FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 #include <machine/mutex.h>
109
110 /*
111 * System initialization
112 */
113
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t);
117 static void vm_pageout_scan(int pass);
118
119 struct proc *pageproc;
120
121 static struct kproc_desc page_kp = {
122 "pagedaemon",
123 vm_pageout,
124 &pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134 "vmdaemon",
135 vm_daemon,
136 &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
139 #endif
140
141
142 int vm_pages_needed; /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit; /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout; /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185 CTLFLAG_RD, &vm_swap_enabled, 0, "");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
209
210 #if !defined(NO_SWAPPING)
211 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
212 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
213 static void vm_req_vmdaemon(int req);
214 #endif
215 static void vm_pageout_page_stats(void);
216
217 /*
218 * vm_pageout_fallback_object_lock:
219 *
220 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
221 * known to have failed and page queue must be either PQ_ACTIVE or
222 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues
223 * while locking the vm object. Use marker page to detect page queue
224 * changes and maintain notion of next page on page queue. Return
225 * TRUE if no changes were detected, FALSE otherwise. vm object is
226 * locked on return.
227 *
228 * This function depends on both the lock portion of struct vm_object
229 * and normal struct vm_page being type stable.
230 */
231 static boolean_t
232 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
233 {
234 struct vm_page marker;
235 boolean_t unchanged;
236 u_short queue;
237 vm_object_t object;
238
239 /*
240 * Initialize our marker
241 */
242 bzero(&marker, sizeof(marker));
243 marker.flags = PG_FICTITIOUS | PG_MARKER;
244 marker.oflags = VPO_BUSY;
245 marker.queue = m->queue;
246 marker.wire_count = 1;
247
248 queue = m->queue;
249 object = m->object;
250
251 TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
252 m, &marker, pageq);
253 vm_page_unlock_queues();
254 VM_OBJECT_LOCK(object);
255 vm_page_lock_queues();
256
257 /* Page queue might have changed. */
258 *next = TAILQ_NEXT(&marker, pageq);
259 unchanged = (m->queue == queue &&
260 m->object == object &&
261 &marker == TAILQ_NEXT(m, pageq));
262 TAILQ_REMOVE(&vm_page_queues[queue].pl,
263 &marker, pageq);
264 return (unchanged);
265 }
266
267 /*
268 * vm_pageout_clean:
269 *
270 * Clean the page and remove it from the laundry.
271 *
272 * We set the busy bit to cause potential page faults on this page to
273 * block. Note the careful timing, however, the busy bit isn't set till
274 * late and we cannot do anything that will mess with the page.
275 */
276 static int
277 vm_pageout_clean(m)
278 vm_page_t m;
279 {
280 vm_object_t object;
281 vm_page_t mc[2*vm_pageout_page_count];
282 int pageout_count;
283 int ib, is, page_base;
284 vm_pindex_t pindex = m->pindex;
285
286 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
287 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
288
289 /*
290 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
291 * with the new swapper, but we could have serious problems paging
292 * out other object types if there is insufficient memory.
293 *
294 * Unfortunately, checking free memory here is far too late, so the
295 * check has been moved up a procedural level.
296 */
297
298 /*
299 * Can't clean the page if it's busy or held.
300 */
301 if ((m->hold_count != 0) ||
302 ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
303 return 0;
304 }
305
306 mc[vm_pageout_page_count] = m;
307 pageout_count = 1;
308 page_base = vm_pageout_page_count;
309 ib = 1;
310 is = 1;
311
312 /*
313 * Scan object for clusterable pages.
314 *
315 * We can cluster ONLY if: ->> the page is NOT
316 * clean, wired, busy, held, or mapped into a
317 * buffer, and one of the following:
318 * 1) The page is inactive, or a seldom used
319 * active page.
320 * -or-
321 * 2) we force the issue.
322 *
323 * During heavy mmap/modification loads the pageout
324 * daemon can really fragment the underlying file
325 * due to flushing pages out of order and not trying
326 * align the clusters (which leave sporatic out-of-order
327 * holes). To solve this problem we do the reverse scan
328 * first and attempt to align our cluster, then do a
329 * forward scan if room remains.
330 */
331 object = m->object;
332 more:
333 while (ib && pageout_count < vm_pageout_page_count) {
334 vm_page_t p;
335
336 if (ib > pindex) {
337 ib = 0;
338 break;
339 }
340
341 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
342 ib = 0;
343 break;
344 }
345 if ((p->oflags & VPO_BUSY) || p->busy) {
346 ib = 0;
347 break;
348 }
349 vm_page_test_dirty(p);
350 if ((p->dirty & p->valid) == 0 ||
351 p->queue != PQ_INACTIVE ||
352 p->wire_count != 0 || /* may be held by buf cache */
353 p->hold_count != 0) { /* may be undergoing I/O */
354 ib = 0;
355 break;
356 }
357 mc[--page_base] = p;
358 ++pageout_count;
359 ++ib;
360 /*
361 * alignment boundry, stop here and switch directions. Do
362 * not clear ib.
363 */
364 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
365 break;
366 }
367
368 while (pageout_count < vm_pageout_page_count &&
369 pindex + is < object->size) {
370 vm_page_t p;
371
372 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
373 break;
374 if ((p->oflags & VPO_BUSY) || p->busy) {
375 break;
376 }
377 vm_page_test_dirty(p);
378 if ((p->dirty & p->valid) == 0 ||
379 p->queue != PQ_INACTIVE ||
380 p->wire_count != 0 || /* may be held by buf cache */
381 p->hold_count != 0) { /* may be undergoing I/O */
382 break;
383 }
384 mc[page_base + pageout_count] = p;
385 ++pageout_count;
386 ++is;
387 }
388
389 /*
390 * If we exhausted our forward scan, continue with the reverse scan
391 * when possible, even past a page boundry. This catches boundry
392 * conditions.
