FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c
1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_pageout.c 195840 2009-07-24 13:50:29Z jhb $");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109 * System initialization
110 */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120 "pagedaemon",
121 vm_pageout,
122 &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125 &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133 "vmdaemon",
134 vm_daemon,
135 &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed; /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit; /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout; /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184 CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 /*
219 * vm_pageout_fallback_object_lock:
220 *
221 * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222 * known to have failed and page queue must be either PQ_ACTIVE or
223 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues
224 * while locking the vm object. Use marker page to detect page queue
225 * changes and maintain notion of next page on page queue. Return
226 * TRUE if no changes were detected, FALSE otherwise. vm object is
227 * locked on return.
228 *
229 * This function depends on both the lock portion of struct vm_object
230 * and normal struct vm_page being type stable.
231 */
232 boolean_t
233 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234 {
235 struct vm_page marker;
236 boolean_t unchanged;
237 u_short queue;
238 vm_object_t object;
239
240 /*
241 * Initialize our marker
242 */
243 bzero(&marker, sizeof(marker));
244 marker.flags = PG_FICTITIOUS | PG_MARKER;
245 marker.oflags = VPO_BUSY;
246 marker.queue = m->queue;
247 marker.wire_count = 1;
248
249 queue = m->queue;
250 object = m->object;
251
252 TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253 m, &marker, pageq);
254 vm_page_unlock_queues();
255 VM_OBJECT_LOCK(object);
256 vm_page_lock_queues();
257
258 /* Page queue might have changed. */
259 *next = TAILQ_NEXT(&marker, pageq);
260 unchanged = (m->queue == queue &&
261 m->object == object &&
262 &marker == TAILQ_NEXT(m, pageq));
263 TAILQ_REMOVE(&vm_page_queues[queue].pl,
264 &marker, pageq);
265 return (unchanged);
266 }
267
268 /*
269 * vm_pageout_clean:
270 *
271 * Clean the page and remove it from the laundry.
272 *
273 * We set the busy bit to cause potential page faults on this page to
274 * block. Note the careful timing, however, the busy bit isn't set till
275 * late and we cannot do anything that will mess with the page.
276 */
277 static int
278 vm_pageout_clean(m)
279 vm_page_t m;
280 {
281 vm_object_t object;
282 vm_page_t mc[2*vm_pageout_page_count];
283 int pageout_count;
284 int ib, is, page_base;
285 vm_pindex_t pindex = m->pindex;
286
287 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290 /*
291 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292 * with the new swapper, but we could have serious problems paging
293 * out other object types if there is insufficient memory.
294 *
295 * Unfortunately, checking free memory here is far too late, so the
296 * check has been moved up a procedural level.
297 */
298
299 /*
300 * Can't clean the page if it's busy or held.
301 */
302 if ((m->hold_count != 0) ||
303 ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304 return 0;
305 }
306
307 mc[vm_pageout_page_count] = m;
308 pageout_count = 1;
309 page_base = vm_pageout_page_count;
310 ib = 1;
311 is = 1;
312
313 /*
314 * Scan object for clusterable pages.
315 *
316 * We can cluster ONLY if: ->> the page is NOT
317 * clean, wired, busy, held, or mapped into a
318 * buffer, and one of the following:
319 * 1) The page is inactive, or a seldom used
320 * active page.
321 * -or-
322 * 2) we force the issue.
323 *
324 * During heavy mmap/modification loads the pageout
325 * daemon can really fragment the underlying file
326 * due to flushing pages out of order and not trying
327 * align the clusters (which leave sporatic out-of-order
328 * holes). To solve this problem we do the reverse scan
329 * first and attempt to align our cluster, then do a
330 * forward scan if room remains.
331 */
332 object = m->object;
333 more:
334 while (ib && pageout_count < vm_pageout_page_count) {
335 vm_page_t p;
336
337 if (ib > pindex) {
338 ib = 0;
339 break;
340 }
341
342 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
343 ib = 0;
344 break;
345 }
346 if ((p->oflags & VPO_BUSY) || p->busy) {
347 ib = 0;
348 break;
349 }
350 vm_page_test_dirty(p);
351 if (p->dirty == 0 ||
352 p->queue != PQ_INACTIVE ||
353 p->wire_count != 0 || /* may be held by buf cache */
354 p->hold_count != 0) { /* may be undergoing I/O */
355 ib = 0;
356 break;
357 }
358 mc[--page_base] = p;
359 ++pageout_count;
360 ++ib;
361 /*
362 * alignment boundry, stop here and switch directions. Do
363 * not clear ib.
364 */
365 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
366 break;
367 }
368
369 while (pageout_count < vm_pageout_page_count &&
370 pindex + is < object->size) {
371 vm_page_t p;
372
373 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
374 break;
375 if ((p->oflags & VPO_BUSY) || p->busy) {
376 break;
377 }
378 vm_page_test_dirty(p);
379 if (p->dirty == 0 ||
380 p->queue != PQ_INACTIVE ||
381 p->wire_count != 0 || /* may be held by buf cache */
382 p->hold_count != 0) { /* may be undergoing I/O */
383 break;
384 }
385 mc[page_base + pageout_count] = p;
386 ++pageout_count;
387 ++is;
388 }
389
390 /*
391 * If we exhausted our forward scan, continue with the reverse scan
392 * when possible, even past a page boundry. This catches boundry
393 * conditions.
394 */
395 if (ib && pageout_count < vm_pageout_page_count)
396 goto more;
397
398 /*
399 * we allow reads during pageouts...
400 */
401 return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402 }
403
404 /*
405 * vm_pageout_flush() - launder the given pages
406 *
407 * The given pages are laundered. Note that we setup for the start of
408 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
409 * reference count all in here rather then in the parent. If we want
410 * the parent to do more sophisticated things we may have to change
411 * the ordering.
