  960                          * code should prevent it.
  961                          *
  962                          * The previous code skipped locked vnodes and, worse,
  963                          * reordered pages in the queue.  This results in
  964                          * completely non-deterministic operation and, on a
  965                          * busy system, can lead to extremely non-optimal
  966                          * pageouts.  For example, it can cause clean pages
  967                          * to be freed and dirty pages to be moved to the end
  968                          * of the queue.  Since dirty pages are also moved to
  969                          * the end of the queue once-cleaned, this gives
  970                          * way too large a weighting to defering the freeing
  971                          * of dirty pages.
  972                          *
  973                          * We can't wait forever for the vnode lock, we might
  974                          * deadlock due to a vn_read() getting stuck in
  975                          * vm_wait while holding this vnode.  We skip the 
  976                          * vnode if we can't get it in a reasonable amount
  977                          * of time.
  978                          */
  979                         if (object->type == OBJT_VNODE) {
  980                                 vp = object->handle;
  981                                 if (vp->v_type == VREG &&
  982                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
  983                                         KASSERT(mp == NULL,
  984                                             ("vm_pageout_scan: mp != NULL"));
  985                                         ++pageout_lock_miss;
  986                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  987                                                 vnodes_skipped++;
  988                                         goto unlock_and_continue;
  989                                 }
  990                                 vm_page_unlock_queues();
  991                                 vm_object_reference_locked(object);
  992                                 VM_OBJECT_UNLOCK(object);
  993                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  994                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
  995                                     curthread)) {
  996                                         VM_OBJECT_LOCK(object);
  997                                         vm_page_lock_queues();
  998                                         ++pageout_lock_miss;
  999                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1000                                                 vnodes_skipped++;
 1001                                         vp = NULL;
 1002                                         goto unlock_and_continue;
 1003                                 }
 1004                                 VM_OBJECT_LOCK(object);
 1005                                 vm_page_lock_queues();
 1006                                 /*
 1007                                  * The page might have been moved to another
 1008                                  * queue during potential blocking in vget()
 1009                                  * above.  The page might have been freed and
 1010                                  * reused for another vnode.
 1011                                  */
 1012                                 if (m->queue != PQ_INACTIVE ||
 1013                                     m->object != object ||
 1014                                     TAILQ_NEXT(m, pageq) != &marker) {
 1015                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1016                                                 vnodes_skipped++;
 1017                                         goto unlock_and_continue;
 1018                                 }
 1019         
 1020                                 /*
 1021                                  * The page may have been busied during the
 1022                                  * blocking in vget().  We don't move the
 1023                                  * page back onto the end of the queue so that
 1024                                  * statistics are more correct if we don't.
 1025                                  */
 1026                                 if (m->busy || (m->flags & PG_BUSY)) {
 1027                                         goto unlock_and_continue;
 1028                                 }
 1029 
 1030                                 /*
 1031                                  * If the page has become held it might
 1032                                  * be undergoing I/O, so skip it
 1033                                  */
 1034                                 if (m->hold_count) {
 1035                                         vm_pageq_requeue(m);
 1036                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1037                                                 vnodes_skipped++;
 1038                                         goto unlock_and_continue;
 1039                                 }
 1040                         }
 1041 
 1042                         /*
 1043                          * If a page is dirty, then it is either being washed
 1044                          * (but not yet cleaned) or it is still in the
 1045                          * laundry.  If it is still in the laundry, then we
 1046                          * start the cleaning operation. 
 1047                          *
 1048                          * decrement page_shortage on success to account for
 1049                          * the (future) cleaned page.  Otherwise we could wind
 1050                          * up laundering or cleaning too many pages.
