The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD$");
   77 
   78 #include "opt_vm.h"
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/eventhandler.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/kthread.h>
   87 #include <sys/ktr.h>
   88 #include <sys/mount.h>
   89 #include <sys/resourcevar.h>
   90 #include <sys/sched.h>
   91 #include <sys/signalvar.h>
   92 #include <sys/vnode.h>
   93 #include <sys/vmmeter.h>
   94 #include <sys/sx.h>
   95 #include <sys/sysctl.h>
   96 
   97 #include <vm/vm.h>
   98 #include <vm/vm_param.h>
   99 #include <vm/vm_object.h>
  100 #include <vm/vm_page.h>
  101 #include <vm/vm_map.h>
  102 #include <vm/vm_pageout.h>
  103 #include <vm/vm_pager.h>
  104 #include <vm/swap_pager.h>
  105 #include <vm/vm_extern.h>
  106 #include <vm/uma.h>
  107 
  108 #include <machine/mutex.h>
  109 
  110 /*
  111  * System initialization
  112  */
  113 
  114 /* the kernel process "vm_pageout"*/
  115 static void vm_pageout(void);
  116 static int vm_pageout_clean(vm_page_t);
  117 static void vm_pageout_scan(int pass);
  118 
  119 struct proc *pageproc;
  120 
  121 static struct kproc_desc page_kp = {
  122         "pagedaemon",
  123         vm_pageout,
  124         &pageproc
  125 };
  126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
  127 
  128 #if !defined(NO_SWAPPING)
  129 /* the kernel process "vm_daemon"*/
  130 static void vm_daemon(void);
  131 static struct   proc *vmproc;
  132 
  133 static struct kproc_desc vm_kp = {
  134         "vmdaemon",
  135         vm_daemon,
  136         &vmproc
  137 };
  138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
  139 #endif
  140 
  141 
  142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  145 
  146 #if !defined(NO_SWAPPING)
  147 static int vm_pageout_req_swapout;      /* XXX */
  148 static int vm_daemon_needed;
  149 static struct mtx vm_daemon_mtx;
  150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  152 #endif
  153 static int vm_max_launder = 32;
  154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
  155 static int vm_pageout_full_stats_interval = 0;
  156 static int vm_pageout_algorithm=0;
  157 static int defer_swap_pageouts=0;
  158 static int disable_swap_pageouts=0;
  159 
  160 #if defined(NO_SWAPPING)
  161 static int vm_swap_enabled=0;
  162 static int vm_swap_idle_enabled=0;
  163 #else
  164 static int vm_swap_enabled=1;
  165 static int vm_swap_idle_enabled=0;
  166 #endif
  167 
  168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
  169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
  170 
  171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  173 
  174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
  175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
  176 
  177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
  178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
  179 
  180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
  181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
  182 
  183 #if defined(NO_SWAPPING)
  184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  185         CTLFLAG_RD, &vm_swap_enabled, 0, "");
  186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
  188 #else
  189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  193 #endif
  194 
  195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  197 
  198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  200 
  201 static int pageout_lock_miss;
  202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  204 
  205 #define VM_PAGEOUT_PAGE_COUNT 16
  206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  207 
  208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  209 
  210 #if !defined(NO_SWAPPING)
  211 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  212 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  213 static void vm_req_vmdaemon(int req);
  214 #endif
  215 static void vm_pageout_page_stats(void);
  216 
  217 /*
  218  * vm_pageout_fallback_object_lock:
  219  * 
  220  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
  221  * known to have failed and page queue must be either PQ_ACTIVE or
  222  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
  223  * while locking the vm object.  Use marker page to detect page queue
  224  * changes and maintain notion of next page on page queue.  Return
  225  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  226  * locked on return.
  227  * 
  228  * This function depends on both the lock portion of struct vm_object
  229  * and normal struct vm_page being type stable.
  230  */
  231 static boolean_t
  232 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  233 {
  234         struct vm_page marker;
  235         boolean_t unchanged;
  236         u_short queue;
  237         vm_object_t object;
  238 
  239         /*
  240          * Initialize our marker
  241          */
  242         bzero(&marker, sizeof(marker));
  243         marker.flags = PG_FICTITIOUS | PG_MARKER;
  244         marker.oflags = VPO_BUSY;
  245         marker.queue = m->queue;
  246         marker.wire_count = 1;
  247 
  248         queue = m->queue;
  249         object = m->object;
  250         
  251         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
  252                            m, &marker, pageq);
  253         vm_page_unlock_queues();
  254         VM_OBJECT_LOCK(object);
  255         vm_page_lock_queues();
  256 
  257         /* Page queue might have changed. */
  258         *next = TAILQ_NEXT(&marker, pageq);
  259         unchanged = (m->queue == queue &&
  260                      m->object == object &&
  261                      &marker == TAILQ_NEXT(m, pageq));
  262         TAILQ_REMOVE(&vm_page_queues[queue].pl,
  263                      &marker, pageq);
  264         return (unchanged);
  265 }
  266 
  267 /*
  268  * vm_pageout_clean:
  269  *
  270  * Clean the page and remove it from the laundry.
  271  * 
  272  * We set the busy bit to cause potential page faults on this page to
  273  * block.  Note the careful timing, however, the busy bit isn't set till
  274  * late and we cannot do anything that will mess with the page.
  275  */
  276 static int
  277 vm_pageout_clean(m)
  278         vm_page_t m;
  279 {
  280         vm_object_t object;
  281         vm_page_t mc[2*vm_pageout_page_count];
  282         int pageout_count;
  283         int ib, is, page_base;
  284         vm_pindex_t pindex = m->pindex;
  285 
  286         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  287         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  288 
  289         /*
  290          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  291          * with the new swapper, but we could have serious problems paging
  292          * out other object types if there is insufficient memory.  
  293          *
  294          * Unfortunately, checking free memory here is far too late, so the
  295          * check has been moved up a procedural level.
  296          */
  297 
  298         /*
  299          * Can't clean the page if it's busy or held.
  300          */
  301         if ((m->hold_count != 0) ||
  302             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
  303                 return 0;
  304         }
  305 
  306         mc[vm_pageout_page_count] = m;
  307         pageout_count = 1;
  308         page_base = vm_pageout_page_count;
  309         ib = 1;
  310         is = 1;
  311 
  312         /*
  313          * Scan object for clusterable pages.
  314          *
  315          * We can cluster ONLY if: ->> the page is NOT
  316          * clean, wired, busy, held, or mapped into a
  317          * buffer, and one of the following:
  318          * 1) The page is inactive, or a seldom used
  319          *    active page.
  320          * -or-
  321          * 2) we force the issue.