412 */
413 int
414 vm_pageout_flush(vm_page_t *mc, int count, int flags)
415 {
416 vm_object_t object = mc[0]->object;
417 int pageout_status[count];
418 int numpagedout = 0;
419 int i;
420
421 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423 /*
424 * Initiate I/O. Bump the vm_page_t->busy counter and
425 * mark the pages read-only.
426 *
427 * We do not have to fixup the clean/dirty bits here... we can
428 * allow the pager to do it after the I/O completes.
429 *
430 * NOTE! mc[i]->dirty may be partial or fragmented due to an
431 * edge case with file fragments.
432 */
433 for (i = 0; i < count; i++) {
434 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435 ("vm_pageout_flush: partially invalid page %p index %d/%d",
436 mc[i], i, count));
437 vm_page_io_start(mc[i]);
438 pmap_remove_write(mc[i]);
439 }
440 vm_page_unlock_queues();
441 vm_object_pip_add(object, count);
442
443 vm_pager_put_pages(object, mc, count, flags, pageout_status);
444
445 vm_page_lock_queues();
446 for (i = 0; i < count; i++) {
447 vm_page_t mt = mc[i];
448
449 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
450 (mt->flags & PG_WRITEABLE) == 0,
451 ("vm_pageout_flush: page %p is not write protected", mt));
452 switch (pageout_status[i]) {
453 case VM_PAGER_OK:
454 case VM_PAGER_PEND:
455 numpagedout++;
456 break;
457 case VM_PAGER_BAD:
458 /*
459 * Page outside of range of object. Right now we
460 * essentially lose the changes by pretending it
461 * worked.
462 */
463 vm_page_undirty(mt);
464 break;
465 case VM_PAGER_ERROR:
466 case VM_PAGER_FAIL:
467 /*
468 * If page couldn't be paged out, then reactivate the
469 * page so it doesn't clog the inactive list. (We
470 * will try paging out it again later).
471 */
472 vm_page_activate(mt);
473 break;
474 case VM_PAGER_AGAIN:
475 break;
476 }
477
478 /*
479 * If the operation is still going, leave the page busy to
480 * block all other accesses. Also, leave the paging in
481 * progress indicator set so that we don't attempt an object
482 * collapse.
483 */
484 if (pageout_status[i] != VM_PAGER_PEND) {
485 vm_object_pip_wakeup(object);
486 vm_page_io_finish(mt);
487 if (vm_page_count_severe())
488 vm_page_try_to_cache(mt);
489 }
490 }
491 return numpagedout;
492 }
493
494 #if !defined(NO_SWAPPING)
495 /*
496 * vm_pageout_object_deactivate_pages
497 *
498 * deactivate enough pages to satisfy the inactive target
499 * requirements or if vm_page_proc_limit is set, then
500 * deactivate all of the pages in the object and its
501 * backing_objects.
502 *
503 * The object and map must be locked.
504 */
505 static void
506 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
507 pmap_t pmap;
508 vm_object_t first_object;
509 long desired;
510 {
511 vm_object_t backing_object, object;
512 vm_page_t p, next;
513 int actcount, rcount, remove_mode;
514
515 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
516 if (first_object->type == OBJT_DEVICE ||
517 first_object->type == OBJT_SG ||
518 first_object->type == OBJT_PHYS)
519 return;
520 for (object = first_object;; object = backing_object) {
521 if (pmap_resident_count(pmap) <= desired)
522 goto unlock_return;
523 if (object->paging_in_progress)
524 goto unlock_return;
525
526 remove_mode = 0;
527 if (object->shadow_count > 1)
528 remove_mode = 1;
529 /*
530 * scan the objects entire memory queue
531 */
532 rcount = object->resident_page_count;
533 p = TAILQ_FIRST(&object->memq);
534 vm_page_lock_queues();
535 while (p && (rcount-- > 0)) {
536 if (pmap_resident_count(pmap) <= desired) {
537 vm_page_unlock_queues();
538 goto unlock_return;
539 }
540 next = TAILQ_NEXT(p, listq);
541 cnt.v_pdpages++;
542 if (p->wire_count != 0 ||
543 p->hold_count != 0 ||
544 p->busy != 0 ||
545 (p->oflags & VPO_BUSY) ||
546 (p->flags & PG_UNMANAGED) ||
547 !pmap_page_exists_quick(pmap, p)) {
548 p = next;
549 continue;
550 }
551 actcount = pmap_ts_referenced(p);
552 if (actcount) {
553 vm_page_flag_set(p, PG_REFERENCED);
554 } else if (p->flags & PG_REFERENCED) {
555 actcount = 1;
556 }
557 if ((p->queue != PQ_ACTIVE) &&
558 (p->flags & PG_REFERENCED)) {
559 vm_page_activate(p);
560 p->act_count += actcount;
561 vm_page_flag_clear(p, PG_REFERENCED);
562 } else if (p->queue == PQ_ACTIVE) {
563 if ((p->flags & PG_REFERENCED) == 0) {
564 p->act_count -= min(p->act_count, ACT_DECLINE);
565 if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566 pmap_remove_all(p);
567 vm_page_deactivate(p);
568 } else {
569 vm_page_requeue(p);
570 }
571 } else {
572 vm_page_activate(p);
573 vm_page_flag_clear(p, PG_REFERENCED);
574 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575 p->act_count += ACT_ADVANCE;
576 vm_page_requeue(p);
577 }
578 } else if (p->queue == PQ_INACTIVE) {
579 pmap_remove_all(p);
580 }
581 p = next;
582 }
583 vm_page_unlock_queues();
584 if ((backing_object = object->backing_object) == NULL)
585 goto unlock_return;
586 VM_OBJECT_LOCK(backing_object);
587 if (object != first_object)
588 VM_OBJECT_UNLOCK(object);
589 }
590 unlock_return:
591 if (object != first_object)
592 VM_OBJECT_UNLOCK(object);
593 }
594
595 /*
596 * deactivate some number of pages in a map, try to do it fairly, but
597 * that is really hard to do.