 1051                          */
 1052                         if (vm_pageout_clean(m) != 0) {
 1053                                 --page_shortage;
 1054                                 --maxlaunder;
 1055                         }
 1056 unlock_and_continue:
 1057                         VM_OBJECT_UNLOCK(object);
 1058                         if (mp != NULL) {
 1059                                 vm_page_unlock_queues();
 1060                                 if (vp != NULL)
 1061                                         vput(vp);
 1062                                 VFS_UNLOCK_GIANT(vfslocked);
 1063                                 vm_object_deallocate(object);
 1064                                 vn_finished_write(mp);
 1065                                 vm_page_lock_queues();
 1066                         }
 1067                         next = TAILQ_NEXT(&marker, pageq);
 1068                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
 1069                                      &marker, pageq);
 1070                         continue;
 1071                 }
 1072                 VM_OBJECT_UNLOCK(object);
 1073         }
 1074 
 1075         /*
 1076          * Compute the number of pages we want to try to move from the
 1077          * active queue to the inactive queue.
 1078          */
 1079         page_shortage = vm_paging_target() +
 1080                 cnt.v_inactive_target - cnt.v_inactive_count;
 1081         page_shortage += addl_page_shortage;
 1082 
 1083         /*
 1084          * Scan the active queue for things we can deactivate. We nominally
 1085          * track the per-page activity counter and use it to locate
 1086          * deactivation candidates.
 1087          */
 1088         pcount = cnt.v_active_count;
 1089         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1090 
 1091         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
 1092 
 1093                 KASSERT(m->queue == PQ_ACTIVE,
 1094                     ("vm_pageout_scan: page %p isn't active", m));
 1095 
 1096                 next = TAILQ_NEXT(m, pageq);
 1097                 object = m->object;
 1098                 if ((m->flags & PG_MARKER) != 0) {
 1099                         m = next;
 1100                         continue;
 1101                 }
 1102                 if (!VM_OBJECT_TRYLOCK(object) &&
 1103                     !vm_pageout_fallback_object_lock(m, &next)) {
 1104                         VM_OBJECT_UNLOCK(object);
 1105                         m = next;
 1106                         continue;
 1107                 }
 1108 
 1109                 /*
 1110                  * Don't deactivate pages that are busy.
 1111                  */
 1112                 if ((m->busy != 0) ||
 1113                     (m->flags & PG_BUSY) ||
 1114                     (m->hold_count != 0)) {
 1115                         VM_OBJECT_UNLOCK(object);
 1116                         vm_pageq_requeue(m);
 1117                         m = next;
 1118                         continue;
 1119                 }
 1120 
 1121                 /*
 1122                  * The count for pagedaemon pages is done after checking the
 1123                  * page for eligibility...
 1124                  */
 1125                 cnt.v_pdpages++;
 1126 
 1127                 /*
 1128                  * Check to see "how much" the page has been used.
 1129                  */
 1130                 actcount = 0;
 1131                 if (object->ref_count != 0) {
 1132                         if (m->flags & PG_REFERENCED) {
 1133                                 actcount += 1;
 1134                         }
 1135                         actcount += pmap_ts_referenced(m);
 1136                         if (actcount) {
 1137                                 m->act_count += ACT_ADVANCE + actcount;
 1138                                 if (m->act_count > ACT_MAX)
 1139                                         m->act_count = ACT_MAX;
 1140                         }
 1141                 }
 1142 
 1143                 /*
 1144                  * Since we have "tested" this bit, we need to clear it now.
 1145                  */
 1146                 vm_page_flag_clear(m, PG_REFERENCED);
 1147 
 1148                 /*
 1149                  * Only if an object is currently being used, do we use the
 1150                  * page activation count stats.