393 */
394 if (ib && pageout_count < vm_pageout_page_count)
395 goto more;
396
397 /*
398 * we allow reads during pageouts...
399 */
400 return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
401 }
402
403 /*
404 * vm_pageout_flush() - launder the given pages
405 *
406 * The given pages are laundered. Note that we setup for the start of
407 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
408 * reference count all in here rather then in the parent. If we want
409 * the parent to do more sophisticated things we may have to change
410 * the ordering.
411 */
412 int
413 vm_pageout_flush(vm_page_t *mc, int count, int flags)
414 {
415 vm_object_t object = mc[0]->object;
416 int pageout_status[count];
417 int numpagedout = 0;
418 int i;
419
420 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
421 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422 /*
423 * Initiate I/O. Bump the vm_page_t->busy counter and
424 * mark the pages read-only.
425 *
426 * We do not have to fixup the clean/dirty bits here... we can
427 * allow the pager to do it after the I/O completes.
428 *
429 * NOTE! mc[i]->dirty may be partial or fragmented due to an
430 * edge case with file fragments.
431 */
432 for (i = 0; i < count; i++) {
433 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
434 ("vm_pageout_flush: partially invalid page %p index %d/%d",
435 mc[i], i, count));
436 vm_page_io_start(mc[i]);
437 pmap_remove_write(mc[i]);
438 }
439 vm_page_unlock_queues();
440 vm_object_pip_add(object, count);
441
442 vm_pager_put_pages(object, mc, count, flags, pageout_status);
443
444 vm_page_lock_queues();
445 for (i = 0; i < count; i++) {
446 vm_page_t mt = mc[i];
447
448 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
449 (mt->flags & PG_WRITEABLE) == 0,
450 ("vm_pageout_flush: page %p is not write protected", mt));
451 switch (pageout_status[i]) {
452 case VM_PAGER_OK:
453 case VM_PAGER_PEND:
454 numpagedout++;
455 break;
456 case VM_PAGER_BAD:
457 /*
458 * Page outside of range of object. Right now we
459 * essentially lose the changes by pretending it
460 * worked.
461 */
462 pmap_clear_modify(mt);
463 vm_page_undirty(mt);
464 break;
465 case VM_PAGER_ERROR:
466 case VM_PAGER_FAIL:
467 /*
468 * If page couldn't be paged out, then reactivate the
469 * page so it doesn't clog the inactive list. (We
470 * will try paging out it again later).
471 */
472 vm_page_activate(mt);
473 break;
474 case VM_PAGER_AGAIN:
475 break;
476 }
477
478 /*
479 * If the operation is still going, leave the page busy to
480 * block all other accesses. Also, leave the paging in
481 * progress indicator set so that we don't attempt an object
482 * collapse.
483 */
484 if (pageout_status[i] != VM_PAGER_PEND) {
485 vm_object_pip_wakeup(object);
486 vm_page_io_finish(mt);
487 if (vm_page_count_severe())
488 vm_page_try_to_cache(mt);
489 }
490 }
491 return numpagedout;
492 }
493
494 #if !defined(NO_SWAPPING)
495 /*
496 * vm_pageout_object_deactivate_pages
497 *
498 * deactivate enough pages to satisfy the inactive target
499 * requirements or if vm_page_proc_limit is set, then
500 * deactivate all of the pages in the object and its
501 * backing_objects.
502 *
503 * The object and map must be locked.
504 */
505 static void
506 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
507 pmap_t pmap;
508 vm_object_t first_object;
509 long desired;
510 {
511 vm_object_t backing_object, object;
512 vm_page_t p, next;
513 int actcount, rcount, remove_mode;
514
515 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
516 if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
517 return;
518 for (object = first_object;; object = backing_object) {
519 if (pmap_resident_count(pmap) <= desired)
520 goto unlock_return;
521 if (object->paging_in_progress)
522 goto unlock_return;
523
524 remove_mode = 0;
525 if (object->shadow_count > 1)
526 remove_mode = 1;
527 /*
528 * scan the objects entire memory queue
529 */
530 rcount = object->resident_page_count;
531 p = TAILQ_FIRST(&object->memq);
532 vm_page_lock_queues();
533 while (p && (rcount-- > 0)) {
534 if (pmap_resident_count(pmap) <= desired) {
535 vm_page_unlock_queues();
536 goto unlock_return;
537 }
538 next = TAILQ_NEXT(p, listq);
539 cnt.v_pdpages++;
540 if (p->wire_count != 0 ||
541 p->hold_count != 0 ||
542 p->busy != 0 ||
543 (p->oflags & VPO_BUSY) ||
544 (p->flags & PG_UNMANAGED) ||
545 !pmap_page_exists_quick(pmap, p)) {
546 p = next;
547 continue;
548 }
549 actcount = pmap_ts_referenced(p);
550 if (actcount) {
551 vm_page_flag_set(p, PG_REFERENCED);
552 } else if (p->flags & PG_REFERENCED) {
553 actcount = 1;
554 }
555 if ((p->queue != PQ_ACTIVE) &&
556 (p->flags & PG_REFERENCED)) {
557 vm_page_activate(p);
558 p->act_count += actcount;
559 vm_page_flag_clear(p, PG_REFERENCED);
560 } else if (p->queue == PQ_ACTIVE) {
561 if ((p->flags & PG_REFERENCED) == 0) {
562 p->act_count -= min(p->act_count, ACT_DECLINE);
563 if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
564 pmap_remove_all(p);
565 vm_page_deactivate(p);
566 } else {
567 vm_pageq_requeue(p);
568 }
569 } else {
570 vm_page_activate(p);
571 vm_page_flag_clear(p, PG_REFERENCED);
572 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
573 p->act_count += ACT_ADVANCE;
574 vm_pageq_requeue(p);
575 }
576 } else if (p->queue == PQ_INACTIVE) {
577 pmap_remove_all(p);
578 }
579 p = next;
580 }
581 vm_page_unlock_queues();
582 if ((backing_object = object->backing_object) == NULL)
583 goto unlock_return;
584 VM_OBJECT_LOCK(backing_object);
585 if (object != first_object)
586 VM_OBJECT_UNLOCK(object);
587 }
588 unlock_return:
589 if (object != first_object)
590 VM_OBJECT_UNLOCK(object);
591 }
592
593 /*
594 * deactivate some number of pages in a map, try to do it fairly, but
595 * that is really hard to do.