598 */
599 static void
600 vm_pageout_map_deactivate_pages(map, desired)
601 vm_map_t map;
602 long desired;
603 {
604 vm_map_entry_t tmpe;
605 vm_object_t obj, bigobj;
606 int nothingwired;
607
608 if (!vm_map_trylock(map))
609 return;
610
611 bigobj = NULL;
612 nothingwired = TRUE;
613
614 /*
615 * first, search out the biggest object, and try to free pages from
616 * that.
617 */
618 tmpe = map->header.next;
619 while (tmpe != &map->header) {
620 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621 obj = tmpe->object.vm_object;
622 if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623 if (obj->shadow_count <= 1 &&
624 (bigobj == NULL ||
625 bigobj->resident_page_count < obj->resident_page_count)) {
626 if (bigobj != NULL)
627 VM_OBJECT_UNLOCK(bigobj);
628 bigobj = obj;
629 } else
630 VM_OBJECT_UNLOCK(obj);
631 }
632 }
633 if (tmpe->wired_count > 0)
634 nothingwired = FALSE;
635 tmpe = tmpe->next;
636 }
637
638 if (bigobj != NULL) {
639 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640 VM_OBJECT_UNLOCK(bigobj);
641 }
642 /*
643 * Next, hunt around for other pages to deactivate. We actually
644 * do this search sort of wrong -- .text first is not the best idea.
645 */
646 tmpe = map->header.next;
647 while (tmpe != &map->header) {
648 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649 break;
650 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651 obj = tmpe->object.vm_object;
652 if (obj != NULL) {
653 VM_OBJECT_LOCK(obj);
654 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655 VM_OBJECT_UNLOCK(obj);
656 }
657 }
658 tmpe = tmpe->next;
659 }
660
661 /*
662 * Remove all mappings if a process is swapped out, this will free page
663 * table pages.
664 */
665 if (desired == 0 && nothingwired) {
666 pmap_remove(vm_map_pmap(map), vm_map_min(map),
667 vm_map_max(map));
668 }
669 vm_map_unlock(map);
670 }
671 #endif /* !defined(NO_SWAPPING) */
672
673 /*
674 * vm_pageout_scan does the dirty work for the pageout daemon.
675 */
676 static void
677 vm_pageout_scan(int pass)
678 {
679 vm_page_t m, next;
680 struct vm_page marker;
681 int page_shortage, maxscan, pcount;
682 int addl_page_shortage, addl_page_shortage_init;
683 vm_object_t object;
684 int actcount;
685 int vnodes_skipped = 0;
686 int maxlaunder;
687
688 /*
689 * Decrease registered cache sizes.
690 */
691 EVENTHANDLER_INVOKE(vm_lowmem, 0);
692 /*
693 * We do this explicitly after the caches have been drained above.
694 */
695 uma_reclaim();
696
697 addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699 /*
700 * Calculate the number of pages we want to either free or move
701 * to the cache.
702 */
703 page_shortage = vm_paging_target() + addl_page_shortage_init;
704
705 /*
706 * Initialize our marker
707 */
708 bzero(&marker, sizeof(marker));
709 marker.flags = PG_FICTITIOUS | PG_MARKER;
710 marker.oflags = VPO_BUSY;
711 marker.queue = PQ_INACTIVE;
712 marker.wire_count = 1;
713
714 /*
715 * Start scanning the inactive queue for pages we can move to the
716 * cache or free. The scan will stop when the target is reached or
717 * we have scanned the entire inactive queue. Note that m->act_count
718 * is not used to form decisions for the inactive queue, only for the
719 * active queue.
720 *
721 * maxlaunder limits the number of dirty pages we flush per scan.
722 * For most systems a smaller value (16 or 32) is more robust under
723 * extreme memory and disk pressure because any unnecessary writes
724 * to disk can result in extreme performance degredation. However,
725 * systems with excessive dirty pages (especially when MAP_NOSYNC is
726 * used) will die horribly with limited laundering. If the pageout
727 * daemon cannot clean enough pages in the first pass, we let it go
728 * all out in succeeding passes.
729 */
730 if ((maxlaunder = vm_max_launder) <= 1)
731 maxlaunder = 1;
732 if (pass)
733 maxlaunder = 10000;
734 vm_page_lock_queues();
735 rescan0:
736 addl_page_shortage = addl_page_shortage_init;
737 maxscan = cnt.v_inactive_count;
738
739 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
740 m != NULL && maxscan-- > 0 && page_shortage > 0;
741 m = next) {
742
743 cnt.v_pdpages++;
744
745 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
746 goto rescan0;
747 }
748
749 next = TAILQ_NEXT(m, pageq);
750 object = m->object;
751
752 /*
753 * skip marker pages
754 */
755 if (m->flags & PG_MARKER)
756 continue;
757
758 /*
759 * A held page may be undergoing I/O, so skip it.
760 */
761 if (m->hold_count) {
762 vm_page_requeue(m);
763 addl_page_shortage++;
764 continue;
765 }
766 /*
767 * Don't mess with busy pages, keep in the front of the
768 * queue, most likely are being paged out.
