The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pageout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * The Mach Operating System project at Carnegie-Mellon University.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   49  *
   50  * Permission to use, copy, modify and distribute this software and
   51  * its documentation is hereby granted, provided that both the copyright
   52  * notice and this permission notice appear in all copies of the
   53  * software, derivative works or modified versions, and any portions
   54  * thereof, and that both notices appear in supporting documentation.
   55  *
   56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   59  *
   60  * Carnegie Mellon requests users of this software to return to
   61  *
   62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   63  *  School of Computer Science
   64  *  Carnegie Mellon University
   65  *  Pittsburgh PA 15213-3890
   66  *
   67  * any improvements or extensions that they make and grant Carnegie the
   68  * rights to redistribute these changes.
   69  */
   70 
   71 /*
   72  *      The proverbial page-out daemon.
   73  */
   74 
   75 #include <sys/cdefs.h>
   76 __FBSDID("$FreeBSD: releng/9.2/sys/vm/vm_pageout.c 240947 2012-09-26 03:54:55Z alc $");
   77 
   78 #include "opt_vm.h"
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/eventhandler.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/kthread.h>
   87 #include <sys/ktr.h>
   88 #include <sys/mount.h>
   89 #include <sys/racct.h>
   90 #include <sys/resourcevar.h>
   91 #include <sys/sched.h>
   92 #include <sys/signalvar.h>
   93 #include <sys/vnode.h>
   94 #include <sys/vmmeter.h>
   95 #include <sys/sx.h>
   96 #include <sys/sysctl.h>
   97 
   98 #include <vm/vm.h>
   99 #include <vm/vm_param.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_pageout.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/swap_pager.h>
  106 #include <vm/vm_extern.h>
  107 #include <vm/uma.h>
  108 
  109 /*
  110  * System initialization
  111  */
  112 
  113 /* the kernel process "vm_pageout"*/
  114 static void vm_pageout(void);
  115 static int vm_pageout_clean(vm_page_t);
  116 static void vm_pageout_scan(int pass);
  117 
  118 struct proc *pageproc;
  119 
  120 static struct kproc_desc page_kp = {
  121         "pagedaemon",
  122         vm_pageout,
  123         &pageproc
  124 };
  125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
  126     &page_kp);
  127 
  128 #if !defined(NO_SWAPPING)
  129 /* the kernel process "vm_daemon"*/
  130 static void vm_daemon(void);
  131 static struct   proc *vmproc;
  132 
  133 static struct kproc_desc vm_kp = {
  134         "vmdaemon",
  135         vm_daemon,
  136         &vmproc
  137 };
  138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
  139 #endif
  140 
  141 
  142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
  143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
  144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
  145 
  146 #if !defined(NO_SWAPPING)
  147 static int vm_pageout_req_swapout;      /* XXX */
  148 static int vm_daemon_needed;
  149 static struct mtx vm_daemon_mtx;
  150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
  151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
  152 #endif
  153 static int vm_max_launder = 32;
  154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
  155 static int vm_pageout_full_stats_interval = 0;
  156 static int vm_pageout_algorithm=0;
  157 static int defer_swap_pageouts=0;
  158 static int disable_swap_pageouts=0;
  159 
  160 #if defined(NO_SWAPPING)
  161 static int vm_swap_enabled=0;
  162 static int vm_swap_idle_enabled=0;
  163 #else
  164 static int vm_swap_enabled=1;
  165 static int vm_swap_idle_enabled=0;
  166 #endif
  167 
  168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
  169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
  170 
  171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
  172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
  173 
  174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
  175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
  176 
  177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
  178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
  179 
  180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
  181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
  182 
  183 #if defined(NO_SWAPPING)
  184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
  186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  188 #else
  189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
  190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
  191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
  192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
  193 #endif
  194 
  195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
  196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
  197 
  198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
  199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
  200 
  201 static int pageout_lock_miss;
  202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
  203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
  204 
  205 #define VM_PAGEOUT_PAGE_COUNT 16
  206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
  207 
  208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
  209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
  210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
  211 
  212 #if !defined(NO_SWAPPING)
  213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
  214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
  215 static void vm_req_vmdaemon(int req);
  216 #endif
  217 static void vm_pageout_page_stats(void);
  218 
  219 /*
  220  * Initialize a dummy page for marking the caller's place in the specified
  221  * paging queue.  In principle, this function only needs to set the flag
  222  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
  223  * count to one as safety precautions.
  224  */ 
  225 static void
  226 vm_pageout_init_marker(vm_page_t marker, u_short queue)
  227 {
  228 
  229         bzero(marker, sizeof(*marker));
  230         marker->flags = PG_MARKER;
  231         marker->oflags = VPO_BUSY;
  232         marker->queue = queue;
  233         marker->hold_count = 1;
  234 }
  235 
  236 /*
  237  * vm_pageout_fallback_object_lock:
  238  * 
  239  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
  240  * known to have failed and page queue must be either PQ_ACTIVE or
  241  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
  242  * while locking the vm object.  Use marker page to detect page queue
  243  * changes and maintain notion of next page on page queue.  Return
  244  * TRUE if no changes were detected, FALSE otherwise.  vm object is
  245  * locked on return.
  246  * 
  247  * This function depends on both the lock portion of struct vm_object
  248  * and normal struct vm_page being type stable.
  249  */
  250 boolean_t
  251 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
  252 {
  253         struct vm_page marker;
  254         boolean_t unchanged;
  255         u_short queue;
  256         vm_object_t object;
  257 
  258         queue = m->queue;
  259         vm_pageout_init_marker(&marker, queue);
  260         object = m->object;
  261         
  262         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
  263                            m, &marker, pageq);
  264         vm_page_unlock_queues();
  265         vm_page_unlock(m);
  266         VM_OBJECT_LOCK(object);
  267         vm_page_lock(m);
  268         vm_page_lock_queues();
  269 
  270         /* Page queue might have changed. */
  271         *next = TAILQ_NEXT(&marker, pageq);
  272         unchanged = (m->queue == queue &&
  273                      m->object == object &&
  274                      &marker == TAILQ_NEXT(m, pageq));
  275         TAILQ_REMOVE(&vm_page_queues[queue].pl,
  276                      &marker, pageq);
  277         return (unchanged);
  278 }
  279 
  280 /*
  281  * Lock the page while holding the page queue lock.  Use marker page
  282  * to detect page queue changes and maintain notion of next page on
  283  * page queue.  Return TRUE if no changes were detected, FALSE
  284  * otherwise.  The page is locked on return. The page queue lock might
  285  * be dropped and reacquired.