596 */
597 static void
598 vm_pageout_map_deactivate_pages(map, desired)
599 vm_map_t map;
600 long desired;
601 {
602 vm_map_entry_t tmpe;
603 vm_object_t obj, bigobj;
604 int nothingwired;
605
606 if (!vm_map_trylock(map))
607 return;
608
609 bigobj = NULL;
610 nothingwired = TRUE;
611
612 /*
613 * first, search out the biggest object, and try to free pages from
614 * that.
615 */
616 tmpe = map->header.next;
617 while (tmpe != &map->header) {
618 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
619 obj = tmpe->object.vm_object;
620 if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
621 if (obj->shadow_count <= 1 &&
622 (bigobj == NULL ||
623 bigobj->resident_page_count < obj->resident_page_count)) {
624 if (bigobj != NULL)
625 VM_OBJECT_UNLOCK(bigobj);
626 bigobj = obj;
627 } else
628 VM_OBJECT_UNLOCK(obj);
629 }
630 }
631 if (tmpe->wired_count > 0)
632 nothingwired = FALSE;
633 tmpe = tmpe->next;
634 }
635
636 if (bigobj != NULL) {
637 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
638 VM_OBJECT_UNLOCK(bigobj);
639 }
640 /*
641 * Next, hunt around for other pages to deactivate. We actually
642 * do this search sort of wrong -- .text first is not the best idea.
643 */
644 tmpe = map->header.next;
645 while (tmpe != &map->header) {
646 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
647 break;
648 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
649 obj = tmpe->object.vm_object;
650 if (obj != NULL) {
651 VM_OBJECT_LOCK(obj);
652 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
653 VM_OBJECT_UNLOCK(obj);
654 }
655 }
656 tmpe = tmpe->next;
657 }
658
659 /*
660 * Remove all mappings if a process is swapped out, this will free page
661 * table pages.
662 */
663 if (desired == 0 && nothingwired) {
664 pmap_remove(vm_map_pmap(map), vm_map_min(map),
665 vm_map_max(map));
666 }
667 vm_map_unlock(map);
668 }
669 #endif /* !defined(NO_SWAPPING) */
670
671 /*
672 * vm_pageout_scan does the dirty work for the pageout daemon.
673 */
674 static void
675 vm_pageout_scan(int pass)
676 {
677 vm_page_t m, next;
678 struct vm_page marker;
679 int page_shortage, maxscan, pcount;
680 int addl_page_shortage, addl_page_shortage_init;
681 struct proc *p, *bigproc;
682 struct thread *td;
683 vm_offset_t size, bigsize;
684 vm_object_t object;
685 int actcount;
686 int vnodes_skipped = 0;
687 int maxlaunder;
688
689 /*
690 * Decrease registered cache sizes.
691 */
692 EVENTHANDLER_INVOKE(vm_lowmem, 0);
693 /*
694 * We do this explicitly after the caches have been drained above.
695 */
696 uma_reclaim();
697
698 addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
699
700 /*
701 * Calculate the number of pages we want to either free or move
702 * to the cache.
703 */
704 page_shortage = vm_paging_target() + addl_page_shortage_init;
705
706 /*
707 * Initialize our marker
708 */
709 bzero(&marker, sizeof(marker));
710 marker.flags = PG_FICTITIOUS | PG_MARKER;
711 marker.oflags = VPO_BUSY;
712 marker.queue = PQ_INACTIVE;
713 marker.wire_count = 1;
714
715 /*
716 * Start scanning the inactive queue for pages we can move to the
717 * cache or free. The scan will stop when the target is reached or
718 * we have scanned the entire inactive queue. Note that m->act_count
719 * is not used to form decisions for the inactive queue, only for the
720 * active queue.
721 *
722 * maxlaunder limits the number of dirty pages we flush per scan.
723 * For most systems a smaller value (16 or 32) is more robust under
724 * extreme memory and disk pressure because any unnecessary writes
725 * to disk can result in extreme performance degredation. However,
726 * systems with excessive dirty pages (especially when MAP_NOSYNC is
727 * used) will die horribly with limited laundering. If the pageout
728 * daemon cannot clean enough pages in the first pass, we let it go
729 * all out in succeeding passes.
730 */
731 if ((maxlaunder = vm_max_launder) <= 1)
732 maxlaunder = 1;
733 if (pass)
734 maxlaunder = 10000;
735 vm_page_lock_queues();
736 rescan0:
737 addl_page_shortage = addl_page_shortage_init;
738 maxscan = cnt.v_inactive_count;
739
740 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
741 m != NULL && maxscan-- > 0 && page_shortage > 0;
742 m = next) {
743
744 cnt.v_pdpages++;
745
746 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
747 goto rescan0;
748 }
749
750 next = TAILQ_NEXT(m, pageq);
751 object = m->object;
752
753 /*
754 * skip marker pages
755 */
756 if (m->flags & PG_MARKER)
757 continue;
758
759 /*
760 * A held page may be undergoing I/O, so skip it.