 1151                  */
 1152                 if (actcount && (object->ref_count != 0)) {
 1153                         vm_pageq_requeue(m);
 1154                 } else {
 1155                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1156                         if (vm_pageout_algorithm ||
 1157                             object->ref_count == 0 ||
 1158                             m->act_count == 0) {
 1159                                 page_shortage--;
 1160                                 if (object->ref_count == 0) {
 1161                                         pmap_remove_all(m);
 1162                                         if (m->dirty == 0)
 1163                                                 vm_page_cache(m);
 1164                                         else
 1165                                                 vm_page_deactivate(m);
 1166                                 } else {
 1167                                         vm_page_deactivate(m);
 1168                                 }
 1169                         } else {
 1170                                 vm_pageq_requeue(m);
 1171                         }
 1172                 }
 1173                 VM_OBJECT_UNLOCK(object);
 1174                 m = next;
 1175         }
 1176 
 1177         /*
 1178          * We try to maintain some *really* free pages, this allows interrupt
 1179          * code to be guaranteed space.  Since both cache and free queues 
 1180          * are considered basically 'free', moving pages from cache to free
 1181          * does not effect other calculations.
 1182          */
 1183         cache_cur = cache_last_free;
 1184         cache_first_failure = -1;
 1185         while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
 1186             (cache_cur + PQ_PRIME2) & PQ_L2_MASK) != cache_first_failure) {
 1187                 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
 1188                     pageq) {
 1189                         KASSERT(m->dirty == 0,
 1190                             ("Found dirty cache page %p", m));
 1191                         KASSERT(!pmap_page_is_mapped(m),
 1192                             ("Found mapped cache page %p", m));
 1193                         KASSERT((m->flags & PG_UNMANAGED) == 0,
 1194                             ("Found unmanaged cache page %p", m));
 1195                         KASSERT(m->wire_count == 0,
 1196                             ("Found wired cache page %p", m));
 1197                         if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
 1198                             m->object)) {
 1199                                 KASSERT((m->flags & PG_BUSY) == 0 &&
 1200                                     m->busy == 0, ("Found busy cache page %p",
 1201                                     m));
 1202                                 vm_page_free(m);
 1203                                 VM_OBJECT_UNLOCK(object);
 1204                                 cnt.v_dfree++;
 1205                                 cache_last_free = cache_cur;
 1206                                 cache_first_failure = -1;
 1207                                 break;
 1208                         }
 1209                 }
 1210                 if (m == NULL && cache_first_failure == -1)
 1211                         cache_first_failure = cache_cur;
 1212         }
 1213         vm_page_unlock_queues();
 1214 #if !defined(NO_SWAPPING)
 1215         /*
 1216          * Idle process swapout -- run once per second.
 1217          */
 1218         if (vm_swap_idle_enabled) {
 1219                 static long lsec;
 1220                 if (time_second != lsec) {
 1221                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1222                         lsec = time_second;
 1223                 }
 1224         }
 1225 #endif
 1226                 
 1227         /*
 1228          * If we didn't get enough free pages, and we have skipped a vnode
 1229          * in a writeable object, wakeup the sync daemon.  And kick swapout
 1230          * if we did not get enough free pages.
 1231          */
 1232         if (vm_paging_target() > 0) {
 1233                 if (vnodes_skipped && vm_page_count_min())
 1234                         (void) speedup_syncer();
 1235 #if !defined(NO_SWAPPING)
 1236                 if (vm_swap_enabled && vm_page_count_target())
 1237                         vm_req_vmdaemon(VM_SWAP_NORMAL);
 1238 #endif
 1239         }
 1240 
 1241         /*
 1242          * If we are critically low on one of RAM or swap and low on
 1243          * the other, kill the largest process.  However, we avoid
 1244          * doing this on the first pass in order to give ourselves a
 1245          * chance to flush out dirty vnode-backed pages and to allow
 1246          * active pages to be moved to the inactive queue and reclaimed.
 1247          *
 1248          * We keep the process bigproc locked once we find it to keep anyone
 1249          * from messing with it; however, there is a possibility of
 1250          * deadlock if process B is bigproc and one of it's child processes
 1251          * attempts to propagate a signal to B while we are waiting for A's
 1252          * lock while walking this list.  To avoid this, we don't block on
 1253          * the process lock but just skip a process if it is already locked.