  286  *
  287  * This function depends on normal struct vm_page being type stable.
  288  */
  289 boolean_t
  290 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
  291 {
  292         struct vm_page marker;
  293         boolean_t unchanged;
  294         u_short queue;
  295 
  296         vm_page_lock_assert(m, MA_NOTOWNED);
  297         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  298 
  299         if (vm_page_trylock(m))
  300                 return (TRUE);
  301 
  302         queue = m->queue;
  303         vm_pageout_init_marker(&marker, queue);
  304 
  305         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
  306         vm_page_unlock_queues();
  307         vm_page_lock(m);
  308         vm_page_lock_queues();
  309 
  310         /* Page queue might have changed. */
  311         *next = TAILQ_NEXT(&marker, pageq);
  312         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
  313         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
  314         return (unchanged);
  315 }
  316 
  317 /*
  318  * vm_pageout_clean:
  319  *
  320  * Clean the page and remove it from the laundry.
  321  * 
  322  * We set the busy bit to cause potential page faults on this page to
  323  * block.  Note the careful timing, however, the busy bit isn't set till
  324  * late and we cannot do anything that will mess with the page.
  325  */
  326 static int
  327 vm_pageout_clean(vm_page_t m)
  328 {
  329         vm_object_t object;
  330         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
  331         int pageout_count;
  332         int ib, is, page_base;
  333         vm_pindex_t pindex = m->pindex;
  334 
  335         vm_page_lock_assert(m, MA_OWNED);
  336         object = m->object;
  337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  338 
  339         /*
  340          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
  341          * with the new swapper, but we could have serious problems paging
  342          * out other object types if there is insufficient memory.  
  343          *
  344          * Unfortunately, checking free memory here is far too late, so the
  345          * check has been moved up a procedural level.
  346          */
  347 
  348         /*
  349          * Can't clean the page if it's busy or held.
  350          */
  351         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
  352             ("vm_pageout_clean: page %p is busy", m));
  353         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
  354         vm_page_unlock(m);
  355 
  356         mc[vm_pageout_page_count] = pb = ps = m;
  357         pageout_count = 1;
  358         page_base = vm_pageout_page_count;
  359         ib = 1;
  360         is = 1;
  361 
  362         /*
  363          * Scan object for clusterable pages.
  364          *
  365          * We can cluster ONLY if: ->> the page is NOT
  366          * clean, wired, busy, held, or mapped into a
  367          * buffer, and one of the following:
  368          * 1) The page is inactive, or a seldom used
  369          *    active page.
  370          * -or-
  371          * 2) we force the issue.
  372          *
  373          * During heavy mmap/modification loads the pageout
  374          * daemon can really fragment the underlying file
  375          * due to flushing pages out of order and not trying
  376          * align the clusters (which leave sporatic out-of-order
  377          * holes).  To solve this problem we do the reverse scan
  378          * first and attempt to align our cluster, then do a 
  379          * forward scan if room remains.
  380          */
  381 more:
  382         while (ib && pageout_count < vm_pageout_page_count) {
  383                 vm_page_t p;
  384 
  385                 if (ib > pindex) {
  386                         ib = 0;
  387                         break;
  388                 }
  389 
  390                 if ((p = vm_page_prev(pb)) == NULL ||
  391                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
  392                         ib = 0;
  393                         break;
  394                 }
  395                 vm_page_lock(p);
  396                 vm_page_test_dirty(p);
  397                 if (p->dirty == 0 ||
  398                     p->queue != PQ_INACTIVE ||
  399                     p->hold_count != 0) {       /* may be undergoing I/O */
  400                         vm_page_unlock(p);
  401                         ib = 0;
  402                         break;
  403                 }
  404                 vm_page_unlock(p);
  405                 mc[--page_base] = pb = p;
  406                 ++pageout_count;
  407                 ++ib;
  408                 /*
  409                  * alignment boundry, stop here and switch directions.  Do
  410                  * not clear ib.
  411                  */
  412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
  413                         break;
  414         }
  415 
  416         while (pageout_count < vm_pageout_page_count && 
  417             pindex + is < object->size) {
  418                 vm_page_t p;
  419 
  420                 if ((p = vm_page_next(ps)) == NULL ||
  421                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
  422                         break;
  423                 vm_page_lock(p);
  424                 vm_page_test_dirty(p);
  425                 if (p->dirty == 0 ||
  426                     p->queue != PQ_INACTIVE ||
  427                     p->hold_count != 0) {       /* may be undergoing I/O */
  428                         vm_page_unlock(p);
  429                         break;
  430                 }
  431                 vm_page_unlock(p);
  432                 mc[page_base + pageout_count] = ps = p;
  433                 ++pageout_count;
  434                 ++is;
  435         }
  436 
  437         /*
  438          * If we exhausted our forward scan, continue with the reverse scan
  439          * when possible, even past a page boundry.  This catches boundry
  440          * conditions.
  441          */
  442         if (ib && pageout_count < vm_pageout_page_count)
  443                 goto more;
  444 
  445         /*
  446          * we allow reads during pageouts...
  447          */
  448         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
  449             NULL));
  450 }
  451 
  452 /*
  453  * vm_pageout_flush() - launder the given pages
  454  *
  455  *      The given pages are laundered.  Note that we setup for the start of
  456  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
  457  *      reference count all in here rather then in the parent.  If we want
  458  *      the parent to do more sophisticated things we may have to change
  459  *      the ordering.
  460  *
  461  *      Returned runlen is the count of pages between mreq and first
  462  *      page after mreq with status VM_PAGER_AGAIN.
  463  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
  464  *      for any page in runlen set.