761 */
762 if (m->hold_count) {
763 vm_pageq_requeue(m);
764 addl_page_shortage++;
765 continue;
766 }
767 /*
768 * Don't mess with busy pages, keep in the front of the
769 * queue, most likely are being paged out.
770 */
771 if (!VM_OBJECT_TRYLOCK(object) &&
772 (!vm_pageout_fallback_object_lock(m, &next) ||
773 m->hold_count != 0)) {
774 VM_OBJECT_UNLOCK(object);
775 addl_page_shortage++;
776 continue;
777 }
778 if (m->busy || (m->oflags & VPO_BUSY)) {
779 VM_OBJECT_UNLOCK(object);
780 addl_page_shortage++;
781 continue;
782 }
783
784 /*
785 * If the object is not being used, we ignore previous
786 * references.
787 */
788 if (object->ref_count == 0) {
789 vm_page_flag_clear(m, PG_REFERENCED);
790 pmap_clear_reference(m);
791
792 /*
793 * Otherwise, if the page has been referenced while in the
794 * inactive queue, we bump the "activation count" upwards,
795 * making it less likely that the page will be added back to
796 * the inactive queue prematurely again. Here we check the
797 * page tables (or emulated bits, if any), given the upper
798 * level VM system not knowing anything about existing
799 * references.
800 */
801 } else if (((m->flags & PG_REFERENCED) == 0) &&
802 (actcount = pmap_ts_referenced(m))) {
803 vm_page_activate(m);
804 VM_OBJECT_UNLOCK(object);
805 m->act_count += (actcount + ACT_ADVANCE);
806 continue;
807 }
808
809 /*
810 * If the upper level VM system knows about any page
811 * references, we activate the page. We also set the
812 * "activation count" higher than normal so that we will less
813 * likely place pages back onto the inactive queue again.
814 */
815 if ((m->flags & PG_REFERENCED) != 0) {
816 vm_page_flag_clear(m, PG_REFERENCED);
817 actcount = pmap_ts_referenced(m);
818 vm_page_activate(m);
819 VM_OBJECT_UNLOCK(object);
820 m->act_count += (actcount + ACT_ADVANCE + 1);
821 continue;
822 }
823
824 /*
825 * If the upper level VM system doesn't know anything about
826 * the page being dirty, we have to check for it again. As
827 * far as the VM code knows, any partially dirty pages are
828 * fully dirty.
829 */
830 if (m->dirty == 0 && !pmap_is_modified(m)) {
831 /*
832 * Avoid a race condition: Unless write access is
833 * removed from the page, another processor could
834 * modify it before all access is removed by the call
835 * to vm_page_cache() below. If vm_page_cache() finds
836 * that the page has been modified when it removes all
837 * access, it panics because it cannot cache dirty
838 * pages. In principle, we could eliminate just write
839 * access here rather than all access. In the expected
840 * case, when there are no last instant modifications
841 * to the page, removing all access will be cheaper
842 * overall.
843 */
844 if ((m->flags & PG_WRITEABLE) != 0)
845 pmap_remove_all(m);
846 } else {
847 vm_page_dirty(m);
848 }
849
850 if (m->valid == 0) {
851 /*
852 * Invalid pages can be easily freed
853 */
854 vm_page_free(m);
855 cnt.v_dfree++;
856 --page_shortage;
857 } else if (m->dirty == 0) {
858 /*
859 * Clean pages can be placed onto the cache queue.
860 * This effectively frees them.
861 */
862 vm_page_cache(m);
863 --page_shortage;
864 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
865 /*
866 * Dirty pages need to be paged out, but flushing
867 * a page is extremely expensive verses freeing
868 * a clean page. Rather then artificially limiting
869 * the number of pages we can flush, we instead give
870 * dirty pages extra priority on the inactive queue
871 * by forcing them to be cycled through the queue
872 * twice before being flushed, after which the
873 * (now clean) page will cycle through once more
874 * before being freed. This significantly extends
875 * the thrash point for a heavily loaded machine.
876 */
877 vm_page_flag_set(m, PG_WINATCFLS);
878 vm_pageq_requeue(m);
879 } else if (maxlaunder > 0) {
880 /*
881 * We always want to try to flush some dirty pages if
882 * we encounter them, to keep the system stable.
883 * Normally this number is small, but under extreme
884 * pressure where there are insufficient clean pages
885 * on the inactive queue, we may have to go all out.
886 */
887 int swap_pageouts_ok, vfslocked = 0;
888 struct vnode *vp = NULL;
889 struct mount *mp = NULL;
890
891 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
892 swap_pageouts_ok = 1;
893 } else {
894 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
895 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
896 vm_page_count_min());
897
898 }
899
900 /*
901 * We don't bother paging objects that are "dead".
902 * Those objects are in a "rundown" state.
903 */
904 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
905 VM_OBJECT_UNLOCK(object);
906 vm_pageq_requeue(m);
907 continue;
908 }
909
910 /*
911 * Following operations may unlock
912 * vm_page_queue_mtx, invalidating the 'next'
913 * pointer. To prevent an inordinate number
914 * of restarts we use our marker to remember
915 * our place.
916 *
917 */
918 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
919 m, &marker, pageq);
920 /*
921 * The object is already known NOT to be dead. It
922 * is possible for the vget() to block the whole
923 * pageout daemon, but the new low-memory handling
924 * code should prevent it.