  322          *
  323          * During heavy mmap/modification loads the pageout
  324          * daemon can really fragment the underlying file
  325          * due to flushing pages out of order and not trying
  326          * align the clusters (which leave sporatic out-of-order
  327          * holes).  To solve this problem we do the reverse scan
  328          * first and attempt to align our cluster, then do a 
  329          * forward scan if room remains.
  330          */
  331         object = m->object;
  332 more:
  333         while (ib && pageout_count < vm_pageout_page_count) {
  334                 vm_page_t p;
  335 
  336                 if (ib > pindex) {
  337                         ib = 0;
  338                         break;
  339                 }
  340 
  341                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
  342                         ib = 0;
  343                         break;
  344                 }
  345                 if ((p->oflags & VPO_BUSY) || p->busy) {
  346                         ib = 0;
  347                         break;
  348                 }
  349                 vm_page_test_dirty(p);
  350                 if ((p->dirty & p->valid) == 0 ||
  351                     p->queue != PQ_INACTIVE ||
  352                     p->wire_count != 0 ||       /* may be held by buf cache */
  353                     p->hold_count != 0) {       /* may be undergoing I/O */
  354                         ib = 0;
  355                         break;
  356                 }
  357                 mc[--page_base] = p;
  358                 ++pageout_count;
  359                 ++ib;
  360                 /*
  361                  * alignment boundry, stop here and switch directions.  Do
  362                  * not clear ib.
  363                  */
  364                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  365                         break;
  366         }
  367 
  368         while (pageout_count < vm_pageout_page_count && 
  369             pindex + is < object->size) {
  370                 vm_page_t p;
  371 
  372                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
  373                         break;
  374                 if ((p->oflags & VPO_BUSY) || p->busy) {
  375                         break;
  376                 }
  377                 vm_page_test_dirty(p);
  378                 if ((p->dirty & p->valid) == 0 ||
  379                     p->queue != PQ_INACTIVE ||
  380                     p->wire_count != 0 ||       /* may be held by buf cache */
  381                     p->hold_count != 0) {       /* may be undergoing I/O */
  382                         break;
  383                 }
  384                 mc[page_base + pageout_count] = p;
  385                 ++pageout_count;
  386                 ++is;
  387         }
  388 
  389         /*
  390          * If we exhausted our forward scan, continue with the reverse scan
  391          * when possible, even past a page boundry.  This catches boundry
  392          * conditions.
  393          */
  394         if (ib && pageout_count < vm_pageout_page_count)
  395                 goto more;
  396 
  397         /*
  398          * we allow reads during pageouts...
  399          */
  400         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
  401 }
  402 
  403 /*
  404  * vm_pageout_flush() - launder the given pages
  405  *
  406  *      The given pages are laundered.  Note that we setup for the start of
  407  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  408  *      reference count all in here rather then in the parent.  If we want
  409  *      the parent to do more sophisticated things we may have to change
  410  *      the ordering.
  411  */
  412 int
  413 vm_pageout_flush(vm_page_t *mc, int count, int flags)
  414 {
  415         vm_object_t object = mc[0]->object;
  416         int pageout_status[count];
  417         int numpagedout = 0;
  418         int i;
  419 
  420         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  421         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  422         /*
  423          * Initiate I/O.  Bump the vm_page_t->busy counter and
  424          * mark the pages read-only.
  425          *
  426          * We do not have to fixup the clean/dirty bits here... we can
  427          * allow the pager to do it after the I/O completes.
  428          *
  429          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  430          * edge case with file fragments.
  431          */
  432         for (i = 0; i < count; i++) {
  433                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  434                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  435                         mc[i], i, count));
  436                 vm_page_io_start(mc[i]);
  437                 pmap_remove_write(mc[i]);
  438         }
  439         vm_page_unlock_queues();
  440         vm_object_pip_add(object, count);
  441 
  442         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  443 
  444         vm_page_lock_queues();
  445         for (i = 0; i < count; i++) {
  446                 vm_page_t mt = mc[i];
  447 
  448                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  449                     (mt->flags & PG_WRITEABLE) == 0,
  450                     ("vm_pageout_flush: page %p is not write protected", mt));
  451                 switch (pageout_status[i]) {
  452                 case VM_PAGER_OK:
  453                 case VM_PAGER_PEND:
  454                         numpagedout++;
  455                         break;
  456                 case VM_PAGER_BAD:
  457                         /*
  458                          * Page outside of range of object. Right now we
  459                          * essentially lose the changes by pretending it
  460                          * worked.
  461                          */
  462                         pmap_clear_modify(mt);
  463                         vm_page_undirty(mt);
  464                         break;
  465                 case VM_PAGER_ERROR:
  466                 case VM_PAGER_FAIL:
  467                         /*
  468                          * If page couldn't be paged out, then reactivate the
  469                          * page so it doesn't clog the inactive list.  (We
  470                          * will try paging out it again later).
  471                          */
  472                         vm_page_activate(mt);
  473                         break;
  474                 case VM_PAGER_AGAIN:
  475                         break;
  476                 }
  477 
  478                 /*
  479                  * If the operation is still going, leave the page busy to
  480                  * block all other accesses. Also, leave the paging in
  481                  * progress indicator set so that we don't attempt an object
  482                  * collapse.
  483                  */
  484                 if (pageout_status[i] != VM_PAGER_PEND) {
  485                         vm_object_pip_wakeup(object);
  486                         vm_page_io_finish(mt);
  487                         if (vm_page_count_severe())
  488                                 vm_page_try_to_cache(mt);
  489                 }
  490         }
  491         return numpagedout;
  492 }
  493 
  494 #if !defined(NO_SWAPPING)
  495 /*
  496  *      vm_pageout_object_deactivate_pages
  497  *
  498  *      deactivate enough pages to satisfy the inactive target
  499  *      requirements or if vm_page_proc_limit is set, then
  500  *      deactivate all of the pages in the object and its
  501  *      backing_objects.
  502  *
  503  *      The object and map must be locked.