 1254          */
 1255         if (pass != 0 &&
 1256             ((swap_pager_avail < 64 && vm_page_count_min()) ||
 1257              (swap_pager_full && vm_paging_target() > 0))) {
 1258                 bigproc = NULL;
 1259                 bigsize = 0;
 1260                 sx_slock(&allproc_lock);
 1261                 FOREACH_PROC_IN_SYSTEM(p) {
 1262                         int breakout;
 1263 
 1264                         if (PROC_TRYLOCK(p) == 0)
 1265                                 continue;
 1266                         /*
 1267                          * If this is a system or protected process, skip it.
 1268                          */
 1269                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
 1270                             (p->p_flag & P_PROTECTED) ||
 1271                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
 1272                                 PROC_UNLOCK(p);
 1273                                 continue;
 1274                         }
 1275                         /*
 1276                          * If the process is in a non-running type state,
 1277                          * don't touch it.  Check all the threads individually.
 1278                          */
 1279                         mtx_lock_spin(&sched_lock);
 1280                         breakout = 0;
 1281                         FOREACH_THREAD_IN_PROC(p, td) {
 1282                                 if (!TD_ON_RUNQ(td) &&
 1283                                     !TD_IS_RUNNING(td) &&
 1284                                     !TD_IS_SLEEPING(td)) {
 1285                                         breakout = 1;
 1286                                         break;
 1287                                 }
 1288                         }
 1289                         if (breakout) {
 1290                                 mtx_unlock_spin(&sched_lock);
 1291                                 PROC_UNLOCK(p);
 1292                                 continue;
 1293                         }
 1294                         mtx_unlock_spin(&sched_lock);
 1295                         /*
 1296                          * get the process size
 1297                          */
 1298                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
 1299                                 PROC_UNLOCK(p);
 1300                                 continue;
 1301                         }
 1302                         size = vmspace_swap_count(p->p_vmspace);
 1303                         vm_map_unlock_read(&p->p_vmspace->vm_map);
 1304                         size += vmspace_resident_count(p->p_vmspace);
 1305                         /*
 1306                          * if the this process is bigger than the biggest one
 1307                          * remember it.
 1308                          */
 1309                         if (size > bigsize) {
 1310                                 if (bigproc != NULL)
 1311                                         PROC_UNLOCK(bigproc);
 1312                                 bigproc = p;
 1313                                 bigsize = size;
 1314                         } else
 1315                                 PROC_UNLOCK(p);
 1316                 }
 1317                 sx_sunlock(&allproc_lock);
 1318                 if (bigproc != NULL) {
 1319                         killproc(bigproc, "out of swap space");
 1320                         mtx_lock_spin(&sched_lock);
 1321                         sched_nice(bigproc, PRIO_MIN);
 1322                         mtx_unlock_spin(&sched_lock);
 1323                         PROC_UNLOCK(bigproc);
 1324                         wakeup(&cnt.v_free_count);
 1325                 }
 1326         }
 1327 }
 1328 
 1329 /*
 1330  * This routine tries to maintain the pseudo LRU active queue,
 1331  * so that during long periods of time where there is no paging,
 1332  * that some statistic accumulation still occurs.  This code
 1333  * helps the situation where paging just starts to occur.