  465  */
  466 int
  467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
  468     boolean_t *eio)
  469 {
  470         vm_object_t object = mc[0]->object;
  471         int pageout_status[count];
  472         int numpagedout = 0;
  473         int i, runlen;
  474 
  475         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  476         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
  477 
  478         /*
  479          * Initiate I/O.  Bump the vm_page_t->busy counter and
  480          * mark the pages read-only.
  481          *
  482          * We do not have to fixup the clean/dirty bits here... we can
  483          * allow the pager to do it after the I/O completes.
  484          *
  485          * NOTE! mc[i]->dirty may be partial or fragmented due to an
  486          * edge case with file fragments.
  487          */
  488         for (i = 0; i < count; i++) {
  489                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
  490                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
  491                         mc[i], i, count));
  492                 vm_page_io_start(mc[i]);
  493                 pmap_remove_write(mc[i]);
  494         }
  495         vm_object_pip_add(object, count);
  496 
  497         vm_pager_put_pages(object, mc, count, flags, pageout_status);
  498 
  499         runlen = count - mreq;
  500         if (eio != NULL)
  501                 *eio = FALSE;
  502         for (i = 0; i < count; i++) {
  503                 vm_page_t mt = mc[i];
  504 
  505                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
  506                     !pmap_page_is_write_mapped(mt),
  507                     ("vm_pageout_flush: page %p is not write protected", mt));
  508                 switch (pageout_status[i]) {
  509                 case VM_PAGER_OK:
  510                 case VM_PAGER_PEND:
  511                         numpagedout++;
  512                         break;
  513                 case VM_PAGER_BAD:
  514                         /*
  515                          * Page outside of range of object. Right now we
  516                          * essentially lose the changes by pretending it
  517                          * worked.
  518                          */
  519                         vm_page_undirty(mt);
  520                         break;
  521                 case VM_PAGER_ERROR:
  522                 case VM_PAGER_FAIL:
  523                         /*
  524                          * If page couldn't be paged out, then reactivate the
  525                          * page so it doesn't clog the inactive list.  (We
  526                          * will try paging out it again later).
  527                          */
  528                         vm_page_lock(mt);
  529                         vm_page_activate(mt);
  530                         vm_page_unlock(mt);
  531                         if (eio != NULL && i >= mreq && i - mreq < runlen)
  532                                 *eio = TRUE;
  533                         break;
  534                 case VM_PAGER_AGAIN:
  535                         if (i >= mreq && i - mreq < runlen)
  536                                 runlen = i - mreq;
  537                         break;
  538                 }
  539 
  540                 /*
  541                  * If the operation is still going, leave the page busy to
  542                  * block all other accesses. Also, leave the paging in
  543                  * progress indicator set so that we don't attempt an object
  544                  * collapse.
  545                  */
  546                 if (pageout_status[i] != VM_PAGER_PEND) {
  547                         vm_object_pip_wakeup(object);
  548                         vm_page_io_finish(mt);
  549                         if (vm_page_count_severe()) {
  550                                 vm_page_lock(mt);
  551                                 vm_page_try_to_cache(mt);
  552                                 vm_page_unlock(mt);
  553                         }
  554                 }
  555         }
  556         if (prunlen != NULL)
  557                 *prunlen = runlen;
  558         return (numpagedout);
  559 }
  560 
  561 #if !defined(NO_SWAPPING)
  562 /*
  563  *      vm_pageout_object_deactivate_pages
  564  *
  565  *      Deactivate enough pages to satisfy the inactive target
  566  *      requirements.
  567  *
  568  *      The object and map must be locked.
  569  */
  570 static void
  571 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
  572     long desired)
  573 {
  574         vm_object_t backing_object, object;
  575         vm_page_t p;
  576         int actcount, remove_mode;
  577 
  578         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
  579         if (first_object->type == OBJT_DEVICE ||
  580             first_object->type == OBJT_SG)
  581                 return;
  582         for (object = first_object;; object = backing_object) {
  583                 if (pmap_resident_count(pmap) <= desired)
  584                         goto unlock_return;
  585                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  586                 if (object->type == OBJT_PHYS || object->paging_in_progress)
  587                         goto unlock_return;
  588 
  589                 remove_mode = 0;
  590                 if (object->shadow_count > 1)
  591                         remove_mode = 1;
  592                 /*
  593                  * Scan the object's entire memory queue.
  594                  */
  595                 TAILQ_FOREACH(p, &object->memq, listq) {
  596                         if (pmap_resident_count(pmap) <= desired)
  597                                 goto unlock_return;
  598                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
  599                                 continue;
  600                         PCPU_INC(cnt.v_pdpages);
  601                         vm_page_lock(p);
  602                         if (p->wire_count != 0 || p->hold_count != 0 ||
  603                             !pmap_page_exists_quick(pmap, p)) {
  604                                 vm_page_unlock(p);
  605                                 continue;
  606                         }
  607                         actcount = pmap_ts_referenced(p);
  608                         if ((p->aflags & PGA_REFERENCED) != 0) {
  609                                 if (actcount == 0)
  610                                         actcount = 1;
  611                                 vm_page_aflag_clear(p, PGA_REFERENCED);
  612                         }
  613                         if (p->queue != PQ_ACTIVE && actcount != 0) {
  614                                 vm_page_activate(p);
  615                                 p->act_count += actcount;
  616                         } else if (p->queue == PQ_ACTIVE) {
  617                                 if (actcount == 0) {
  618                                         p->act_count -= min(p->act_count,
  619                                             ACT_DECLINE);
  620                                         if (!remove_mode &&
  621                                             (vm_pageout_algorithm ||
  622                                             p->act_count == 0)) {
  623                                                 pmap_remove_all(p);
  624                                                 vm_page_deactivate(p);
  625                                         } else {
  626                                                 vm_page_lock_queues();
  627                                                 vm_page_requeue(p);
  628                                                 vm_page_unlock_queues();
  629                                         }
  630                                 } else {
  631                                         vm_page_activate(p);
  632                                         if (p->act_count < ACT_MAX -
  633                                             ACT_ADVANCE)
  634                                                 p->act_count += ACT_ADVANCE;
  635                                         vm_page_lock_queues();
  636                                         vm_page_requeue(p);
  637                                         vm_page_unlock_queues();
  638                                 }
  639                         } else if (p->queue == PQ_INACTIVE)
  640                                 pmap_remove_all(p);
  641                         vm_page_unlock(p);
  642                 }
  643                 if ((backing_object = object->backing_object) == NULL)
  644                         goto unlock_return;
  645                 VM_OBJECT_LOCK(backing_object);
  646                 if (object != first_object)
  647                         VM_OBJECT_UNLOCK(object);
  648         }
  649 unlock_return:
  650         if (object != first_object)
  651                 VM_OBJECT_UNLOCK(object);
  652 }
  653 
  654 /*
  655  * deactivate some number of pages in a map, try to do it fairly, but
  656  * that is really hard to do.