  504  */
  505 static void
  506 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
  507         pmap_t pmap;
  508         vm_object_t first_object;
  509         long desired;
  510 {
  511         vm_object_t backing_object, object;
  512         vm_page_t p, next;
  513         int actcount, rcount, remove_mode;
  514 
  515         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
  516         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
  517                 return;
  518         for (object = first_object;; object = backing_object) {
  519                 if (pmap_resident_count(pmap) <= desired)
  520                         goto unlock_return;
  521                 if (object->paging_in_progress)
  522                         goto unlock_return;
  523 
  524                 remove_mode = 0;
  525                 if (object->shadow_count > 1)
  526                         remove_mode = 1;
  527                 /*
  528                  * scan the objects entire memory queue
  529                  */
  530                 rcount = object->resident_page_count;
  531                 p = TAILQ_FIRST(&object->memq);
  532                 vm_page_lock_queues();
  533                 while (p && (rcount-- > 0)) {
  534                         if (pmap_resident_count(pmap) <= desired) {
  535                                 vm_page_unlock_queues();
  536                                 goto unlock_return;
  537                         }
  538                         next = TAILQ_NEXT(p, listq);
  539                         cnt.v_pdpages++;
  540                         if (p->wire_count != 0 ||
  541                             p->hold_count != 0 ||
  542                             p->busy != 0 ||
  543                             (p->oflags & VPO_BUSY) ||
  544                             (p->flags & PG_UNMANAGED) ||
  545                             !pmap_page_exists_quick(pmap, p)) {
  546                                 p = next;
  547                                 continue;
  548                         }
  549                         actcount = pmap_ts_referenced(p);
  550                         if (actcount) {
  551                                 vm_page_flag_set(p, PG_REFERENCED);
  552                         } else if (p->flags & PG_REFERENCED) {
  553                                 actcount = 1;
  554                         }
  555                         if ((p->queue != PQ_ACTIVE) &&
  556                                 (p->flags & PG_REFERENCED)) {
  557                                 vm_page_activate(p);
  558                                 p->act_count += actcount;
  559                                 vm_page_flag_clear(p, PG_REFERENCED);
  560                         } else if (p->queue == PQ_ACTIVE) {
  561                                 if ((p->flags & PG_REFERENCED) == 0) {
  562                                         p->act_count -= min(p->act_count, ACT_DECLINE);
  563                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
  564                                                 pmap_remove_all(p);
  565                                                 vm_page_deactivate(p);
  566                                         } else {
  567                                                 vm_pageq_requeue(p);
  568                                         }
  569                                 } else {
  570                                         vm_page_activate(p);
  571                                         vm_page_flag_clear(p, PG_REFERENCED);
  572                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
  573                                                 p->act_count += ACT_ADVANCE;
  574                                         vm_pageq_requeue(p);
  575                                 }
  576                         } else if (p->queue == PQ_INACTIVE) {
  577                                 pmap_remove_all(p);
  578                         }
  579                         p = next;
  580                 }
  581                 vm_page_unlock_queues();
  582                 if ((backing_object = object->backing_object) == NULL)
  583                         goto unlock_return;
  584                 VM_OBJECT_LOCK(backing_object);
  585                 if (object != first_object)
  586                         VM_OBJECT_UNLOCK(object);
  587         }
  588 unlock_return:
  589         if (object != first_object)
  590                 VM_OBJECT_UNLOCK(object);
  591 }
  592 
  593 /*
  594  * deactivate some number of pages in a map, try to do it fairly, but
  595  * that is really hard to do.
  596  */
  597 static void
  598 vm_pageout_map_deactivate_pages(map, desired)
  599         vm_map_t map;
  600         long desired;
  601 {
  602         vm_map_entry_t tmpe;
  603         vm_object_t obj, bigobj;
  604         int nothingwired;
  605 
  606         if (!vm_map_trylock(map))
  607                 return;
  608 
  609         bigobj = NULL;
  610         nothingwired = TRUE;
  611 
  612         /*
  613          * first, search out the biggest object, and try to free pages from
  614          * that.
  615          */
  616         tmpe = map->header.next;
  617         while (tmpe != &map->header) {
  618                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  619                         obj = tmpe->object.vm_object;
  620                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
  621                                 if (obj->shadow_count <= 1 &&
  622                                     (bigobj == NULL ||
  623                                      bigobj->resident_page_count < obj->resident_page_count)) {
  624                                         if (bigobj != NULL)
  625                                                 VM_OBJECT_UNLOCK(bigobj);
  626                                         bigobj = obj;
  627                                 } else
  628                                         VM_OBJECT_UNLOCK(obj);
  629                         }
  630                 }
  631                 if (tmpe->wired_count > 0)
  632                         nothingwired = FALSE;
  633                 tmpe = tmpe->next;
  634         }
  635 
  636         if (bigobj != NULL) {
  637                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  638                 VM_OBJECT_UNLOCK(bigobj);
  639         }
  640         /*
  641          * Next, hunt around for other pages to deactivate.  We actually
  642          * do this search sort of wrong -- .text first is not the best idea.
  643          */
  644         tmpe = map->header.next;
  645         while (tmpe != &map->header) {
  646                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  647                         break;
  648                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  649                         obj = tmpe->object.vm_object;
  650                         if (obj != NULL) {
  651                                 VM_OBJECT_LOCK(obj);
  652                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  653                                 VM_OBJECT_UNLOCK(obj);
  654                         }
  655                 }
  656                 tmpe = tmpe->next;
  657         }
  658 
  659         /*
  660          * Remove all mappings if a process is swapped out, this will free page
  661          * table pages.
  662          */
  663         if (desired == 0 && nothingwired) {
  664                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  665                     vm_map_max(map));
  666         }
  667         vm_map_unlock(map);
  668 }
  669 #endif          /* !defined(NO_SWAPPING) */
  670 
  671 /*
  672  *      vm_pageout_scan does the dirty work for the pageout daemon.
  673  */
  674 static void
  675 vm_pageout_scan(int pass)
  676 {
  677         vm_page_t m, next;
  678         struct vm_page marker;
  679         int page_shortage, maxscan, pcount;
  680         int addl_page_shortage, addl_page_shortage_init;
  681         struct proc *p, *bigproc;
  682         struct thread *td;
  683         vm_offset_t size, bigsize;
  684         vm_object_t object;
  685         int actcount;
  686         int vnodes_skipped = 0;
  687         int maxlaunder;
  688 
  689         /*
  690          * Decrease registered cache sizes.
  691          */
  692         EVENTHANDLER_INVOKE(vm_lowmem, 0);
  693         /*
  694          * We do this explicitly after the caches have been drained above.
  695          */
  696         uma_reclaim();
  697 
  698         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
  699 
  700         /*
  701          * Calculate the number of pages we want to either free or move
  702          * to the cache.
  703          */
  704         page_shortage = vm_paging_target() + addl_page_shortage_init;
  705 
  706         /*
  707          * Initialize our marker
  708          */
  709         bzero(&marker, sizeof(marker));
  710         marker.flags = PG_FICTITIOUS | PG_MARKER;
  711         marker.oflags = VPO_BUSY;
  712         marker.queue = PQ_INACTIVE;
  713         marker.wire_count = 1;
  714 
  715         /*
  716          * Start scanning the inactive queue for pages we can move to the
  717          * cache or free.  The scan will stop when the target is reached or
  718          * we have scanned the entire inactive queue.  Note that m->act_count
  719          * is not used to form decisions for the inactive queue, only for the
  720          * active queue.