925 *
926 * The previous code skipped locked vnodes and, worse,
927 * reordered pages in the queue. This results in
928 * completely non-deterministic operation and, on a
929 * busy system, can lead to extremely non-optimal
930 * pageouts. For example, it can cause clean pages
931 * to be freed and dirty pages to be moved to the end
932 * of the queue. Since dirty pages are also moved to
933 * the end of the queue once-cleaned, this gives
934 * way too large a weighting to defering the freeing
935 * of dirty pages.
936 *
937 * We can't wait forever for the vnode lock, we might
938 * deadlock due to a vn_read() getting stuck in
939 * vm_wait while holding this vnode. We skip the
940 * vnode if we can't get it in a reasonable amount
941 * of time.
942 */
943 if (object->type == OBJT_VNODE) {
944 vp = object->handle;
945 if (vp->v_type == VREG &&
946 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
947 KASSERT(mp == NULL,
948 ("vm_pageout_scan: mp != NULL"));
949 ++pageout_lock_miss;
950 if (object->flags & OBJ_MIGHTBEDIRTY)
951 vnodes_skipped++;
952 goto unlock_and_continue;
953 }
954 vm_page_unlock_queues();
955 vm_object_reference_locked(object);
956 VM_OBJECT_UNLOCK(object);
957 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
958 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
959 curthread)) {
960 VM_OBJECT_LOCK(object);
961 vm_page_lock_queues();
962 ++pageout_lock_miss;
963 if (object->flags & OBJ_MIGHTBEDIRTY)
964 vnodes_skipped++;
965 vp = NULL;
966 goto unlock_and_continue;
967 }
968 VM_OBJECT_LOCK(object);
969 vm_page_lock_queues();
970 /*
971 * The page might have been moved to another
972 * queue during potential blocking in vget()
973 * above. The page might have been freed and
974 * reused for another vnode.
975 */
976 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
977 m->object != object ||
978 TAILQ_NEXT(m, pageq) != &marker) {
979 if (object->flags & OBJ_MIGHTBEDIRTY)
980 vnodes_skipped++;
981 goto unlock_and_continue;
982 }
983
984 /*
985 * The page may have been busied during the
986 * blocking in vget(). We don't move the
987 * page back onto the end of the queue so that
988 * statistics are more correct if we don't.
989 */
990 if (m->busy || (m->oflags & VPO_BUSY)) {
991 goto unlock_and_continue;
992 }
993
994 /*
995 * If the page has become held it might
996 * be undergoing I/O, so skip it
997 */
998 if (m->hold_count) {
999 vm_pageq_requeue(m);
1000 if (object->flags & OBJ_MIGHTBEDIRTY)
1001 vnodes_skipped++;
1002 goto unlock_and_continue;
1003 }
1004 }
1005
1006 /*
1007 * If a page is dirty, then it is either being washed
1008 * (but not yet cleaned) or it is still in the
1009 * laundry. If it is still in the laundry, then we
1010 * start the cleaning operation.
1011 *
1012 * decrement page_shortage on success to account for
1013 * the (future) cleaned page. Otherwise we could wind
1014 * up laundering or cleaning too many pages.
1015 */
1016 if (vm_pageout_clean(m) != 0) {
1017 --page_shortage;
1018 --maxlaunder;
1019 }
1020 unlock_and_continue:
1021 VM_OBJECT_UNLOCK(object);
1022 if (mp != NULL) {
1023 vm_page_unlock_queues();
1024 if (vp != NULL)
1025 vput(vp);
1026 VFS_UNLOCK_GIANT(vfslocked);
1027 vm_object_deallocate(object);
1028 vn_finished_write(mp);
1029 vm_page_lock_queues();
1030 }
1031 next = TAILQ_NEXT(&marker, pageq);
1032 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1033 &marker, pageq);
1034 continue;
1035 }
1036 VM_OBJECT_UNLOCK(object);
1037 }
1038
1039 /*
1040 * Compute the number of pages we want to try to move from the
1041 * active queue to the inactive queue.
1042 */
1043 page_shortage = vm_paging_target() +
1044 cnt.v_inactive_target - cnt.v_inactive_count;
1045 page_shortage += addl_page_shortage;
1046
1047 /*
1048 * Scan the active queue for things we can deactivate. We nominally
1049 * track the per-page activity counter and use it to locate
1050 * deactivation candidates.
1051 */
1052 pcount = cnt.v_active_count;
1053 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1054
1055 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1056
1057 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1058 ("vm_pageout_scan: page %p isn't active", m));
1059
1060 next = TAILQ_NEXT(m, pageq);
1061 object = m->object;
1062 if ((m->flags & PG_MARKER) != 0) {
1063 m = next;
1064 continue;
1065 }
1066 if (!VM_OBJECT_TRYLOCK(object) &&
1067 !vm_pageout_fallback_object_lock(m, &next)) {
1068 VM_OBJECT_UNLOCK(object);
1069 m = next;
1070 continue;
1071 }
1072
1073 /*
1074 * Don't deactivate pages that are busy.
1075 */
1076 if ((m->busy != 0) ||
1077 (m->oflags & VPO_BUSY) ||
1078 (m->hold_count != 0)) {
1079 VM_OBJECT_UNLOCK(object);
1080 vm_pageq_requeue(m);
1081 m = next;
1082 continue;
1083 }
1084
1085 /*
1086 * The count for pagedaemon pages is done after checking the
1087 * page for eligibility...
1088 */
1089 cnt.v_pdpages++;
1090
1091 /*
1092 * Check to see "how much" the page has been used.
1093 */
1094 actcount = 0;
1095 if (object->ref_count != 0) {
1096 if (m->flags & PG_REFERENCED) {
1097 actcount += 1;
1098 }
1099 actcount += pmap_ts_referenced(m);
1100 if (actcount) {
1101 m->act_count += ACT_ADVANCE + actcount;
1102 if (m->act_count > ACT_MAX)
1103 m->act_count = ACT_MAX;
1104 }
1105 }
1106
1107 /*
1108 * Since we have "tested" this bit, we need to clear it now.