 1334  */
 1335 static void
 1336 vm_pageout_page_stats()
 1337 {
 1338         vm_object_t object;
 1339         vm_page_t m,next;
 1340         int pcount,tpcount;             /* Number of pages to check */
 1341         static int fullintervalcount = 0;
 1342         int page_shortage;
 1343 
 1344         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1345         page_shortage = 
 1346             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
 1347             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
 1348 
 1349         if (page_shortage <= 0)
 1350                 return;
 1351 
 1352         pcount = cnt.v_active_count;
 1353         fullintervalcount += vm_pageout_stats_interval;
 1354         if (fullintervalcount < vm_pageout_full_stats_interval) {
 1355                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
 1356                 if (pcount > tpcount)
 1357                         pcount = tpcount;
 1358         } else {
 1359                 fullintervalcount = 0;
 1360         }
 1361 
 1362         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1363         while ((m != NULL) && (pcount-- > 0)) {
 1364                 int actcount;
 1365 
 1366                 KASSERT(m->queue == PQ_ACTIVE,
 1367                     ("vm_pageout_page_stats: page %p isn't active", m));
 1368 
 1369                 next = TAILQ_NEXT(m, pageq);
 1370                 object = m->object;
 1371 
 1372                 if ((m->flags & PG_MARKER) != 0) {
 1373                         m = next;
 1374                         continue;
 1375                 }
 1376                 if (!VM_OBJECT_TRYLOCK(object) &&
 1377                     !vm_pageout_fallback_object_lock(m, &next)) {
 1378                         VM_OBJECT_UNLOCK(object);
 1379                         m = next;
 1380                         continue;
 1381                 }
 1382 
 1383                 /*
 1384                  * Don't deactivate pages that are busy.
 1385                  */
 1386                 if ((m->busy != 0) ||
 1387                     (m->flags & PG_BUSY) ||
 1388                     (m->hold_count != 0)) {
 1389                         VM_OBJECT_UNLOCK(object);
 1390                         vm_pageq_requeue(m);
 1391                         m = next;
 1392                         continue;
 1393                 }
 1394 
 1395                 actcount = 0;
 1396                 if (m->flags & PG_REFERENCED) {
 1397                         vm_page_flag_clear(m, PG_REFERENCED);
 1398                         actcount += 1;
 1399                 }
 1400 
 1401                 actcount += pmap_ts_referenced(m);
 1402                 if (actcount) {
 1403                         m->act_count += ACT_ADVANCE + actcount;
 1404                         if (m->act_count > ACT_MAX)
 1405                                 m->act_count = ACT_MAX;
 1406                         vm_pageq_requeue(m);
 1407                 } else {
 1408                         if (m->act_count == 0) {
 1409                                 /*
 1410                                  * We turn off page access, so that we have
 1411                                  * more accurate RSS stats.  We don't do this
 1412                                  * in the normal page deactivation when the
 1413                                  * system is loaded VM wise, because the
 1414                                  * cost of the large number of page protect
 1415                                  * operations would be higher than the value
 1416                                  * of doing the operation.
 1417                                  */
 1418                                 pmap_remove_all(m);
 1419                                 vm_page_deactivate(m);
 1420                         } else {
 1421                                 m->act_count -= min(m->act_count, ACT_DECLINE);
 1422                                 vm_pageq_requeue(m);
 1423                         }
 1424                 }
 1425                 VM_OBJECT_UNLOCK(object);
 1426                 m = next;
 1427         }
 1428 }
 1429 
 1430 /*
 1431  *      vm_pageout is the high level pageout daemon.
 1432  */
 1433 static void
 1434 vm_pageout()
 1435 {
 1436         int error, pass;
 1437 
 1438         /*
 1439          * Initialize some paging parameters.
 1440          */
 1441         cnt.v_interrupt_free_min = 2;
 1442         if (cnt.v_page_count < 2000)
 1443                 vm_pageout_page_count = 8;
 1444 
 1445         /*
 1446          * v_free_reserved needs to include enough for the largest
 1447          * swap pager structures plus enough for any pv_entry structs
 1448          * when paging. 
 1449          */
 1450         if (cnt.v_page_count > 1024)
 1451                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1452         else
 1453                 cnt.v_free_min = 4;
 1454         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1455             cnt.v_interrupt_free_min;
 1456         cnt.v_free_reserved = vm_pageout_page_count +
 1457             cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
 1458         cnt.v_free_severe = cnt.v_free_min / 2;
 1459         cnt.v_free_min += cnt.v_free_reserved;
 1460         cnt.v_free_severe += cnt.v_free_reserved;
 1461 
 1462         /*
 1463          * v_free_target and v_cache_min control pageout hysteresis.  Note
 1464          * that these are more a measure of the VM cache queue hysteresis
 1465          * then the VM free queue.  Specifically, v_free_target is the
 1466          * high water mark (free+cache pages).