  721          *
  722          * maxlaunder limits the number of dirty pages we flush per scan.
  723          * For most systems a smaller value (16 or 32) is more robust under
  724          * extreme memory and disk pressure because any unnecessary writes
  725          * to disk can result in extreme performance degredation.  However,
  726          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  727          * used) will die horribly with limited laundering.  If the pageout
  728          * daemon cannot clean enough pages in the first pass, we let it go
  729          * all out in succeeding passes.
  730          */
  731         if ((maxlaunder = vm_max_launder) <= 1)
  732                 maxlaunder = 1;
  733         if (pass)
  734                 maxlaunder = 10000;
  735         vm_page_lock_queues();
  736 rescan0:
  737         addl_page_shortage = addl_page_shortage_init;
  738         maxscan = cnt.v_inactive_count;
  739 
  740         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
  741              m != NULL && maxscan-- > 0 && page_shortage > 0;
  742              m = next) {
  743 
  744                 cnt.v_pdpages++;
  745 
  746                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
  747                         goto rescan0;
  748                 }
  749 
  750                 next = TAILQ_NEXT(m, pageq);
  751                 object = m->object;
  752 
  753                 /*
  754                  * skip marker pages
  755                  */
  756                 if (m->flags & PG_MARKER)
  757                         continue;
  758 
  759                 /*
  760                  * A held page may be undergoing I/O, so skip it.
  761                  */
  762                 if (m->hold_count) {
  763                         vm_pageq_requeue(m);
  764                         addl_page_shortage++;
  765                         continue;
  766                 }
  767                 /*
  768                  * Don't mess with busy pages, keep in the front of the
  769                  * queue, most likely are being paged out.
  770                  */
  771                 if (!VM_OBJECT_TRYLOCK(object) &&
  772                     (!vm_pageout_fallback_object_lock(m, &next) ||
  773                      m->hold_count != 0)) {
  774                         VM_OBJECT_UNLOCK(object);
  775                         addl_page_shortage++;
  776                         continue;
  777                 }
  778                 if (m->busy || (m->oflags & VPO_BUSY)) {
  779                         VM_OBJECT_UNLOCK(object);
  780                         addl_page_shortage++;
  781                         continue;
  782                 }
  783 
  784                 /*
  785                  * If the object is not being used, we ignore previous 
  786                  * references.
  787                  */
  788                 if (object->ref_count == 0) {
  789                         vm_page_flag_clear(m, PG_REFERENCED);
  790                         pmap_clear_reference(m);
  791 
  792                 /*
  793                  * Otherwise, if the page has been referenced while in the 
  794                  * inactive queue, we bump the "activation count" upwards, 
  795                  * making it less likely that the page will be added back to 
  796                  * the inactive queue prematurely again.  Here we check the 
  797                  * page tables (or emulated bits, if any), given the upper 
  798                  * level VM system not knowing anything about existing 
  799                  * references.
  800                  */
  801                 } else if (((m->flags & PG_REFERENCED) == 0) &&
  802                         (actcount = pmap_ts_referenced(m))) {
  803                         vm_page_activate(m);
  804                         VM_OBJECT_UNLOCK(object);
  805                         m->act_count += (actcount + ACT_ADVANCE);
  806                         continue;
  807                 }
  808 
  809                 /*
  810                  * If the upper level VM system knows about any page 
  811                  * references, we activate the page.  We also set the 
  812                  * "activation count" higher than normal so that we will less 
  813                  * likely place pages back onto the inactive queue again.
  814                  */
  815                 if ((m->flags & PG_REFERENCED) != 0) {
  816                         vm_page_flag_clear(m, PG_REFERENCED);
  817                         actcount = pmap_ts_referenced(m);
  818                         vm_page_activate(m);
  819                         VM_OBJECT_UNLOCK(object);
  820                         m->act_count += (actcount + ACT_ADVANCE + 1);
  821                         continue;
  822                 }
  823 
  824                 /*
  825                  * If the upper level VM system doesn't know anything about 
  826                  * the page being dirty, we have to check for it again.  As 
  827                  * far as the VM code knows, any partially dirty pages are 
  828                  * fully dirty.
  829                  */
  830                 if (m->dirty == 0 && !pmap_is_modified(m)) {
  831                         /*
  832                          * Avoid a race condition: Unless write access is
  833                          * removed from the page, another processor could
  834                          * modify it before all access is removed by the call
  835                          * to vm_page_cache() below.  If vm_page_cache() finds
  836                          * that the page has been modified when it removes all
  837                          * access, it panics because it cannot cache dirty
  838                          * pages.  In principle, we could eliminate just write
  839                          * access here rather than all access.  In the expected
  840                          * case, when there are no last instant modifications
  841                          * to the page, removing all access will be cheaper
  842                          * overall.
  843                          */
  844                         if ((m->flags & PG_WRITEABLE) != 0)
  845                                 pmap_remove_all(m);
  846                 } else {
  847                         vm_page_dirty(m);
  848                 }
  849 
  850                 if (m->valid == 0) {
  851                         /*
  852                          * Invalid pages can be easily freed
  853                          */
  854                         vm_page_free(m);
  855                         cnt.v_dfree++;
  856                         --page_shortage;
  857                 } else if (m->dirty == 0) {
  858                         /*
  859                          * Clean pages can be placed onto the cache queue.
  860                          * This effectively frees them.
  861                          */
  862                         vm_page_cache(m);
  863                         --page_shortage;
  864                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
  865                         /*
  866                          * Dirty pages need to be paged out, but flushing
  867                          * a page is extremely expensive verses freeing
  868                          * a clean page.  Rather then artificially limiting
  869                          * the number of pages we can flush, we instead give
  870                          * dirty pages extra priority on the inactive queue
  871                          * by forcing them to be cycled through the queue
  872                          * twice before being flushed, after which the
  873                          * (now clean) page will cycle through once more
  874                          * before being freed.  This significantly extends
  875                          * the thrash point for a heavily loaded machine.
  876                          */
  877                         vm_page_flag_set(m, PG_WINATCFLS);
  878                         vm_pageq_requeue(m);
  879                 } else if (maxlaunder > 0) {
  880                         /*
  881                          * We always want to try to flush some dirty pages if
  882                          * we encounter them, to keep the system stable.
  883                          * Normally this number is small, but under extreme
  884                          * pressure where there are insufficient clean pages
  885                          * on the inactive queue, we may have to go all out.