  657  */
  658 static void
  659 vm_pageout_map_deactivate_pages(map, desired)
  660         vm_map_t map;
  661         long desired;
  662 {
  663         vm_map_entry_t tmpe;
  664         vm_object_t obj, bigobj;
  665         int nothingwired;
  666 
  667         if (!vm_map_trylock(map))
  668                 return;
  669 
  670         bigobj = NULL;
  671         nothingwired = TRUE;
  672 
  673         /*
  674          * first, search out the biggest object, and try to free pages from
  675          * that.
  676          */
  677         tmpe = map->header.next;
  678         while (tmpe != &map->header) {
  679                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  680                         obj = tmpe->object.vm_object;
  681                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
  682                                 if (obj->shadow_count <= 1 &&
  683                                     (bigobj == NULL ||
  684                                      bigobj->resident_page_count < obj->resident_page_count)) {
  685                                         if (bigobj != NULL)
  686                                                 VM_OBJECT_UNLOCK(bigobj);
  687                                         bigobj = obj;
  688                                 } else
  689                                         VM_OBJECT_UNLOCK(obj);
  690                         }
  691                 }
  692                 if (tmpe->wired_count > 0)
  693                         nothingwired = FALSE;
  694                 tmpe = tmpe->next;
  695         }
  696 
  697         if (bigobj != NULL) {
  698                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
  699                 VM_OBJECT_UNLOCK(bigobj);
  700         }
  701         /*
  702          * Next, hunt around for other pages to deactivate.  We actually
  703          * do this search sort of wrong -- .text first is not the best idea.
  704          */
  705         tmpe = map->header.next;
  706         while (tmpe != &map->header) {
  707                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
  708                         break;
  709                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
  710                         obj = tmpe->object.vm_object;
  711                         if (obj != NULL) {
  712                                 VM_OBJECT_LOCK(obj);
  713                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
  714                                 VM_OBJECT_UNLOCK(obj);
  715                         }
  716                 }
  717                 tmpe = tmpe->next;
  718         }
  719 
  720         /*
  721          * Remove all mappings if a process is swapped out, this will free page
  722          * table pages.
  723          */
  724         if (desired == 0 && nothingwired) {
  725                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
  726                     vm_map_max(map));
  727         }
  728         vm_map_unlock(map);
  729 }
  730 #endif          /* !defined(NO_SWAPPING) */
  731 
  732 /*
  733  *      vm_pageout_scan does the dirty work for the pageout daemon.
  734  */
  735 static void
  736 vm_pageout_scan(int pass)
  737 {
  738         vm_page_t m, next;
  739         struct vm_page marker;
  740         int page_shortage, maxscan, pcount;
  741         int addl_page_shortage;
  742         vm_object_t object;
  743         int actcount;
  744         int vnodes_skipped = 0;
  745         int maxlaunder;
  746         boolean_t queues_locked;
  747 
  748         /*
  749          * Decrease registered cache sizes.
  750          */
  751         EVENTHANDLER_INVOKE(vm_lowmem, 0);
  752         /*
  753          * We do this explicitly after the caches have been drained above.
  754          */
  755         uma_reclaim();
  756 
  757         /*
  758          * The addl_page_shortage is the number of temporarily
  759          * stuck pages in the inactive queue.  In other words, the
  760          * number of pages from cnt.v_inactive_count that should be
  761          * discounted in setting the target for the active queue scan.
  762          */
  763         addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
  764 
  765         /*
  766          * Calculate the number of pages we want to either free or move
  767          * to the cache.
  768          */
  769         page_shortage = vm_paging_target() + addl_page_shortage;
  770 
  771         vm_pageout_init_marker(&marker, PQ_INACTIVE);
  772 
  773         /*
  774          * Start scanning the inactive queue for pages we can move to the
  775          * cache or free.  The scan will stop when the target is reached or
  776          * we have scanned the entire inactive queue.  Note that m->act_count
  777          * is not used to form decisions for the inactive queue, only for the
  778          * active queue.
  779          *
  780          * maxlaunder limits the number of dirty pages we flush per scan.
  781          * For most systems a smaller value (16 or 32) is more robust under
  782          * extreme memory and disk pressure because any unnecessary writes
  783          * to disk can result in extreme performance degredation.  However,
  784          * systems with excessive dirty pages (especially when MAP_NOSYNC is
  785          * used) will die horribly with limited laundering.  If the pageout
  786          * daemon cannot clean enough pages in the first pass, we let it go
  787          * all out in succeeding passes.
  788          */
  789         if ((maxlaunder = vm_max_launder) <= 1)
  790                 maxlaunder = 1;
  791         if (pass)
  792                 maxlaunder = 10000;
  793         vm_page_lock_queues();
  794         queues_locked = TRUE;
  795         maxscan = cnt.v_inactive_count;
  796 
  797         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
  798              m != NULL && maxscan-- > 0 && page_shortage > 0;
  799              m = next) {
  800                 KASSERT(queues_locked, ("unlocked queues"));
  801                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  802                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
  803 
  804                 cnt.v_pdpages++;
  805                 next = TAILQ_NEXT(m, pageq);
  806 
  807                 /*
  808                  * skip marker pages
  809                  */
  810                 if (m->flags & PG_MARKER)
  811                         continue;
  812 
  813                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
  814                     ("Fictitious page %p cannot be in inactive queue", m));
  815                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
  816                     ("Unmanaged page %p cannot be in inactive queue", m));
  817 
  818                 /*
  819                  * The page or object lock acquisitions fail if the
  820                  * page was removed from the queue or moved to a
  821                  * different position within the queue.  In either
  822                  * case, addl_page_shortage should not be incremented.