769 */
770 if (!VM_OBJECT_TRYLOCK(object) &&
771 (!vm_pageout_fallback_object_lock(m, &next) ||
772 m->hold_count != 0)) {
773 VM_OBJECT_UNLOCK(object);
774 addl_page_shortage++;
775 continue;
776 }
777 if (m->busy || (m->oflags & VPO_BUSY)) {
778 VM_OBJECT_UNLOCK(object);
779 addl_page_shortage++;
780 continue;
781 }
782
783 /*
784 * If the object is not being used, we ignore previous
785 * references.
786 */
787 if (object->ref_count == 0) {
788 vm_page_flag_clear(m, PG_REFERENCED);
789 KASSERT(!pmap_page_is_mapped(m),
790 ("vm_pageout_scan: page %p is mapped", m));
791
792 /*
793 * Otherwise, if the page has been referenced while in the
794 * inactive queue, we bump the "activation count" upwards,
795 * making it less likely that the page will be added back to
796 * the inactive queue prematurely again. Here we check the
797 * page tables (or emulated bits, if any), given the upper
798 * level VM system not knowing anything about existing
799 * references.
800 */
801 } else if (((m->flags & PG_REFERENCED) == 0) &&
802 (actcount = pmap_ts_referenced(m))) {
803 vm_page_activate(m);
804 VM_OBJECT_UNLOCK(object);
805 m->act_count += (actcount + ACT_ADVANCE);
806 continue;
807 }
808
809 /*
810 * If the upper level VM system knows about any page
811 * references, we activate the page. We also set the
812 * "activation count" higher than normal so that we will less
813 * likely place pages back onto the inactive queue again.
814 */
815 if ((m->flags & PG_REFERENCED) != 0) {
816 vm_page_flag_clear(m, PG_REFERENCED);
817 actcount = pmap_ts_referenced(m);
818 vm_page_activate(m);
819 VM_OBJECT_UNLOCK(object);
820 m->act_count += (actcount + ACT_ADVANCE + 1);
821 continue;
822 }
823
824 /*
825 * If the upper level VM system does not believe that the page
826 * is fully dirty, but it is mapped for write access, then we
827 * consult the pmap to see if the page's dirty status should
828 * be updated.
829 */
830 if (m->dirty != VM_PAGE_BITS_ALL &&
831 (m->flags & PG_WRITEABLE) != 0) {
832 /*
833 * Avoid a race condition: Unless write access is
834 * removed from the page, another processor could
835 * modify it before all access is removed by the call
836 * to vm_page_cache() below. If vm_page_cache() finds
837 * that the page has been modified when it removes all
838 * access, it panics because it cannot cache dirty
839 * pages. In principle, we could eliminate just write
840 * access here rather than all access. In the expected
841 * case, when there are no last instant modifications
842 * to the page, removing all access will be cheaper
843 * overall.
844 */
845 if (pmap_is_modified(m))
846 vm_page_dirty(m);
847 else if (m->dirty == 0)
848 pmap_remove_all(m);
849 }
850
851 if (m->valid == 0) {
852 /*
853 * Invalid pages can be easily freed
854 */
855 vm_page_free(m);
856 cnt.v_dfree++;
857 --page_shortage;
858 } else if (m->dirty == 0) {
859 /*
860 * Clean pages can be placed onto the cache queue.
861 * This effectively frees them.
862 */
863 vm_page_cache(m);
864 --page_shortage;
865 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
866 /*
867 * Dirty pages need to be paged out, but flushing
868 * a page is extremely expensive verses freeing
869 * a clean page. Rather then artificially limiting
870 * the number of pages we can flush, we instead give
871 * dirty pages extra priority on the inactive queue
872 * by forcing them to be cycled through the queue
873 * twice before being flushed, after which the
874 * (now clean) page will cycle through once more
875 * before being freed. This significantly extends
876 * the thrash point for a heavily loaded machine.
877 */
878 vm_page_flag_set(m, PG_WINATCFLS);
879 vm_page_requeue(m);
880 } else if (maxlaunder > 0) {
881 /*
882 * We always want to try to flush some dirty pages if
883 * we encounter them, to keep the system stable.
884 * Normally this number is small, but under extreme
885 * pressure where there are insufficient clean pages
886 * on the inactive queue, we may have to go all out.
887 */
888 int swap_pageouts_ok, vfslocked = 0;
889 struct vnode *vp = NULL;
890 struct mount *mp = NULL;
891
892 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
893 swap_pageouts_ok = 1;
894 } else {
895 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
896 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
897 vm_page_count_min());
898
899 }
900
901 /*
902 * We don't bother paging objects that are "dead".
903 * Those objects are in a "rundown" state.
904 */
905 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
906 VM_OBJECT_UNLOCK(object);
907 vm_page_requeue(m);
908 continue;
909 }
910
911 /*
912 * Following operations may unlock
913 * vm_page_queue_mtx, invalidating the 'next'
914 * pointer. To prevent an inordinate number
915 * of restarts we use our marker to remember
916 * our place.
917 *
918 */
919 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
920 m, &marker, pageq);
921 /*
922 * The object is already known NOT to be dead. It
923 * is possible for the vget() to block the whole
924 * pageout daemon, but the new low-memory handling
925 * code should prevent it.
926 *
927 * The previous code skipped locked vnodes and, worse,
928 * reordered pages in the queue. This results in
929 * completely non-deterministic operation and, on a
930 * busy system, can lead to extremely non-optimal
931 * pageouts. For example, it can cause clean pages
932 * to be freed and dirty pages to be moved to the end
933 * of the queue. Since dirty pages are also moved to
934 * the end of the queue once-cleaned, this gives
935 * way too large a weighting to defering the freeing
936 * of dirty pages.