  886                          */
  887                         int swap_pageouts_ok, vfslocked = 0;
  888                         struct vnode *vp = NULL;
  889                         struct mount *mp = NULL;
  890 
  891                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
  892                                 swap_pageouts_ok = 1;
  893                         } else {
  894                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
  895                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
  896                                 vm_page_count_min());
  897                                                                                 
  898                         }
  899 
  900                         /*
  901                          * We don't bother paging objects that are "dead".  
  902                          * Those objects are in a "rundown" state.
  903                          */
  904                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
  905                                 VM_OBJECT_UNLOCK(object);
  906                                 vm_pageq_requeue(m);
  907                                 continue;
  908                         }
  909 
  910                         /*
  911                          * Following operations may unlock
  912                          * vm_page_queue_mtx, invalidating the 'next'
  913                          * pointer.  To prevent an inordinate number
  914                          * of restarts we use our marker to remember
  915                          * our place.
  916                          *
  917                          */
  918                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
  919                                            m, &marker, pageq);
  920                         /*
  921                          * The object is already known NOT to be dead.   It
  922                          * is possible for the vget() to block the whole
  923                          * pageout daemon, but the new low-memory handling
  924                          * code should prevent it.
  925                          *
  926                          * The previous code skipped locked vnodes and, worse,
  927                          * reordered pages in the queue.  This results in
  928                          * completely non-deterministic operation and, on a
  929                          * busy system, can lead to extremely non-optimal
  930                          * pageouts.  For example, it can cause clean pages
  931                          * to be freed and dirty pages to be moved to the end
  932                          * of the queue.  Since dirty pages are also moved to
  933                          * the end of the queue once-cleaned, this gives
  934                          * way too large a weighting to defering the freeing
  935                          * of dirty pages.
  936                          *
  937                          * We can't wait forever for the vnode lock, we might
  938                          * deadlock due to a vn_read() getting stuck in
  939                          * vm_wait while holding this vnode.  We skip the 
  940                          * vnode if we can't get it in a reasonable amount
  941                          * of time.
  942                          */
  943                         if (object->type == OBJT_VNODE) {
  944                                 vp = object->handle;
  945                                 if (vp->v_type == VREG &&
  946                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
  947                                         KASSERT(mp == NULL,
  948                                             ("vm_pageout_scan: mp != NULL"));
  949                                         ++pageout_lock_miss;
  950                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  951                                                 vnodes_skipped++;
  952                                         goto unlock_and_continue;
  953                                 }
  954                                 vm_page_unlock_queues();
  955                                 vm_object_reference_locked(object);
  956                                 VM_OBJECT_UNLOCK(object);
  957                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  958                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
  959                                     curthread)) {
  960                                         VM_OBJECT_LOCK(object);
  961                                         vm_page_lock_queues();
  962                                         ++pageout_lock_miss;
  963                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  964                                                 vnodes_skipped++;
  965                                         vp = NULL;
  966                                         goto unlock_and_continue;
  967                                 }
  968                                 VM_OBJECT_LOCK(object);
  969                                 vm_page_lock_queues();
  970                                 /*
  971                                  * The page might have been moved to another
  972                                  * queue during potential blocking in vget()
  973                                  * above.  The page might have been freed and
  974                                  * reused for another vnode.
  975                                  */
  976                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
  977                                     m->object != object ||
  978                                     TAILQ_NEXT(m, pageq) != &marker) {
  979                                         if (object->flags & OBJ_MIGHTBEDIRTY)
  980                                                 vnodes_skipped++;
  981                                         goto unlock_and_continue;
  982                                 }
  983         
  984                                 /*
  985                                  * The page may have been busied during the
  986                                  * blocking in vget().  We don't move the
  987                                  * page back onto the end of the queue so that
  988                                  * statistics are more correct if we don't.
  989                                  */
  990                                 if (m->busy || (m->oflags & VPO_BUSY)) {
  991                                         goto unlock_and_continue;
  992                                 }
  993 
  994                                 /*
  995                                  * If the page has become held it might
  996                                  * be undergoing I/O, so skip it
  997                                  */
  998                                 if (m->hold_count) {
  999                                         vm_pageq_requeue(m);
 1000                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1001                                                 vnodes_skipped++;
 1002                                         goto unlock_and_continue;
 1003                                 }
 1004                         }
 1005 
 1006                         /*
 1007                          * If a page is dirty, then it is either being washed
 1008                          * (but not yet cleaned) or it is still in the
 1009                          * laundry.  If it is still in the laundry, then we
 1010                          * start the cleaning operation. 
 1011                          *
 1012                          * decrement page_shortage on success to account for
 1013                          * the (future) cleaned page.  Otherwise we could wind
 1014                          * up laundering or cleaning too many pages.
 1015                          */
 1016                         if (vm_pageout_clean(m) != 0) {
 1017                                 --page_shortage;
 1018                                 --maxlaunder;
 1019                         }
 1020 unlock_and_continue:
 1021                         VM_OBJECT_UNLOCK(object);
 1022                         if (mp != NULL) {
 1023                                 vm_page_unlock_queues();
 1024                                 if (vp != NULL)
 1025                                         vput(vp);
 1026                                 VFS_UNLOCK_GIANT(vfslocked);
 1027                                 vm_object_deallocate(object);
 1028                                 vn_finished_write(mp);
 1029                                 vm_page_lock_queues();
 1030                         }
 1031                         next = TAILQ_NEXT(&marker, pageq);
 1032                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
 1033                                      &marker, pageq);
 1034                         continue;
 1035                 }
 1036                 VM_OBJECT_UNLOCK(object);
 1037         }
 1038 
 1039         /*
 1040          * Compute the number of pages we want to try to move from the
 1041          * active queue to the inactive queue.
 1042          */
 1043         page_shortage = vm_paging_target() +
 1044                 cnt.v_inactive_target - cnt.v_inactive_count;
 1045         page_shortage += addl_page_shortage;
 1046 
 1047         /*
 1048          * Scan the active queue for things we can deactivate. We nominally
 1049          * track the per-page activity counter and use it to locate
 1050          * deactivation candidates.
 1051          */
 1052         pcount = cnt.v_active_count;
 1053         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1054 
 1055         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
 1056 
 1057                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
 1058                     ("vm_pageout_scan: page %p isn't active", m));
 1059 
 1060                 next = TAILQ_NEXT(m, pageq);
 1061                 object = m->object;
 1062                 if ((m->flags & PG_MARKER) != 0) {
 1063                         m = next;
 1064                         continue;
 1065                 }
 1066                 if (!VM_OBJECT_TRYLOCK(object) &&
 1067                     !vm_pageout_fallback_object_lock(m, &next)) {
 1068                         VM_OBJECT_UNLOCK(object);
 1069                         m = next;
 1070                         continue;
 1071                 }
 1072 
 1073                 /*
 1074                  * Don't deactivate pages that are busy.