  823                  */
  824                 if (!vm_pageout_page_lock(m, &next)) {
  825                         vm_page_unlock(m);
  826                         continue;
  827                 }
  828                 object = m->object;
  829                 if (!VM_OBJECT_TRYLOCK(object) &&
  830                     !vm_pageout_fallback_object_lock(m, &next)) {
  831                         vm_page_unlock(m);
  832                         VM_OBJECT_UNLOCK(object);
  833                         continue;
  834                 }
  835 
  836                 /*
  837                  * Don't mess with busy pages, keep them at at the
  838                  * front of the queue, most likely they are being
  839                  * paged out.  Increment addl_page_shortage for busy
  840                  * pages, because they may leave the inactive queue
  841                  * shortly after page scan is finished.
  842                  */
  843                 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
  844                         vm_page_unlock(m);
  845                         VM_OBJECT_UNLOCK(object);
  846                         addl_page_shortage++;
  847                         continue;
  848                 }
  849 
  850                 /*
  851                  * We unlock vm_page_queue_mtx, invalidating the
  852                  * 'next' pointer.  Use our marker to remember our
  853                  * place.
  854                  */
  855                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
  856                     m, &marker, pageq);
  857                 vm_page_unlock_queues();
  858                 queues_locked = FALSE;
  859 
  860                 /*
  861                  * If the object is not being used, we ignore previous 
  862                  * references.
  863                  */
  864                 if (object->ref_count == 0) {
  865                         vm_page_aflag_clear(m, PGA_REFERENCED);
  866                         KASSERT(!pmap_page_is_mapped(m),
  867                             ("vm_pageout_scan: page %p is mapped", m));
  868 
  869                 /*
  870                  * Otherwise, if the page has been referenced while in the 
  871                  * inactive queue, we bump the "activation count" upwards, 
  872                  * making it less likely that the page will be added back to 
  873                  * the inactive queue prematurely again.  Here we check the 
  874                  * page tables (or emulated bits, if any), given the upper 
  875                  * level VM system not knowing anything about existing 
  876                  * references.
  877                  */
  878                 } else if ((m->aflags & PGA_REFERENCED) == 0 &&
  879                     (actcount = pmap_ts_referenced(m)) != 0) {
  880                         vm_page_activate(m);
  881                         vm_page_unlock(m);
  882                         m->act_count += actcount + ACT_ADVANCE;
  883                         VM_OBJECT_UNLOCK(object);
  884                         goto relock_queues;
  885                 }
  886 
  887                 /*
  888                  * If the upper level VM system knows about any page 
  889                  * references, we activate the page.  We also set the 
  890                  * "activation count" higher than normal so that we will less 
  891                  * likely place pages back onto the inactive queue again.
  892                  */
  893                 if ((m->aflags & PGA_REFERENCED) != 0) {
  894                         vm_page_aflag_clear(m, PGA_REFERENCED);
  895                         actcount = pmap_ts_referenced(m);
  896                         vm_page_activate(m);
  897                         vm_page_unlock(m);
  898                         m->act_count += actcount + ACT_ADVANCE + 1;
  899                         VM_OBJECT_UNLOCK(object);
  900                         goto relock_queues;
  901                 }
  902 
  903                 if (m->hold_count != 0) {
  904                         vm_page_unlock(m);
  905                         VM_OBJECT_UNLOCK(object);
  906 
  907                         /*
  908                          * Held pages are essentially stuck in the
  909                          * queue.  So, they ought to be discounted
  910                          * from cnt.v_inactive_count.  See the
  911                          * calculation of the page_shortage for the
  912                          * loop over the active queue below.
  913                          */
  914                         addl_page_shortage++;
  915                         goto relock_queues;
  916                 }
  917 
  918                 /*
  919                  * If the upper level VM system does not believe that the page
  920                  * is fully dirty, but it is mapped for write access, then we
  921                  * consult the pmap to see if the page's dirty status should
  922                  * be updated.
  923                  */
  924                 if (m->dirty != VM_PAGE_BITS_ALL &&
  925                     pmap_page_is_write_mapped(m)) {
  926                         /*
  927                          * Avoid a race condition: Unless write access is
  928                          * removed from the page, another processor could
  929                          * modify it before all access is removed by the call
  930                          * to vm_page_cache() below.  If vm_page_cache() finds
  931                          * that the page has been modified when it removes all
  932                          * access, it panics because it cannot cache dirty
  933                          * pages.  In principle, we could eliminate just write
  934                          * access here rather than all access.  In the expected
  935                          * case, when there are no last instant modifications
  936                          * to the page, removing all access will be cheaper
  937                          * overall.
  938                          */
  939                         if (pmap_is_modified(m))
  940                                 vm_page_dirty(m);
  941                         else if (m->dirty == 0)
  942                                 pmap_remove_all(m);
  943                 }
  944 
  945                 if (m->valid == 0) {
  946                         /*
  947                          * Invalid pages can be easily freed
  948                          */
  949                         vm_page_free(m);
  950                         PCPU_INC(cnt.v_dfree);
  951                         --page_shortage;
  952                 } else if (m->dirty == 0) {
  953                         /*
  954                          * Clean pages can be placed onto the cache queue.
  955                          * This effectively frees them.
  956                          */
  957                         vm_page_cache(m);
  958                         --page_shortage;
  959                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
  960                         /*
  961                          * Dirty pages need to be paged out, but flushing
  962                          * a page is extremely expensive verses freeing
  963                          * a clean page.  Rather then artificially limiting
  964                          * the number of pages we can flush, we instead give
  965                          * dirty pages extra priority on the inactive queue
  966                          * by forcing them to be cycled through the queue
  967                          * twice before being flushed, after which the
  968                          * (now clean) page will cycle through once more
  969                          * before being freed.  This significantly extends
  970                          * the thrash point for a heavily loaded machine.