937 *
938 * We can't wait forever for the vnode lock, we might
939 * deadlock due to a vn_read() getting stuck in
940 * vm_wait while holding this vnode. We skip the
941 * vnode if we can't get it in a reasonable amount
942 * of time.
943 */
944 if (object->type == OBJT_VNODE) {
945 vp = object->handle;
946 if (vp->v_type == VREG &&
947 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
948 mp = NULL;
949 ++pageout_lock_miss;
950 if (object->flags & OBJ_MIGHTBEDIRTY)
951 vnodes_skipped++;
952 goto unlock_and_continue;
953 }
954 vm_page_unlock_queues();
955 vm_object_reference_locked(object);
956 VM_OBJECT_UNLOCK(object);
957 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
958 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
959 curthread)) {
960 VM_OBJECT_LOCK(object);
961 vm_page_lock_queues();
962 ++pageout_lock_miss;
963 if (object->flags & OBJ_MIGHTBEDIRTY)
964 vnodes_skipped++;
965 vp = NULL;
966 goto unlock_and_continue;
967 }
968 VM_OBJECT_LOCK(object);
969 vm_page_lock_queues();
970 /*
971 * The page might have been moved to another
972 * queue during potential blocking in vget()
973 * above. The page might have been freed and
974 * reused for another vnode.
975 */
976 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
977 m->object != object ||
978 TAILQ_NEXT(m, pageq) != &marker) {
979 if (object->flags & OBJ_MIGHTBEDIRTY)
980 vnodes_skipped++;
981 goto unlock_and_continue;
982 }
983
984 /*
985 * The page may have been busied during the
986 * blocking in vget(). We don't move the
987 * page back onto the end of the queue so that
988 * statistics are more correct if we don't.
989 */
990 if (m->busy || (m->oflags & VPO_BUSY)) {
991 goto unlock_and_continue;
992 }
993
994 /*
995 * If the page has become held it might
996 * be undergoing I/O, so skip it
997 */
998 if (m->hold_count) {
999 vm_page_requeue(m);
1000 if (object->flags & OBJ_MIGHTBEDIRTY)
1001 vnodes_skipped++;
1002 goto unlock_and_continue;
1003 }
1004 }
1005
1006 /*
1007 * If a page is dirty, then it is either being washed
1008 * (but not yet cleaned) or it is still in the
1009 * laundry. If it is still in the laundry, then we
1010 * start the cleaning operation.
1011 *
1012 * decrement page_shortage on success to account for
1013 * the (future) cleaned page. Otherwise we could wind
1014 * up laundering or cleaning too many pages.
1015 */
1016 if (vm_pageout_clean(m) != 0) {
1017 --page_shortage;
1018 --maxlaunder;
1019 }
1020 unlock_and_continue:
1021 VM_OBJECT_UNLOCK(object);
1022 if (mp != NULL) {
1023 vm_page_unlock_queues();
1024 if (vp != NULL)
1025 vput(vp);
1026 VFS_UNLOCK_GIANT(vfslocked);
1027 vm_object_deallocate(object);
1028 vn_finished_write(mp);
1029 vm_page_lock_queues();
1030 }
1031 next = TAILQ_NEXT(&marker, pageq);
1032 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1033 &marker, pageq);
1034 continue;
1035 }
1036 VM_OBJECT_UNLOCK(object);
1037 }
1038
1039 /*
1040 * Compute the number of pages we want to try to move from the
1041 * active queue to the inactive queue.
1042 */
1043 page_shortage = vm_paging_target() +
1044 cnt.v_inactive_target - cnt.v_inactive_count;
1045 page_shortage += addl_page_shortage;
1046
1047 /*
1048 * Scan the active queue for things we can deactivate. We nominally
1049 * track the per-page activity counter and use it to locate
1050 * deactivation candidates.
1051 */
1052 pcount = cnt.v_active_count;
1053 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1054
1055 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1056
1057 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1058 ("vm_pageout_scan: page %p isn't active", m));
1059
1060 next = TAILQ_NEXT(m, pageq);
1061 object = m->object;
1062 if ((m->flags & PG_MARKER) != 0) {
1063 m = next;
1064 continue;
1065 }
1066 if (!VM_OBJECT_TRYLOCK(object) &&
1067 !vm_pageout_fallback_object_lock(m, &next)) {
1068 VM_OBJECT_UNLOCK(object);
1069 m = next;
1070 continue;
1071 }
1072
1073 /*
1074 * Don't deactivate pages that are busy.
1075 */
1076 if ((m->busy != 0) ||
1077 (m->oflags & VPO_BUSY) ||
1078 (m->hold_count != 0)) {
1079 VM_OBJECT_UNLOCK(object);
1080 vm_page_requeue(m);
1081 m = next;
1082 continue;
1083 }
1084
1085 /*
1086 * The count for pagedaemon pages is done after checking the
1087 * page for eligibility...
1088 */
1089 cnt.v_pdpages++;
1090
1091 /*
1092 * Check to see "how much" the page has been used.
1093 */
1094 actcount = 0;
1095 if (object->ref_count != 0) {
1096 if (m->flags & PG_REFERENCED) {
1097 actcount += 1;
1098 }
1099 actcount += pmap_ts_referenced(m);
1100 if (actcount) {
1101 m->act_count += ACT_ADVANCE + actcount;
1102 if (m->act_count > ACT_MAX)
1103 m->act_count = ACT_MAX;
1104 }
1105 }
1106
1107 /*
1108 * Since we have "tested" this bit, we need to clear it now.
1109 */
1110 vm_page_flag_clear(m, PG_REFERENCED);
1111
1112 /*
1113 * Only if an object is currently being used, do we use the
1114 * page activation count stats.