1109 */
1110 vm_page_flag_clear(m, PG_REFERENCED);
1111
1112 /*
1113 * Only if an object is currently being used, do we use the
1114 * page activation count stats.
1115 */
1116 if (actcount && (object->ref_count != 0)) {
1117 vm_pageq_requeue(m);
1118 } else {
1119 m->act_count -= min(m->act_count, ACT_DECLINE);
1120 if (vm_pageout_algorithm ||
1121 object->ref_count == 0 ||
1122 m->act_count == 0) {
1123 page_shortage--;
1124 if (object->ref_count == 0) {
1125 pmap_remove_all(m);
1126 if (m->dirty == 0)
1127 vm_page_cache(m);
1128 else
1129 vm_page_deactivate(m);
1130 } else {
1131 vm_page_deactivate(m);
1132 }
1133 } else {
1134 vm_pageq_requeue(m);
1135 }
1136 }
1137 VM_OBJECT_UNLOCK(object);
1138 m = next;
1139 }
1140 vm_page_unlock_queues();
1141 #if !defined(NO_SWAPPING)
1142 /*
1143 * Idle process swapout -- run once per second.
1144 */
1145 if (vm_swap_idle_enabled) {
1146 static long lsec;
1147 if (time_second != lsec) {
1148 vm_req_vmdaemon(VM_SWAP_IDLE);
1149 lsec = time_second;
1150 }
1151 }
1152 #endif
1153
1154 /*
1155 * If we didn't get enough free pages, and we have skipped a vnode
1156 * in a writeable object, wakeup the sync daemon. And kick swapout
1157 * if we did not get enough free pages.
1158 */
1159 if (vm_paging_target() > 0) {
1160 if (vnodes_skipped && vm_page_count_min())
1161 (void) speedup_syncer();
1162 #if !defined(NO_SWAPPING)
1163 if (vm_swap_enabled && vm_page_count_target())
1164 vm_req_vmdaemon(VM_SWAP_NORMAL);
1165 #endif
1166 }
1167
1168 /*
1169 * If we are critically low on one of RAM or swap and low on
1170 * the other, kill the largest process. However, we avoid
1171 * doing this on the first pass in order to give ourselves a
1172 * chance to flush out dirty vnode-backed pages and to allow
1173 * active pages to be moved to the inactive queue and reclaimed.
1174 *
1175 * We keep the process bigproc locked once we find it to keep anyone
1176 * from messing with it; however, there is a possibility of
1177 * deadlock if process B is bigproc and one of it's child processes
1178 * attempts to propagate a signal to B while we are waiting for A's
1179 * lock while walking this list. To avoid this, we don't block on
1180 * the process lock but just skip a process if it is already locked.
1181 */
1182 if (pass != 0 &&
1183 ((swap_pager_avail < 64 && vm_page_count_min()) ||
1184 (swap_pager_full && vm_paging_target() > 0))) {
1185 bigproc = NULL;
1186 bigsize = 0;
1187 sx_slock(&allproc_lock);
1188 FOREACH_PROC_IN_SYSTEM(p) {
1189 int breakout;
1190
1191 if (PROC_TRYLOCK(p) == 0)
1192 continue;
1193 /*
1194 * If this is a system or protected process, skip it.
1195 */
1196 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1197 (p->p_flag & P_PROTECTED) ||
1198 ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1199 PROC_UNLOCK(p);
1200 continue;
1201 }
1202 /*
1203 * If the process is in a non-running type state,
1204 * don't touch it. Check all the threads individually.
1205 */
1206 PROC_SLOCK(p);
1207 breakout = 0;
1208 FOREACH_THREAD_IN_PROC(p, td) {
1209 thread_lock(td);
1210 if (!TD_ON_RUNQ(td) &&
1211 !TD_IS_RUNNING(td) &&
1212 !TD_IS_SLEEPING(td)) {
1213 thread_unlock(td);
1214 breakout = 1;
1215 break;
1216 }
1217 thread_unlock(td);
1218 }
1219 PROC_SUNLOCK(p);
1220 if (breakout) {
1221 PROC_UNLOCK(p);
1222 continue;
1223 }
1224 /*
1225 * get the process size
1226 */
1227 if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1228 PROC_UNLOCK(p);
1229 continue;
1230 }
1231 size = vmspace_swap_count(p->p_vmspace);
1232 vm_map_unlock_read(&p->p_vmspace->vm_map);
1233 size += vmspace_resident_count(p->p_vmspace);
1234 /*
1235 * if the this process is bigger than the biggest one
1236 * remember it.
1237 */
1238 if (size > bigsize) {
1239 if (bigproc != NULL)
1240 PROC_UNLOCK(bigproc);
1241 bigproc = p;
1242 bigsize = size;
1243 } else
1244 PROC_UNLOCK(p);
1245 }
1246 sx_sunlock(&allproc_lock);
1247 if (bigproc != NULL) {
1248 killproc(bigproc, "out of swap space");
1249 PROC_SLOCK(bigproc);
1250 sched_nice(bigproc, PRIO_MIN);
1251 PROC_SUNLOCK(bigproc);
1252 PROC_UNLOCK(bigproc);
1253 wakeup(&cnt.v_free_count);
1254 }
1255 }
1256 }
1257
1258 /*
1259 * This routine tries to maintain the pseudo LRU active queue,
1260 * so that during long periods of time where there is no paging,
1261 * that some statistic accumulation still occurs. This code
1262 * helps the situation where paging just starts to occur.