  971                          */
  972                         m->flags |= PG_WINATCFLS;
  973                         vm_page_lock_queues();
  974                         queues_locked = TRUE;
  975                         vm_page_requeue(m);
  976                 } else if (maxlaunder > 0) {
  977                         /*
  978                          * We always want to try to flush some dirty pages if
  979                          * we encounter them, to keep the system stable.
  980                          * Normally this number is small, but under extreme
  981                          * pressure where there are insufficient clean pages
  982                          * on the inactive queue, we may have to go all out.
  983                          */
  984                         int swap_pageouts_ok, vfslocked = 0;
  985                         struct vnode *vp = NULL;
  986                         struct mount *mp = NULL;
  987 
  988                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
  989                                 swap_pageouts_ok = 1;
  990                         } else {
  991                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
  992                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
  993                                 vm_page_count_min());
  994                                                                                 
  995                         }
  996 
  997                         /*
  998                          * We don't bother paging objects that are "dead".  
  999                          * Those objects are in a "rundown" state.
 1000                          */
 1001                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
 1002                                 vm_page_lock_queues();
 1003                                 vm_page_unlock(m);
 1004                                 VM_OBJECT_UNLOCK(object);
 1005                                 queues_locked = TRUE;
 1006                                 vm_page_requeue(m);
 1007                                 goto relock_queues;
 1008                         }
 1009 
 1010                         /*
 1011                          * The object is already known NOT to be dead.   It
 1012                          * is possible for the vget() to block the whole
 1013                          * pageout daemon, but the new low-memory handling
 1014                          * code should prevent it.
 1015                          *
 1016                          * The previous code skipped locked vnodes and, worse,
 1017                          * reordered pages in the queue.  This results in
 1018                          * completely non-deterministic operation and, on a
 1019                          * busy system, can lead to extremely non-optimal
 1020                          * pageouts.  For example, it can cause clean pages
 1021                          * to be freed and dirty pages to be moved to the end
 1022                          * of the queue.  Since dirty pages are also moved to
 1023                          * the end of the queue once-cleaned, this gives
 1024                          * way too large a weighting to defering the freeing
 1025                          * of dirty pages.
 1026                          *
 1027                          * We can't wait forever for the vnode lock, we might
 1028                          * deadlock due to a vn_read() getting stuck in
 1029                          * vm_wait while holding this vnode.  We skip the 
 1030                          * vnode if we can't get it in a reasonable amount
 1031                          * of time.
 1032                          */
 1033                         if (object->type == OBJT_VNODE) {
 1034                                 vm_page_unlock(m);
 1035                                 vp = object->handle;
 1036                                 if (vp->v_type == VREG &&
 1037                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 1038                                         mp = NULL;
 1039                                         ++pageout_lock_miss;
 1040                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1041                                                 vnodes_skipped++;
 1042                                         goto unlock_and_continue;
 1043                                 }
 1044                                 KASSERT(mp != NULL,
 1045                                     ("vp %p with NULL v_mount", vp));
 1046                                 vm_object_reference_locked(object);
 1047                                 VM_OBJECT_UNLOCK(object);
 1048                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1049                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
 1050                                     curthread)) {
 1051                                         VM_OBJECT_LOCK(object);
 1052                                         ++pageout_lock_miss;
 1053                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1054                                                 vnodes_skipped++;
 1055                                         vp = NULL;
 1056                                         goto unlock_and_continue;
 1057                                 }
 1058                                 VM_OBJECT_LOCK(object);
 1059                                 vm_page_lock(m);
 1060                                 vm_page_lock_queues();
 1061                                 queues_locked = TRUE;
 1062                                 /*
 1063                                  * The page might have been moved to another
 1064                                  * queue during potential blocking in vget()
 1065                                  * above.  The page might have been freed and
 1066                                  * reused for another vnode.
 1067                                  */
 1068                                 if (m->queue != PQ_INACTIVE ||
 1069                                     m->object != object ||
 1070                                     TAILQ_NEXT(m, pageq) != &marker) {
 1071                                         vm_page_unlock(m);
 1072                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1073                                                 vnodes_skipped++;
 1074                                         goto unlock_and_continue;
 1075                                 }
 1076         
 1077                                 /*
 1078                                  * The page may have been busied during the
 1079                                  * blocking in vget().  We don't move the
 1080                                  * page back onto the end of the queue so that
 1081                                  * statistics are more correct if we don't.
 1082                                  */
 1083                                 if (m->busy || (m->oflags & VPO_BUSY)) {
 1084                                         vm_page_unlock(m);
 1085                                         goto unlock_and_continue;
 1086                                 }
 1087 
 1088                                 /*
 1089                                  * If the page has become held it might
 1090                                  * be undergoing I/O, so skip it
 1091                                  */
 1092                                 if (m->hold_count) {
 1093                                         vm_page_unlock(m);
 1094                                         vm_page_requeue(m);
 1095                                         if (object->flags & OBJ_MIGHTBEDIRTY)
 1096                                                 vnodes_skipped++;
 1097                                         goto unlock_and_continue;
 1098                                 }
 1099                                 vm_page_unlock_queues();
 1100                                 queues_locked = FALSE;
 1101                         }
 1102 
 1103                         /*
 1104                          * If a page is dirty, then it is either being washed
 1105                          * (but not yet cleaned) or it is still in the
 1106                          * laundry.  If it is still in the laundry, then we
 1107                          * start the cleaning operation. 
 1108                          *
 1109                          * decrement page_shortage on success to account for
 1110                          * the (future) cleaned page.  Otherwise we could wind
 1111                          * up laundering or cleaning too many pages.