1115 */
1116 if (actcount && (object->ref_count != 0)) {
1117 vm_page_requeue(m);
1118 } else {
1119 m->act_count -= min(m->act_count, ACT_DECLINE);
1120 if (vm_pageout_algorithm ||
1121 object->ref_count == 0 ||
1122 m->act_count == 0) {
1123 page_shortage--;
1124 if (object->ref_count == 0) {
1125 pmap_remove_all(m);
1126 if (m->dirty == 0)
1127 vm_page_cache(m);
1128 else
1129 vm_page_deactivate(m);
1130 } else {
1131 vm_page_deactivate(m);
1132 }
1133 } else {
1134 vm_page_requeue(m);
1135 }
1136 }
1137 VM_OBJECT_UNLOCK(object);
1138 m = next;
1139 }
1140 vm_page_unlock_queues();
1141 #if !defined(NO_SWAPPING)
1142 /*
1143 * Idle process swapout -- run once per second.
1144 */
1145 if (vm_swap_idle_enabled) {
1146 static long lsec;
1147 if (time_second != lsec) {
1148 vm_req_vmdaemon(VM_SWAP_IDLE);
1149 lsec = time_second;
1150 }
1151 }
1152 #endif
1153
1154 /*
1155 * If we didn't get enough free pages, and we have skipped a vnode
1156 * in a writeable object, wakeup the sync daemon. And kick swapout
1157 * if we did not get enough free pages.
1158 */
1159 if (vm_paging_target() > 0) {
1160 if (vnodes_skipped && vm_page_count_min())
1161 (void) speedup_syncer();
1162 #if !defined(NO_SWAPPING)
1163 if (vm_swap_enabled && vm_page_count_target())
1164 vm_req_vmdaemon(VM_SWAP_NORMAL);
1165 #endif
1166 }
1167
1168 /*
1169 * If we are critically low on one of RAM or swap and low on
1170 * the other, kill the largest process. However, we avoid
1171 * doing this on the first pass in order to give ourselves a
1172 * chance to flush out dirty vnode-backed pages and to allow
1173 * active pages to be moved to the inactive queue and reclaimed.
1174 */
1175 if (pass != 0 &&
1176 ((swap_pager_avail < 64 && vm_page_count_min()) ||
1177 (swap_pager_full && vm_paging_target() > 0)))
1178 vm_pageout_oom(VM_OOM_MEM);
1179 }
1180
1181
1182 void
1183 vm_pageout_oom(int shortage)
1184 {
1185 struct proc *p, *bigproc;
1186 vm_offset_t size, bigsize;
1187 struct thread *td;
1188 struct vmspace *vm;
1189
1190 /*
1191 * We keep the process bigproc locked once we find it to keep anyone
1192 * from messing with it; however, there is a possibility of
1193 * deadlock if process B is bigproc and one of it's child processes
1194 * attempts to propagate a signal to B while we are waiting for A's
1195 * lock while walking this list. To avoid this, we don't block on
1196 * the process lock but just skip a process if it is already locked.
1197 */
1198 bigproc = NULL;
1199 bigsize = 0;
1200 sx_slock(&allproc_lock);
1201 FOREACH_PROC_IN_SYSTEM(p) {
1202 int breakout;
1203
1204 if (PROC_TRYLOCK(p) == 0)
1205 continue;
1206 /*
1207 * If this is a system or protected process, skip it.
1208 */
1209 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1210 (p->p_pid == 1) ||
1211 ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1212 PROC_UNLOCK(p);
1213 continue;
1214 }
1215 /*
1216 * If the process is in a non-running type state,
1217 * don't touch it. Check all the threads individually.
1218 */
1219 breakout = 0;
1220 FOREACH_THREAD_IN_PROC(p, td) {
1221 thread_lock(td);
1222 if (!TD_ON_RUNQ(td) &&
1223 !TD_IS_RUNNING(td) &&
1224 !TD_IS_SLEEPING(td)) {
1225 thread_unlock(td);
1226 breakout = 1;
1227 break;
1228 }
1229 thread_unlock(td);
1230 }
1231 if (breakout) {
1232 PROC_UNLOCK(p);
1233 continue;
1234 }
1235 /*
1236 * get the process size
1237 */
1238 vm = vmspace_acquire_ref(p);
1239 if (vm == NULL) {
1240 PROC_UNLOCK(p);
1241 continue;
1242 }
1243 if (!vm_map_trylock_read(&vm->vm_map)) {
1244 vmspace_free(vm);
1245 PROC_UNLOCK(p);
1246 continue;
1247 }
1248 size = vmspace_swap_count(vm);
1249 vm_map_unlock_read(&vm->vm_map);
1250 if (shortage == VM_OOM_MEM)
1251 size += vmspace_resident_count(vm);
1252 vmspace_free(vm);
1253 /*
1254 * if the this process is bigger than the biggest one
1255 * remember it.
1256 */
1257 if (size > bigsize) {
1258 if (bigproc != NULL)
1259 PROC_UNLOCK(bigproc);
1260 bigproc = p;
1261 bigsize = size;
1262 } else
1263 PROC_UNLOCK(p);
1264 }
1265 sx_sunlock(&allproc_lock);
1266 if (bigproc != NULL) {
1267 killproc(bigproc, "out of swap space");
1268 sched_nice(bigproc, PRIO_MIN);
1269 PROC_UNLOCK(bigproc);
1270 wakeup(&cnt.v_free_count);
1271 }
1272 }
1273
1274 /*
1275 * This routine tries to maintain the pseudo LRU active queue,
1276 * so that during long periods of time where there is no paging,
1277 * that some statistic accumulation still occurs. This code
1278 * helps the situation where paging just starts to occur.