 1467          *
 1468          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
 1469          * low water mark, while v_free_min is the stop.  v_cache_min must
 1470          * be big enough to handle memory needs while the pageout daemon
 1471          * is signalled and run to free more pages.
 1472          */
 1473         if (cnt.v_free_count > 6144)
 1474                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1475         else
 1476                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
 1477 
 1478         if (cnt.v_free_count > 2048) {
 1479                 cnt.v_cache_min = cnt.v_free_target;
 1480                 cnt.v_cache_max = 2 * cnt.v_cache_min;
 1481                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1482         } else {
 1483                 cnt.v_cache_min = 0;
 1484                 cnt.v_cache_max = 0;
 1485                 cnt.v_inactive_target = cnt.v_free_count / 4;
 1486         }
 1487         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1488                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1489 
 1490         /* XXX does not really belong here */
 1491         if (vm_page_max_wired == 0)
 1492                 vm_page_max_wired = cnt.v_free_count / 3;
 1493 
 1494         if (vm_pageout_stats_max == 0)
 1495                 vm_pageout_stats_max = cnt.v_free_target;
 1496 
 1497         /*
 1498          * Set interval in seconds for stats scan.
 1499          */
 1500         if (vm_pageout_stats_interval == 0)
 1501                 vm_pageout_stats_interval = 5;
 1502         if (vm_pageout_full_stats_interval == 0)
 1503                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
 1504 
 1505         swap_pager_swap_init();
 1506         pass = 0;
 1507         /*
 1508          * The pageout daemon is never done, so loop forever.
 1509          */
 1510         while (TRUE) {
 1511                 vm_page_lock_queues();
 1512                 /*
 1513                  * If we have enough free memory, wakeup waiters.  Do
 1514                  * not clear vm_pages_needed until we reach our target,
 1515                  * otherwise we may be woken up over and over again and
 1516                  * waste a lot of cpu.
 1517                  */
 1518                 if (vm_pages_needed && !vm_page_count_min()) {
 1519                         if (!vm_paging_needed())
 1520                                 vm_pages_needed = 0;
 1521                         wakeup(&cnt.v_free_count);
 1522                 }
 1523                 if (vm_pages_needed) {
 1524                         /*
 1525                          * Still not done, take a second pass without waiting
 1526                          * (unlimited dirty cleaning), otherwise sleep a bit
 1527                          * and try again.
 1528                          */
 1529                         ++pass;
 1530                         if (pass > 1)
 1531                                 msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
 1532                                        "psleep", hz/2);
 1533                 } else {
 1534                         /*
 1535                          * Good enough, sleep & handle stats.  Prime the pass
 1536                          * for the next run.
 1537                          */
 1538                         if (pass > 1)
 1539                                 pass = 1;
 1540                         else
 1541                                 pass = 0;
 1542                         error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
 1543                                     "psleep", vm_pageout_stats_interval * hz);
 1544                         if (error && !vm_pages_needed) {
 1545                                 pass = 0;
 1546                                 vm_pageout_page_stats();
 1547                                 vm_page_unlock_queues();
 1548                                 continue;
 1549                         }
 1550                 }
 1551                 if (vm_pages_needed)
 1552                         cnt.v_pdwakeups++;
 1553                 vm_page_unlock_queues();
 1554                 vm_pageout_scan(pass);
 1555         }
 1556 }
 1557 
 1558 /*
 1559  * Unless the page queue lock is held by the caller, this function
 1560  * should be regarded as advisory.  Specifically, the caller should
 1561  * not msleep() on &cnt.v_free_count following this function unless
 1562  * the page queue lock is held until the msleep() is performed.