1263 */
1264 static void
1265 vm_pageout_page_stats()
1266 {
1267 vm_object_t object;
1268 vm_page_t m,next;
1269 int pcount,tpcount; /* Number of pages to check */
1270 static int fullintervalcount = 0;
1271 int page_shortage;
1272
1273 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1274 page_shortage =
1275 (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1276 (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1277
1278 if (page_shortage <= 0)
1279 return;
1280
1281 pcount = cnt.v_active_count;
1282 fullintervalcount += vm_pageout_stats_interval;
1283 if (fullintervalcount < vm_pageout_full_stats_interval) {
1284 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1285 if (pcount > tpcount)
1286 pcount = tpcount;
1287 } else {
1288 fullintervalcount = 0;
1289 }
1290
1291 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1292 while ((m != NULL) && (pcount-- > 0)) {
1293 int actcount;
1294
1295 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1296 ("vm_pageout_page_stats: page %p isn't active", m));
1297
1298 next = TAILQ_NEXT(m, pageq);
1299 object = m->object;
1300
1301 if ((m->flags & PG_MARKER) != 0) {
1302 m = next;
1303 continue;
1304 }
1305 if (!VM_OBJECT_TRYLOCK(object) &&
1306 !vm_pageout_fallback_object_lock(m, &next)) {
1307 VM_OBJECT_UNLOCK(object);
1308 m = next;
1309 continue;
1310 }
1311
1312 /*
1313 * Don't deactivate pages that are busy.
1314 */
1315 if ((m->busy != 0) ||
1316 (m->oflags & VPO_BUSY) ||
1317 (m->hold_count != 0)) {
1318 VM_OBJECT_UNLOCK(object);
1319 vm_pageq_requeue(m);
1320 m = next;
1321 continue;
1322 }
1323
1324 actcount = 0;
1325 if (m->flags & PG_REFERENCED) {
1326 vm_page_flag_clear(m, PG_REFERENCED);
1327 actcount += 1;
1328 }
1329
1330 actcount += pmap_ts_referenced(m);
1331 if (actcount) {
1332 m->act_count += ACT_ADVANCE + actcount;
1333 if (m->act_count > ACT_MAX)
1334 m->act_count = ACT_MAX;
1335 vm_pageq_requeue(m);
1336 } else {
1337 if (m->act_count == 0) {
1338 /*
1339 * We turn off page access, so that we have
1340 * more accurate RSS stats. We don't do this
1341 * in the normal page deactivation when the
1342 * system is loaded VM wise, because the
1343 * cost of the large number of page protect
1344 * operations would be higher than the value
1345 * of doing the operation.
1346 */
1347 pmap_remove_all(m);
1348 vm_page_deactivate(m);
1349 } else {
1350 m->act_count -= min(m->act_count, ACT_DECLINE);
1351 vm_pageq_requeue(m);
1352 }
1353 }
1354 VM_OBJECT_UNLOCK(object);
1355 m = next;
1356 }
1357 }
1358
1359 /*
1360 * vm_pageout is the high level pageout daemon.
1361 */
1362 static void
1363 vm_pageout()
1364 {
1365 int error, pass;
1366
1367 /*
1368 * Initialize some paging parameters.
1369 */
1370 cnt.v_interrupt_free_min = 2;
1371 if (cnt.v_page_count < 2000)
1372 vm_pageout_page_count = 8;
1373
1374 /*
1375 * v_free_reserved needs to include enough for the largest
1376 * swap pager structures plus enough for any pv_entry structs
1377 * when paging.
1378 */
1379 if (cnt.v_page_count > 1024)
1380 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1381 else
1382 cnt.v_free_min = 4;
1383 cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1384 cnt.v_interrupt_free_min;
1385 cnt.v_free_reserved = vm_pageout_page_count +
1386 cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1387 cnt.v_free_severe = cnt.v_free_min / 2;
1388 cnt.v_free_min += cnt.v_free_reserved;
1389 cnt.v_free_severe += cnt.v_free_reserved;
1390
1391 /*
1392 * v_free_target and v_cache_min control pageout hysteresis. Note
1393 * that these are more a measure of the VM cache queue hysteresis
1394 * then the VM free queue. Specifically, v_free_target is the
1395 * high water mark (free+cache pages).
1396 *
1397 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1398 * low water mark, while v_free_min is the stop. v_cache_min must
1399 * be big enough to handle memory needs while the pageout daemon
1400 * is signalled and run to free more pages.
1401 */
1402 if (cnt.v_free_count > 6144)
1403 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1404 else
1405 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1406
1407 if (cnt.v_free_count > 2048) {
1408 cnt.v_cache_min = cnt.v_free_target;
1409 cnt.v_cache_max = 2 * cnt.v_cache_min;
1410 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1411 } else {
1412 cnt.v_cache_min = 0;
1413 cnt.v_cache_max = 0;
1414 cnt.v_inactive_target = cnt.v_free_count / 4;
1415 }
1416 if (cnt.v_inactive_target > cnt.v_free_count / 3)
1417 cnt.v_inactive_target = cnt.v_free_count / 3;
1418
1419 /* XXX does not really belong here */
1420 if (vm_page_max_wired == 0)
1421 vm_page_max_wired = cnt.v_free_count / 3;
1422
1423 if (vm_pageout_stats_max == 0)
1424 vm_pageout_stats_max = cnt.v_free_target;
1425
1426 /*
1427 * Set interval in seconds for stats scan.
1428 */
1429 if (vm_pageout_stats_interval == 0)
1430 vm_pageout_stats_interval = 5;
1431 if (vm_pageout_full_stats_interval == 0)
1432 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1433
1434 swap_pager_swap_init();
1435 pass = 0;
1436 /*
1437 * The pageout daemon is never done, so loop forever.