1279 */
1280 static void
1281 vm_pageout_page_stats()
1282 {
1283 vm_object_t object;
1284 vm_page_t m,next;
1285 int pcount,tpcount; /* Number of pages to check */
1286 static int fullintervalcount = 0;
1287 int page_shortage;
1288
1289 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1290 page_shortage =
1291 (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1292 (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1293
1294 if (page_shortage <= 0)
1295 return;
1296
1297 pcount = cnt.v_active_count;
1298 fullintervalcount += vm_pageout_stats_interval;
1299 if (fullintervalcount < vm_pageout_full_stats_interval) {
1300 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1301 cnt.v_page_count;
1302 if (pcount > tpcount)
1303 pcount = tpcount;
1304 } else {
1305 fullintervalcount = 0;
1306 }
1307
1308 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1309 while ((m != NULL) && (pcount-- > 0)) {
1310 int actcount;
1311
1312 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1313 ("vm_pageout_page_stats: page %p isn't active", m));
1314
1315 next = TAILQ_NEXT(m, pageq);
1316 object = m->object;
1317
1318 if ((m->flags & PG_MARKER) != 0) {
1319 m = next;
1320 continue;
1321 }
1322 if (!VM_OBJECT_TRYLOCK(object) &&
1323 !vm_pageout_fallback_object_lock(m, &next)) {
1324 VM_OBJECT_UNLOCK(object);
1325 m = next;
1326 continue;
1327 }
1328
1329 /*
1330 * Don't deactivate pages that are busy.
1331 */
1332 if ((m->busy != 0) ||
1333 (m->oflags & VPO_BUSY) ||
1334 (m->hold_count != 0)) {
1335 VM_OBJECT_UNLOCK(object);
1336 vm_page_requeue(m);
1337 m = next;
1338 continue;
1339 }
1340
1341 actcount = 0;
1342 if (m->flags & PG_REFERENCED) {
1343 vm_page_flag_clear(m, PG_REFERENCED);
1344 actcount += 1;
1345 }
1346
1347 actcount += pmap_ts_referenced(m);
1348 if (actcount) {
1349 m->act_count += ACT_ADVANCE + actcount;
1350 if (m->act_count > ACT_MAX)
1351 m->act_count = ACT_MAX;
1352 vm_page_requeue(m);
1353 } else {
1354 if (m->act_count == 0) {
1355 /*
1356 * We turn off page access, so that we have
1357 * more accurate RSS stats. We don't do this
1358 * in the normal page deactivation when the
1359 * system is loaded VM wise, because the
1360 * cost of the large number of page protect
1361 * operations would be higher than the value
1362 * of doing the operation.
1363 */
1364 pmap_remove_all(m);
1365 vm_page_deactivate(m);
1366 } else {
1367 m->act_count -= min(m->act_count, ACT_DECLINE);
1368 vm_page_requeue(m);
1369 }
1370 }
1371 VM_OBJECT_UNLOCK(object);
1372 m = next;
1373 }
1374 }
1375
1376 /*
1377 * vm_pageout is the high level pageout daemon.
1378 */
1379 static void
1380 vm_pageout()
1381 {
1382 int error, pass;
1383
1384 /*
1385 * Initialize some paging parameters.
1386 */
1387 cnt.v_interrupt_free_min = 2;
1388 if (cnt.v_page_count < 2000)
1389 vm_pageout_page_count = 8;
1390
1391 /*
1392 * v_free_reserved needs to include enough for the largest
1393 * swap pager structures plus enough for any pv_entry structs
1394 * when paging.
1395 */
1396 if (cnt.v_page_count > 1024)
1397 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1398 else
1399 cnt.v_free_min = 4;
1400 cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1401 cnt.v_interrupt_free_min;
1402 cnt.v_free_reserved = vm_pageout_page_count +
1403 cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1404 cnt.v_free_severe = cnt.v_free_min / 2;
1405 cnt.v_free_min += cnt.v_free_reserved;
1406 cnt.v_free_severe += cnt.v_free_reserved;
1407
1408 /*
1409 * v_free_target and v_cache_min control pageout hysteresis. Note
1410 * that these are more a measure of the VM cache queue hysteresis
1411 * then the VM free queue. Specifically, v_free_target is the
1412 * high water mark (free+cache pages).
1413 *
1414 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1415 * low water mark, while v_free_min is the stop. v_cache_min must
1416 * be big enough to handle memory needs while the pageout daemon
1417 * is signalled and run to free more pages.
1418 */
1419 if (cnt.v_free_count > 6144)
1420 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1421 else
1422 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1423
1424 if (cnt.v_free_count > 2048) {
1425 cnt.v_cache_min = cnt.v_free_target;
1426 cnt.v_cache_max = 2 * cnt.v_cache_min;
1427 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1428 } else {
1429 cnt.v_cache_min = 0;
1430 cnt.v_cache_max = 0;
1431 cnt.v_inactive_target = cnt.v_free_count / 4;
1432 }
1433 if (cnt.v_inactive_target > cnt.v_free_count / 3)
1434 cnt.v_inactive_target = cnt.v_free_count / 3;
1435
1436 /* XXX does not really belong here */
1437 if (vm_page_max_wired == 0)
1438 vm_page_max_wired = cnt.v_free_count / 3;
1439
1440 if (vm_pageout_stats_max == 0)
1441 vm_pageout_stats_max = cnt.v_free_target;
1442
1443 /*
1444 * Set interval in seconds for stats scan.
1445 */
1446 if (vm_pageout_stats_interval == 0)
1447 vm_pageout_stats_interval = 5;
1448 if (vm_pageout_full_stats_interval == 0)
1449 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1450
1451 swap_pager_swap_init();
1452 pass = 0;
1453 /*
1454 * The pageout daemon is never done, so loop forever.