 1563  */
 1564 void
 1565 pagedaemon_wakeup()
 1566 {
 1567 
 1568         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1569                 vm_pages_needed = 1;
 1570                 wakeup(&vm_pages_needed);
 1571         }
 1572 }
 1573 
 1574 #if !defined(NO_SWAPPING)
 1575 static void
 1576 vm_req_vmdaemon(int req)
 1577 {
 1578         static int lastrun = 0;
 1579 
 1580         mtx_lock(&vm_daemon_mtx);
 1581         vm_pageout_req_swapout |= req;
 1582         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1583                 wakeup(&vm_daemon_needed);
 1584                 lastrun = ticks;
 1585         }
 1586         mtx_unlock(&vm_daemon_mtx);
 1587 }
 1588 
 1589 static void
 1590 vm_daemon()
 1591 {
 1592         struct rlimit rsslim;
 1593         struct proc *p;
 1594         struct thread *td;
 1595         int breakout, swapout_flags;
 1596 
 1597         while (TRUE) {
 1598                 mtx_lock(&vm_daemon_mtx);
 1599                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
 1600                 swapout_flags = vm_pageout_req_swapout;
 1601                 vm_pageout_req_swapout = 0;
 1602                 mtx_unlock(&vm_daemon_mtx);
 1603                 if (swapout_flags)
 1604                         swapout_procs(swapout_flags);
 1605 
 1606                 /*
 1607                  * scan the processes for exceeding their rlimits or if
 1608                  * process is swapped out -- deactivate pages
 1609                  */
 1610                 sx_slock(&allproc_lock);
 1611                 LIST_FOREACH(p, &allproc, p_list) {
 1612                         vm_pindex_t limit, size;
 1613 
 1614                         /*
 1615                          * if this is a system process or if we have already
 1616                          * looked at this process, skip it.
 1617                          */
 1618                         PROC_LOCK(p);
 1619                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
 1620                                 PROC_UNLOCK(p);
 1621                                 continue;
 1622                         }
 1623                         /*
 1624                          * if the process is in a non-running type state,
 1625                          * don't touch it.
 1626                          */
 1627                         mtx_lock_spin(&sched_lock);
 1628                         breakout = 0;
 1629                         FOREACH_THREAD_IN_PROC(p, td) {
 1630                                 if (!TD_ON_RUNQ(td) &&
 1631                                     !TD_IS_RUNNING(td) &&
 1632                                     !TD_IS_SLEEPING(td)) {
 1633                                         breakout = 1;
 1634                                         break;
 1635                                 }
 1636                         }
 1637                         mtx_unlock_spin(&sched_lock);
 1638                         if (breakout) {
 1639                                 PROC_UNLOCK(p);
 1640                                 continue;
 1641                         }
 1642                         /*
 1643                          * get a limit
 1644                          */
 1645                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1646                         limit = OFF_TO_IDX(
 1647                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1648 
 1649                         /*
 1650                          * let processes that are swapped out really be
 1651                          * swapped out set the limit to nothing (will force a
 1652                          * swap-out.)
 1653                          */
 1654                         if ((p->p_sflag & PS_INMEM) == 0)
 1655                                 limit = 0;      /* XXX */
 1656                         PROC_UNLOCK(p);
 1657 
 1658                         size = vmspace_resident_count(p->p_vmspace);
 1659                         if (limit >= 0 && size >= limit) {
 1660                                 vm_pageout_map_deactivate_pages(
 1661                                     &p->p_vmspace->vm_map, limit);
 1662                         }
 1663                 }
 1664                 sx_sunlock(&allproc_lock);
 1665         }
 1666 }
 1667 #endif                  /* !defined(NO_SWAPPING) */

Cache object: 152ff71bf93fea7923d727b4d3430d65


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.