 1075                  */
 1076                 if ((m->busy != 0) ||
 1077                     (m->oflags & VPO_BUSY) ||
 1078                     (m->hold_count != 0)) {
 1079                         VM_OBJECT_UNLOCK(object);
 1080                         vm_pageq_requeue(m);
 1081                         m = next;
 1082                         continue;
 1083                 }
 1084 
 1085                 /*
 1086                  * The count for pagedaemon pages is done after checking the
 1087                  * page for eligibility...
 1088                  */
 1089                 cnt.v_pdpages++;
 1090 
 1091                 /*
 1092                  * Check to see "how much" the page has been used.
 1093                  */
 1094                 actcount = 0;
 1095                 if (object->ref_count != 0) {
 1096                         if (m->flags & PG_REFERENCED) {
 1097                                 actcount += 1;
 1098                         }
 1099                         actcount += pmap_ts_referenced(m);
 1100                         if (actcount) {
 1101                                 m->act_count += ACT_ADVANCE + actcount;
 1102                                 if (m->act_count > ACT_MAX)
 1103                                         m->act_count = ACT_MAX;
 1104                         }
 1105                 }
 1106 
 1107                 /*
 1108                  * Since we have "tested" this bit, we need to clear it now.
 1109                  */
 1110                 vm_page_flag_clear(m, PG_REFERENCED);
 1111 
 1112                 /*
 1113                  * Only if an object is currently being used, do we use the
 1114                  * page activation count stats.
 1115                  */
 1116                 if (actcount && (object->ref_count != 0)) {
 1117                         vm_pageq_requeue(m);
 1118                 } else {
 1119                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1120                         if (vm_pageout_algorithm ||
 1121                             object->ref_count == 0 ||
 1122                             m->act_count == 0) {
 1123                                 page_shortage--;
 1124                                 if (object->ref_count == 0) {
 1125                                         pmap_remove_all(m);
 1126                                         if (m->dirty == 0)
 1127                                                 vm_page_cache(m);
 1128                                         else
 1129                                                 vm_page_deactivate(m);
 1130                                 } else {
 1131                                         vm_page_deactivate(m);
 1132                                 }
 1133                         } else {
 1134                                 vm_pageq_requeue(m);
 1135                         }
 1136                 }
 1137                 VM_OBJECT_UNLOCK(object);
 1138                 m = next;
 1139         }
 1140         vm_page_unlock_queues();
 1141 #if !defined(NO_SWAPPING)
 1142         /*
 1143          * Idle process swapout -- run once per second.
 1144          */
 1145         if (vm_swap_idle_enabled) {
 1146                 static long lsec;
 1147                 if (time_second != lsec) {
 1148                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1149                         lsec = time_second;
 1150                 }
 1151         }
 1152 #endif
 1153                 
 1154         /*
 1155          * If we didn't get enough free pages, and we have skipped a vnode
 1156          * in a writeable object, wakeup the sync daemon.  And kick swapout
 1157          * if we did not get enough free pages.
 1158          */
 1159         if (vm_paging_target() > 0) {
 1160                 if (vnodes_skipped && vm_page_count_min())
 1161                         (void) speedup_syncer();
 1162 #if !defined(NO_SWAPPING)
 1163                 if (vm_swap_enabled && vm_page_count_target())
 1164                         vm_req_vmdaemon(VM_SWAP_NORMAL);
 1165 #endif
 1166         }
 1167 
 1168         /*
 1169          * If we are critically low on one of RAM or swap and low on
 1170          * the other, kill the largest process.  However, we avoid
 1171          * doing this on the first pass in order to give ourselves a
 1172          * chance to flush out dirty vnode-backed pages and to allow
 1173          * active pages to be moved to the inactive queue and reclaimed.
 1174          *
 1175          * We keep the process bigproc locked once we find it to keep anyone
 1176          * from messing with it; however, there is a possibility of
 1177          * deadlock if process B is bigproc and one of it's child processes
 1178          * attempts to propagate a signal to B while we are waiting for A's
 1179          * lock while walking this list.  To avoid this, we don't block on
 1180          * the process lock but just skip a process if it is already locked.
 1181          */
 1182         if (pass != 0 &&
 1183             ((swap_pager_avail < 64 && vm_page_count_min()) ||
 1184              (swap_pager_full && vm_paging_target() > 0))) {
 1185                 bigproc = NULL;
 1186                 bigsize = 0;
 1187                 sx_slock(&allproc_lock);
 1188                 FOREACH_PROC_IN_SYSTEM(p) {
 1189                         int breakout;
 1190 
 1191                         if (PROC_TRYLOCK(p) == 0)
 1192                                 continue;
 1193                         /*
 1194                          * If this is a system or protected process, skip it.
 1195                          */
 1196                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
 1197                             (p->p_flag & P_PROTECTED) ||
 1198                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
 1199                                 PROC_UNLOCK(p);
 1200                                 continue;
 1201                         }
 1202                         /*
 1203                          * If the process is in a non-running type state,
 1204                          * don't touch it.  Check all the threads individually.
 1205                          */
 1206                         PROC_SLOCK(p);
 1207                         breakout = 0;
 1208                         FOREACH_THREAD_IN_PROC(p, td) {
 1209                                 thread_lock(td);
 1210                                 if (!TD_ON_RUNQ(td) &&
 1211                                     !TD_IS_RUNNING(td) &&
 1212                                     !TD_IS_SLEEPING(td)) {
 1213                                         thread_unlock(td);
 1214                                         breakout = 1;
 1215                                         break;
 1216                                 }
 1217                                 thread_unlock(td);
 1218                         }
 1219                         PROC_SUNLOCK(p);
 1220                         if (breakout) {
 1221                                 PROC_UNLOCK(p);
 1222                                 continue;
 1223                         }
 1224                         /*
 1225                          * get the process size
 1226                          */
 1227                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
 1228                                 PROC_UNLOCK(p);
 1229                                 continue;
 1230                         }
 1231                         size = vmspace_swap_count(p->p_vmspace);
 1232                         vm_map_unlock_read(&p->p_vmspace->vm_map);
 1233                         size += vmspace_resident_count(p->p_vmspace);
 1234                         /*
 1235                          * if the this process is bigger than the biggest one
 1236                          * remember it.