1438 */
1439 while (TRUE) {
1440 /*
1441 * If we have enough free memory, wakeup waiters. Do
1442 * not clear vm_pages_needed until we reach our target,
1443 * otherwise we may be woken up over and over again and
1444 * waste a lot of cpu.
1445 */
1446 mtx_lock(&vm_page_queue_free_mtx);
1447 if (vm_pages_needed && !vm_page_count_min()) {
1448 if (!vm_paging_needed())
1449 vm_pages_needed = 0;
1450 wakeup(&cnt.v_free_count);
1451 }
1452 if (vm_pages_needed) {
1453 /*
1454 * Still not done, take a second pass without waiting
1455 * (unlimited dirty cleaning), otherwise sleep a bit
1456 * and try again.
1457 */
1458 ++pass;
1459 if (pass > 1)
1460 msleep(&vm_pages_needed,
1461 &vm_page_queue_free_mtx, PVM, "psleep",
1462 hz / 2);
1463 } else {
1464 /*
1465 * Good enough, sleep & handle stats. Prime the pass
1466 * for the next run.
1467 */
1468 if (pass > 1)
1469 pass = 1;
1470 else
1471 pass = 0;
1472 error = msleep(&vm_pages_needed,
1473 &vm_page_queue_free_mtx, PVM, "psleep",
1474 vm_pageout_stats_interval * hz);
1475 if (error && !vm_pages_needed) {
1476 mtx_unlock(&vm_page_queue_free_mtx);
1477 pass = 0;
1478 vm_page_lock_queues();
1479 vm_pageout_page_stats();
1480 vm_page_unlock_queues();
1481 continue;
1482 }
1483 }
1484 if (vm_pages_needed)
1485 cnt.v_pdwakeups++;
1486 mtx_unlock(&vm_page_queue_free_mtx);
1487 vm_pageout_scan(pass);
1488 }
1489 }
1490
1491 /*
1492 * Unless the free page queue lock is held by the caller, this function
1493 * should be regarded as advisory. Specifically, the caller should
1494 * not msleep() on &cnt.v_free_count following this function unless
1495 * the free page queue lock is held until the msleep() is performed.
1496 */
1497 void
1498 pagedaemon_wakeup()
1499 {
1500
1501 if (!vm_pages_needed && curthread->td_proc != pageproc) {
1502 vm_pages_needed = 1;
1503 wakeup(&vm_pages_needed);
1504 }
1505 }
1506
1507 #if !defined(NO_SWAPPING)
1508 static void
1509 vm_req_vmdaemon(int req)
1510 {
1511 static int lastrun = 0;
1512
1513 mtx_lock(&vm_daemon_mtx);
1514 vm_pageout_req_swapout |= req;
1515 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1516 wakeup(&vm_daemon_needed);
1517 lastrun = ticks;
1518 }
1519 mtx_unlock(&vm_daemon_mtx);
1520 }
1521
1522 static void
1523 vm_daemon()
1524 {
1525 struct rlimit rsslim;
1526 struct proc *p;
1527 struct thread *td;
1528 int breakout, swapout_flags;
1529
1530 while (TRUE) {
1531 mtx_lock(&vm_daemon_mtx);
1532 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1533 swapout_flags = vm_pageout_req_swapout;
1534 vm_pageout_req_swapout = 0;
1535 mtx_unlock(&vm_daemon_mtx);
1536 if (swapout_flags)
1537 swapout_procs(swapout_flags);
1538
1539 /*
1540 * scan the processes for exceeding their rlimits or if
1541 * process is swapped out -- deactivate pages
1542 */
1543 sx_slock(&allproc_lock);
1544 FOREACH_PROC_IN_SYSTEM(p) {
1545 vm_pindex_t limit, size;
1546
1547 /*
1548 * if this is a system process or if we have already
1549 * looked at this process, skip it.
1550 */
1551 PROC_LOCK(p);
1552 if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1553 PROC_UNLOCK(p);
1554 continue;
1555 }
1556 /*
1557 * if the process is in a non-running type state,
1558 * don't touch it.
1559 */
1560 PROC_SLOCK(p);
1561 breakout = 0;
1562 FOREACH_THREAD_IN_PROC(p, td) {
1563 thread_lock(td);
1564 if (!TD_ON_RUNQ(td) &&
1565 !TD_IS_RUNNING(td) &&
1566 !TD_IS_SLEEPING(td)) {
1567 thread_unlock(td);
1568 breakout = 1;
1569 break;
1570 }
1571 thread_unlock(td);
1572 }
1573 PROC_SUNLOCK(p);
1574 if (breakout) {
1575 PROC_UNLOCK(p);
1576 continue;
1577 }
1578 /*
1579 * get a limit
1580 */
1581 lim_rlimit(p, RLIMIT_RSS, &rsslim);
1582 limit = OFF_TO_IDX(
1583 qmin(rsslim.rlim_cur, rsslim.rlim_max));
1584
1585 /*
1586 * let processes that are swapped out really be
1587 * swapped out set the limit to nothing (will force a
1588 * swap-out.)
1589 */
1590 if ((p->p_flag & P_INMEM) == 0)
1591 limit = 0; /* XXX */
1592 PROC_UNLOCK(p);
1593
1594 size = vmspace_resident_count(p->p_vmspace);
1595 if (limit >= 0 && size >= limit) {
1596 vm_pageout_map_deactivate_pages(
1597 &p->p_vmspace->vm_map, limit);
1598 }
1599 }
1600 sx_sunlock(&allproc_lock);
1601 }
1602 }
1603 #endif /* !defined(NO_SWAPPING) */
Cache object: 48f6a71b51855420907e2d620028c96b
|