 1112                          */
 1113                         if (vm_pageout_clean(m) != 0) {
 1114                                 --page_shortage;
 1115                                 --maxlaunder;
 1116                         }
 1117 unlock_and_continue:
 1118                         vm_page_lock_assert(m, MA_NOTOWNED);
 1119                         VM_OBJECT_UNLOCK(object);
 1120                         if (mp != NULL) {
 1121                                 if (queues_locked) {
 1122                                         vm_page_unlock_queues();
 1123                                         queues_locked = FALSE;
 1124                                 }
 1125                                 if (vp != NULL)
 1126                                         vput(vp);
 1127                                 VFS_UNLOCK_GIANT(vfslocked);
 1128                                 vm_object_deallocate(object);
 1129                                 vn_finished_write(mp);
 1130                         }
 1131                         vm_page_lock_assert(m, MA_NOTOWNED);
 1132                         goto relock_queues;
 1133                 }
 1134                 vm_page_unlock(m);
 1135                 VM_OBJECT_UNLOCK(object);
 1136 relock_queues:
 1137                 if (!queues_locked) {
 1138                         vm_page_lock_queues();
 1139                         queues_locked = TRUE;
 1140                 }
 1141                 next = TAILQ_NEXT(&marker, pageq);
 1142                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
 1143                     &marker, pageq);
 1144         }
 1145 
 1146         /*
 1147          * Compute the number of pages we want to try to move from the
 1148          * active queue to the inactive queue.
 1149          */
 1150         page_shortage = vm_paging_target() +
 1151                 cnt.v_inactive_target - cnt.v_inactive_count;
 1152         page_shortage += addl_page_shortage;
 1153 
 1154         /*
 1155          * Scan the active queue for things we can deactivate. We nominally
 1156          * track the per-page activity counter and use it to locate
 1157          * deactivation candidates.
 1158          */
 1159         pcount = cnt.v_active_count;
 1160         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1161         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1162 
 1163         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
 1164 
 1165                 KASSERT(m->queue == PQ_ACTIVE,
 1166                     ("vm_pageout_scan: page %p isn't active", m));
 1167 
 1168                 next = TAILQ_NEXT(m, pageq);
 1169                 if ((m->flags & PG_MARKER) != 0) {
 1170                         m = next;
 1171                         continue;
 1172                 }
 1173                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
 1174                     ("Fictitious page %p cannot be in active queue", m));
 1175                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1176                     ("Unmanaged page %p cannot be in active queue", m));
 1177                 if (!vm_pageout_page_lock(m, &next)) {
 1178                         vm_page_unlock(m);
 1179                         m = next;
 1180                         continue;
 1181                 }
 1182                 object = m->object;
 1183                 if (!VM_OBJECT_TRYLOCK(object) &&
 1184                     !vm_pageout_fallback_object_lock(m, &next)) {
 1185                         VM_OBJECT_UNLOCK(object);
 1186                         vm_page_unlock(m);
 1187                         m = next;
 1188                         continue;
 1189                 }
 1190 
 1191                 /*
 1192                  * Don't deactivate pages that are busy.
 1193                  */
 1194                 if ((m->busy != 0) ||
 1195                     (m->oflags & VPO_BUSY) ||
 1196                     (m->hold_count != 0)) {
 1197                         vm_page_unlock(m);
 1198                         VM_OBJECT_UNLOCK(object);
 1199                         vm_page_requeue(m);
 1200                         m = next;
 1201                         continue;
 1202                 }
 1203 
 1204                 /*
 1205                  * The count for pagedaemon pages is done after checking the
 1206                  * page for eligibility...
 1207                  */
 1208                 cnt.v_pdpages++;
 1209 
 1210                 /*
 1211                  * Check to see "how much" the page has been used.
 1212                  */
 1213                 actcount = 0;
 1214                 if (object->ref_count != 0) {
 1215                         if (m->aflags & PGA_REFERENCED) {
 1216                                 actcount += 1;
 1217                         }
 1218                         actcount += pmap_ts_referenced(m);
 1219                         if (actcount) {
 1220                                 m->act_count += ACT_ADVANCE + actcount;
 1221                                 if (m->act_count > ACT_MAX)
 1222                                         m->act_count = ACT_MAX;
 1223                         }
 1224                 }
 1225 
 1226                 /*
 1227                  * Since we have "tested" this bit, we need to clear it now.
 1228                  */
 1229                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1230 
 1231                 /*
 1232                  * Only if an object is currently being used, do we use the
 1233                  * page activation count stats.
 1234                  */
 1235                 if (actcount && (object->ref_count != 0)) {
 1236                         vm_page_requeue(m);
 1237                 } else {
 1238                         m->act_count -= min(m->act_count, ACT_DECLINE);
 1239                         if (vm_pageout_algorithm ||
 1240                             object->ref_count == 0 ||
 1241                             m->act_count == 0) {
 1242                                 page_shortage--;
 1243                                 if (object->ref_count == 0) {
 1244                                         KASSERT(!pmap_page_is_mapped(m),
 1245                                     ("vm_pageout_scan: page %p is mapped", m));
 1246                                         if (m->dirty == 0)
 1247                                                 vm_page_cache(m);
 1248                                         else
 1249                                                 vm_page_deactivate(m);
 1250                                 } else {
 1251                                         vm_page_deactivate(m);
 1252                                 }
 1253                         } else {
 1254                                 vm_page_requeue(m);
 1255                         }
 1256                 }
 1257                 vm_page_unlock(m);
 1258                 VM_OBJECT_UNLOCK(object);
 1259                 m = next;
 1260         }
 1261         vm_page_unlock_queues();
 1262 #if !defined(NO_SWAPPING)
 1263         /*
 1264          * Idle process swapout -- run once per second.
 1265          */
 1266         if (vm_swap_idle_enabled) {
 1267                 static long lsec;
 1268                 if (time_second != lsec) {
 1269                         vm_req_vmdaemon(VM_SWAP_IDLE);
 1270                         lsec = time_second;
 1271                 }
 1272         }
 1273 #endif
 1274                 
 1275         /*
 1276          * If we didn't get enough free pages, and we have skipped a vnode
 1277          * in a writeable object, wakeup the sync daemon.  And kick swapout
 1278          * if we did not get enough free pages.