 1237                          */
 1238                         if (size > bigsize) {
 1239                                 if (bigproc != NULL)
 1240                                         PROC_UNLOCK(bigproc);
 1241                                 bigproc = p;
 1242                                 bigsize = size;
 1243                         } else
 1244                                 PROC_UNLOCK(p);
 1245                 }
 1246                 sx_sunlock(&allproc_lock);
 1247                 if (bigproc != NULL) {
 1248                         killproc(bigproc, "out of swap space");
 1249                         PROC_SLOCK(bigproc);
 1250                         sched_nice(bigproc, PRIO_MIN);
 1251                         PROC_SUNLOCK(bigproc);
 1252                         PROC_UNLOCK(bigproc);
 1253                         wakeup(&cnt.v_free_count);
 1254                 }
 1255         }
 1256 }
 1257 
 1258 /*
 1259  * This routine tries to maintain the pseudo LRU active queue,
 1260  * so that during long periods of time where there is no paging,
 1261  * that some statistic accumulation still occurs.  This code
 1262  * helps the situation where paging just starts to occur.
 1263  */
 1264 static void
 1265 vm_pageout_page_stats()
 1266 {
 1267         vm_object_t object;
 1268         vm_page_t m,next;
 1269         int pcount,tpcount;             /* Number of pages to check */
 1270         static int fullintervalcount = 0;
 1271         int page_shortage;
 1272 
 1273         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1274         page_shortage = 
 1275             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
 1276             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
 1277 
 1278         if (page_shortage <= 0)
 1279                 return;
 1280 
 1281         pcount = cnt.v_active_count;
 1282         fullintervalcount += vm_pageout_stats_interval;
 1283         if (fullintervalcount < vm_pageout_full_stats_interval) {
 1284                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
 1285                 if (pcount > tpcount)
 1286                         pcount = tpcount;
 1287         } else {
 1288                 fullintervalcount = 0;
 1289         }
 1290 
 1291         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1292         while ((m != NULL) && (pcount-- > 0)) {
 1293                 int actcount;
 1294 
 1295                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
 1296                     ("vm_pageout_page_stats: page %p isn't active", m));
 1297 
 1298                 next = TAILQ_NEXT(m, pageq);
 1299                 object = m->object;
 1300 
 1301                 if ((m->flags & PG_MARKER) != 0) {
 1302                         m = next;
 1303                         continue;
 1304                 }
 1305                 if (!VM_OBJECT_TRYLOCK(object) &&
 1306                     !vm_pageout_fallback_object_lock(m, &next)) {
 1307                         VM_OBJECT_UNLOCK(object);
 1308                         m = next;
 1309                         continue;
 1310                 }
 1311 
 1312                 /*
 1313                  * Don't deactivate pages that are busy.
 1314                  */
 1315                 if ((m->busy != 0) ||
 1316                     (m->oflags & VPO_BUSY) ||
 1317                     (m->hold_count != 0)) {
 1318                         VM_OBJECT_UNLOCK(object);
 1319                         vm_pageq_requeue(m);
 1320                         m = next;
 1321                         continue;
 1322                 }
 1323 
 1324                 actcount = 0;
 1325                 if (m->flags & PG_REFERENCED) {
 1326                         vm_page_flag_clear(m, PG_REFERENCED);
 1327                         actcount += 1;
 1328                 }
 1329 
 1330                 actcount += pmap_ts_referenced(m);
 1331                 if (actcount) {
 1332                         m->act_count += ACT_ADVANCE + actcount;
 1333                         if (m->act_count > ACT_MAX)
 1334                                 m->act_count = ACT_MAX;
 1335                         vm_pageq_requeue(m);
 1336                 } else {
 1337                         if (m->act_count == 0) {
 1338                                 /*
 1339                                  * We turn off page access, so that we have
 1340                                  * more accurate RSS stats.  We don't do this
 1341                                  * in the normal page deactivation when the
 1342                                  * system is loaded VM wise, because the
 1343                                  * cost of the large number of page protect
 1344                                  * operations would be higher than the value
 1345                                  * of doing the operation.
 1346                                  */
 1347                                 pmap_remove_all(m);
 1348                                 vm_page_deactivate(m);
 1349                         } else {
 1350                                 m->act_count -= min(m->act_count, ACT_DECLINE);
 1351                                 vm_pageq_requeue(m);
 1352                         }
 1353                 }
 1354                 VM_OBJECT_UNLOCK(object);
 1355                 m = next;
 1356         }
 1357 }
 1358 
 1359 /*
 1360  *      vm_pageout is the high level pageout daemon.
 1361  */
 1362 static void
 1363 vm_pageout()
 1364 {
 1365         int error, pass;
 1366 
 1367         /*
 1368          * Initialize some paging parameters.
 1369          */
 1370         cnt.v_interrupt_free_min = 2;
 1371         if (cnt.v_page_count < 2000)
 1372                 vm_pageout_page_count = 8;
 1373 
 1374         /*
 1375          * v_free_reserved needs to include enough for the largest
 1376          * swap pager structures plus enough for any pv_entry structs
 1377          * when paging. 
 1378          */
 1379         if (cnt.v_page_count > 1024)
 1380                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1381         else
 1382                 cnt.v_free_min = 4;
 1383         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1384             cnt.v_interrupt_free_min;
 1385         cnt.v_free_reserved = vm_pageout_page_count +
 1386             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
 1387         cnt.v_free_severe = cnt.v_free_min / 2;
 1388         cnt.v_free_min += cnt.v_free_reserved;
 1389         cnt.v_free_severe += cnt.v_free_reserved;
 1390 
 1391         /*
 1392          * v_free_target and v_cache_min control pageout hysteresis.  Note
 1393          * that these are more a measure of the VM cache queue hysteresis
 1394          * then the VM free queue.  Specifically, v_free_target is the
 1395          * high water mark (free+cache pages).
 1396          *
 1397          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
 1398          * low water mark, while v_free_min is the stop.  v_cache_min must
 1399          * be big enough to handle memory needs while the pageout daemon
 1400          * is signalled and run to free more pages.
 1401          */
 1402         if (cnt.v_free_count > 6144)
 1403                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1404         else
 1405                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
 1406 
 1407         if (cnt.v_free_count > 2048) {
 1408                 cnt.v_cache_min = cnt.v_free_target;
 1409                 cnt.v_cache_max = 2 * cnt.v_cache_min;
 1410                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1411         } else {
 1412                 cnt.v_cache_min = 0;
 1413                 cnt.v_cache_max = 0;
 1414                 cnt.v_inactive_target = cnt.v_free_count / 4;
 1415         }
 1416         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1417                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1418 
 1419         /* XXX does not really belong here */
 1420         if (vm_page_max_wired == 0)
 1421                 vm_page_max_wired = cnt.v_free_count / 3;
 1422 
 1423         if (vm_pageout_stats_max == 0)
 1424                 vm_pageout_stats_max = cnt.v_free_target;
 1425 
 1426         /*
 1427          * Set interval in seconds for stats scan.