1455 */
1456 while (TRUE) {
1457 /*
1458 * If we have enough free memory, wakeup waiters. Do
1459 * not clear vm_pages_needed until we reach our target,
1460 * otherwise we may be woken up over and over again and
1461 * waste a lot of cpu.
1462 */
1463 mtx_lock(&vm_page_queue_free_mtx);
1464 if (vm_pages_needed && !vm_page_count_min()) {
1465 if (!vm_paging_needed())
1466 vm_pages_needed = 0;
1467 wakeup(&cnt.v_free_count);
1468 }
1469 if (vm_pages_needed) {
1470 /*
1471 * Still not done, take a second pass without waiting
1472 * (unlimited dirty cleaning), otherwise sleep a bit
1473 * and try again.
1474 */
1475 ++pass;
1476 if (pass > 1)
1477 msleep(&vm_pages_needed,
1478 &vm_page_queue_free_mtx, PVM, "psleep",
1479 hz / 2);
1480 } else {
1481 /*
1482 * Good enough, sleep & handle stats. Prime the pass
1483 * for the next run.
1484 */
1485 if (pass > 1)
1486 pass = 1;
1487 else
1488 pass = 0;
1489 error = msleep(&vm_pages_needed,
1490 &vm_page_queue_free_mtx, PVM, "psleep",
1491 vm_pageout_stats_interval * hz);
1492 if (error && !vm_pages_needed) {
1493 mtx_unlock(&vm_page_queue_free_mtx);
1494 pass = 0;
1495 vm_page_lock_queues();
1496 vm_pageout_page_stats();
1497 vm_page_unlock_queues();
1498 continue;
1499 }
1500 }
1501 if (vm_pages_needed)
1502 cnt.v_pdwakeups++;
1503 mtx_unlock(&vm_page_queue_free_mtx);
1504 vm_pageout_scan(pass);
1505 }
1506 }
1507
1508 /*
1509 * Unless the free page queue lock is held by the caller, this function
1510 * should be regarded as advisory. Specifically, the caller should
1511 * not msleep() on &cnt.v_free_count following this function unless
1512 * the free page queue lock is held until the msleep() is performed.
1513 */
1514 void
1515 pagedaemon_wakeup()
1516 {
1517
1518 if (!vm_pages_needed && curthread->td_proc != pageproc) {
1519 vm_pages_needed = 1;
1520 wakeup(&vm_pages_needed);
1521 }
1522 }
1523
1524 #if !defined(NO_SWAPPING)
1525 static void
1526 vm_req_vmdaemon(int req)
1527 {
1528 static int lastrun = 0;
1529
1530 mtx_lock(&vm_daemon_mtx);
1531 vm_pageout_req_swapout |= req;
1532 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1533 wakeup(&vm_daemon_needed);
1534 lastrun = ticks;
1535 }
1536 mtx_unlock(&vm_daemon_mtx);
1537 }
1538
1539 static void
1540 vm_daemon()
1541 {
1542 struct rlimit rsslim;
1543 struct proc *p;
1544 struct thread *td;
1545 struct vmspace *vm;
1546 int breakout, swapout_flags;
1547
1548 while (TRUE) {
1549 mtx_lock(&vm_daemon_mtx);
1550 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1551 swapout_flags = vm_pageout_req_swapout;
1552 vm_pageout_req_swapout = 0;
1553 mtx_unlock(&vm_daemon_mtx);
1554 if (swapout_flags)
1555 swapout_procs(swapout_flags);
1556
1557 /*
1558 * scan the processes for exceeding their rlimits or if
1559 * process is swapped out -- deactivate pages
1560 */
1561 sx_slock(&allproc_lock);
1562 FOREACH_PROC_IN_SYSTEM(p) {
1563 vm_pindex_t limit, size;
1564
1565 /*
1566 * if this is a system process or if we have already
1567 * looked at this process, skip it.
1568 */
1569 PROC_LOCK(p);
1570 if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1571 PROC_UNLOCK(p);
1572 continue;
1573 }
1574 /*
1575 * if the process is in a non-running type state,
1576 * don't touch it.
1577 */
1578 breakout = 0;
1579 FOREACH_THREAD_IN_PROC(p, td) {
1580 thread_lock(td);
1581 if (!TD_ON_RUNQ(td) &&
1582 !TD_IS_RUNNING(td) &&
1583 !TD_IS_SLEEPING(td)) {
1584 thread_unlock(td);
1585 breakout = 1;
1586 break;
1587 }
1588 thread_unlock(td);
1589 }
1590 if (breakout) {
1591 PROC_UNLOCK(p);
1592 continue;
1593 }
1594 /*
1595 * get a limit
1596 */
1597 lim_rlimit(p, RLIMIT_RSS, &rsslim);
1598 limit = OFF_TO_IDX(
1599 qmin(rsslim.rlim_cur, rsslim.rlim_max));
1600
1601 /*
1602 * let processes that are swapped out really be
1603 * swapped out set the limit to nothing (will force a
1604 * swap-out.)
1605 */
1606 if ((p->p_flag & P_INMEM) == 0)
1607 limit = 0; /* XXX */
1608 vm = vmspace_acquire_ref(p);
1609 PROC_UNLOCK(p);
1610 if (vm == NULL)
1611 continue;
1612
1613 size = vmspace_resident_count(vm);
1614 if (limit >= 0 && size >= limit) {
1615 vm_pageout_map_deactivate_pages(
1616 &vm->vm_map, limit);
1617 }
1618 vmspace_free(vm);
1619 }
1620 sx_sunlock(&allproc_lock);
1621 }
1622 }
1623 #endif /* !defined(NO_SWAPPING) */
Cache object: c655a8a1c4f838a7485e9048766677d2
|