 1428          */
 1429         if (vm_pageout_stats_interval == 0)
 1430                 vm_pageout_stats_interval = 5;
 1431         if (vm_pageout_full_stats_interval == 0)
 1432                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
 1433 
 1434         swap_pager_swap_init();
 1435         pass = 0;
 1436         /*
 1437          * The pageout daemon is never done, so loop forever.
 1438          */
 1439         while (TRUE) {
 1440                 /*
 1441                  * If we have enough free memory, wakeup waiters.  Do
 1442                  * not clear vm_pages_needed until we reach our target,
 1443                  * otherwise we may be woken up over and over again and
 1444                  * waste a lot of cpu.
 1445                  */
 1446                 mtx_lock(&vm_page_queue_free_mtx);
 1447                 if (vm_pages_needed && !vm_page_count_min()) {
 1448                         if (!vm_paging_needed())
 1449                                 vm_pages_needed = 0;
 1450                         wakeup(&cnt.v_free_count);
 1451                 }
 1452                 if (vm_pages_needed) {
 1453                         /*
 1454                          * Still not done, take a second pass without waiting
 1455                          * (unlimited dirty cleaning), otherwise sleep a bit
 1456                          * and try again.
 1457                          */
 1458                         ++pass;
 1459                         if (pass > 1)
 1460                                 msleep(&vm_pages_needed,
 1461                                     &vm_page_queue_free_mtx, PVM, "psleep",
 1462                                     hz / 2);
 1463                 } else {
 1464                         /*
 1465                          * Good enough, sleep & handle stats.  Prime the pass
 1466                          * for the next run.
 1467                          */
 1468                         if (pass > 1)
 1469                                 pass = 1;
 1470                         else
 1471                                 pass = 0;
 1472                         error = msleep(&vm_pages_needed,
 1473                             &vm_page_queue_free_mtx, PVM, "psleep",
 1474                             vm_pageout_stats_interval * hz);
 1475                         if (error && !vm_pages_needed) {
 1476                                 mtx_unlock(&vm_page_queue_free_mtx);
 1477                                 pass = 0;
 1478                                 vm_page_lock_queues();
 1479                                 vm_pageout_page_stats();
 1480                                 vm_page_unlock_queues();
 1481                                 continue;
 1482                         }
 1483                 }
 1484                 if (vm_pages_needed)
 1485                         cnt.v_pdwakeups++;
 1486                 mtx_unlock(&vm_page_queue_free_mtx);
 1487                 vm_pageout_scan(pass);
 1488         }
 1489 }
 1490 
 1491 /*
 1492  * Unless the free page queue lock is held by the caller, this function
 1493  * should be regarded as advisory.  Specifically, the caller should
 1494  * not msleep() on &cnt.v_free_count following this function unless
 1495  * the free page queue lock is held until the msleep() is performed.
 1496  */
 1497 void
 1498 pagedaemon_wakeup()
 1499 {
 1500 
 1501         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1502                 vm_pages_needed = 1;
 1503                 wakeup(&vm_pages_needed);
 1504         }
 1505 }
 1506 
 1507 #if !defined(NO_SWAPPING)
 1508 static void
 1509 vm_req_vmdaemon(int req)
 1510 {
 1511         static int lastrun = 0;
 1512 
 1513         mtx_lock(&vm_daemon_mtx);
 1514         vm_pageout_req_swapout |= req;
 1515         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1516                 wakeup(&vm_daemon_needed);
 1517                 lastrun = ticks;
 1518         }
 1519         mtx_unlock(&vm_daemon_mtx);
 1520 }
 1521 
 1522 static void
 1523 vm_daemon()
 1524 {
 1525         struct rlimit rsslim;
 1526         struct proc *p;
 1527         struct thread *td;
 1528         int breakout, swapout_flags;
 1529 
 1530         while (TRUE) {
 1531                 mtx_lock(&vm_daemon_mtx);
 1532                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
 1533                 swapout_flags = vm_pageout_req_swapout;
 1534                 vm_pageout_req_swapout = 0;
 1535                 mtx_unlock(&vm_daemon_mtx);
 1536                 if (swapout_flags)
 1537                         swapout_procs(swapout_flags);
 1538 
 1539                 /*
 1540                  * scan the processes for exceeding their rlimits or if
 1541                  * process is swapped out -- deactivate pages
 1542                  */
 1543                 sx_slock(&allproc_lock);
 1544                 FOREACH_PROC_IN_SYSTEM(p) {
 1545                         vm_pindex_t limit, size;
 1546 
 1547                         /*
 1548                          * if this is a system process or if we have already
 1549                          * looked at this process, skip it.
 1550                          */
 1551                         PROC_LOCK(p);
 1552                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
 1553                                 PROC_UNLOCK(p);
 1554                                 continue;
 1555                         }
 1556                         /*
 1557                          * if the process is in a non-running type state,
 1558                          * don't touch it.
 1559                          */
 1560                         PROC_SLOCK(p);
 1561                         breakout = 0;
 1562                         FOREACH_THREAD_IN_PROC(p, td) {
 1563                                 thread_lock(td);
 1564                                 if (!TD_ON_RUNQ(td) &&
 1565                                     !TD_IS_RUNNING(td) &&
 1566                                     !TD_IS_SLEEPING(td)) {
 1567                                         thread_unlock(td);
 1568                                         breakout = 1;
 1569                                         break;
 1570                                 }
 1571                                 thread_unlock(td);
 1572                         }
 1573                         PROC_SUNLOCK(p);
 1574                         if (breakout) {
 1575                                 PROC_UNLOCK(p);
 1576                                 continue;
 1577                         }
 1578                         /*
 1579                          * get a limit
 1580                          */
 1581                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1582                         limit = OFF_TO_IDX(
 1583                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1584 
 1585                         /*
 1586                          * let processes that are swapped out really be
 1587                          * swapped out set the limit to nothing (will force a
 1588                          * swap-out.)
 1589                          */
 1590                         if ((p->p_flag & P_INMEM) == 0)
 1591                                 limit = 0;      /* XXX */
 1592                         PROC_UNLOCK(p);
 1593 
 1594                         size = vmspace_resident_count(p->p_vmspace);
 1595                         if (limit >= 0 && size >= limit) {
 1596                                 vm_pageout_map_deactivate_pages(
 1597                                     &p->p_vmspace->vm_map, limit);
 1598                         }
 1599                 }
 1600                 sx_sunlock(&allproc_lock);
 1601         }
 1602 }
 1603 #endif                  /* !defined(NO_SWAPPING) */

Cache object: 48f6a71b51855420907e2d620028c96b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.