 1279          */
 1280         if (vm_paging_target() > 0) {
 1281                 if (vnodes_skipped && vm_page_count_min())
 1282                         (void) speedup_syncer();
 1283 #if !defined(NO_SWAPPING)
 1284                 if (vm_swap_enabled && vm_page_count_target())
 1285                         vm_req_vmdaemon(VM_SWAP_NORMAL);
 1286 #endif
 1287         }
 1288 
 1289         /*
 1290          * If we are critically low on one of RAM or swap and low on
 1291          * the other, kill the largest process.  However, we avoid
 1292          * doing this on the first pass in order to give ourselves a
 1293          * chance to flush out dirty vnode-backed pages and to allow
 1294          * active pages to be moved to the inactive queue and reclaimed.
 1295          */
 1296         if (pass != 0 &&
 1297             ((swap_pager_avail < 64 && vm_page_count_min()) ||
 1298              (swap_pager_full && vm_paging_target() > 0)))
 1299                 vm_pageout_oom(VM_OOM_MEM);
 1300 }
 1301 
 1302 
 1303 void
 1304 vm_pageout_oom(int shortage)
 1305 {
 1306         struct proc *p, *bigproc;
 1307         vm_offset_t size, bigsize;
 1308         struct thread *td;
 1309         struct vmspace *vm;
 1310 
 1311         /*
 1312          * We keep the process bigproc locked once we find it to keep anyone
 1313          * from messing with it; however, there is a possibility of
 1314          * deadlock if process B is bigproc and one of it's child processes
 1315          * attempts to propagate a signal to B while we are waiting for A's
 1316          * lock while walking this list.  To avoid this, we don't block on
 1317          * the process lock but just skip a process if it is already locked.
 1318          */
 1319         bigproc = NULL;
 1320         bigsize = 0;
 1321         sx_slock(&allproc_lock);
 1322         FOREACH_PROC_IN_SYSTEM(p) {
 1323                 int breakout;
 1324 
 1325                 if (PROC_TRYLOCK(p) == 0)
 1326                         continue;
 1327                 /*
 1328                  * If this is a system, protected or killed process, skip it.
 1329                  */
 1330                 if (p->p_state != PRS_NORMAL ||
 1331                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
 1332                     (p->p_pid == 1) || P_KILLED(p) ||
 1333                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
 1334                         PROC_UNLOCK(p);
 1335                         continue;
 1336                 }
 1337                 /*
 1338                  * If the process is in a non-running type state,
 1339                  * don't touch it.  Check all the threads individually.
 1340                  */
 1341                 breakout = 0;
 1342                 FOREACH_THREAD_IN_PROC(p, td) {
 1343                         thread_lock(td);
 1344                         if (!TD_ON_RUNQ(td) &&
 1345                             !TD_IS_RUNNING(td) &&
 1346                             !TD_IS_SLEEPING(td) &&
 1347                             !TD_IS_SUSPENDED(td)) {
 1348                                 thread_unlock(td);
 1349                                 breakout = 1;
 1350                                 break;
 1351                         }
 1352                         thread_unlock(td);
 1353                 }
 1354                 if (breakout) {
 1355                         PROC_UNLOCK(p);
 1356                         continue;
 1357                 }
 1358                 /*
 1359                  * get the process size
 1360                  */
 1361                 vm = vmspace_acquire_ref(p);
 1362                 if (vm == NULL) {
 1363                         PROC_UNLOCK(p);
 1364                         continue;
 1365                 }
 1366                 if (!vm_map_trylock_read(&vm->vm_map)) {
 1367                         vmspace_free(vm);
 1368                         PROC_UNLOCK(p);
 1369                         continue;
 1370                 }
 1371                 size = vmspace_swap_count(vm);
 1372                 vm_map_unlock_read(&vm->vm_map);
 1373                 if (shortage == VM_OOM_MEM)
 1374                         size += vmspace_resident_count(vm);
 1375                 vmspace_free(vm);
 1376                 /*
 1377                  * if the this process is bigger than the biggest one
 1378                  * remember it.
 1379                  */
 1380                 if (size > bigsize) {
 1381                         if (bigproc != NULL)
 1382                                 PROC_UNLOCK(bigproc);
 1383                         bigproc = p;
 1384                         bigsize = size;
 1385                 } else
 1386                         PROC_UNLOCK(p);
 1387         }
 1388         sx_sunlock(&allproc_lock);
 1389         if (bigproc != NULL) {
 1390                 killproc(bigproc, "out of swap space");
 1391                 sched_nice(bigproc, PRIO_MIN);
 1392                 PROC_UNLOCK(bigproc);
 1393                 wakeup(&cnt.v_free_count);
 1394         }
 1395 }
 1396 
 1397 /*
 1398  * This routine tries to maintain the pseudo LRU active queue,
 1399  * so that during long periods of time where there is no paging,
 1400  * that some statistic accumulation still occurs.  This code
 1401  * helps the situation where paging just starts to occur.
 1402  */
 1403 static void
 1404 vm_pageout_page_stats()
 1405 {
 1406         vm_object_t object;
 1407         vm_page_t m,next;
 1408         int pcount,tpcount;             /* Number of pages to check */
 1409         static int fullintervalcount = 0;
 1410         int page_shortage;
 1411 
 1412         page_shortage = 
 1413             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
 1414             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
 1415 
 1416         if (page_shortage <= 0)
 1417                 return;
 1418 
 1419         vm_page_lock_queues();
 1420         pcount = cnt.v_active_count;
 1421         fullintervalcount += vm_pageout_stats_interval;
 1422         if (fullintervalcount < vm_pageout_full_stats_interval) {
 1423                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
 1424                     cnt.v_page_count;
 1425                 if (pcount > tpcount)
 1426                         pcount = tpcount;
 1427         } else {
 1428                 fullintervalcount = 0;
 1429         }
 1430 
 1431         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
 1432         while ((m != NULL) && (pcount-- > 0)) {
 1433                 int actcount;
 1434 
 1435                 KASSERT(m->queue == PQ_ACTIVE,
 1436                     ("vm_pageout_page_stats: page %p isn't active", m));
 1437 
 1438                 next = TAILQ_NEXT(m, pageq);
 1439                 if ((m->flags & PG_MARKER) != 0) {
 1440                         m = next;
 1441                         continue;
 1442                 }
 1443                 vm_page_lock_assert(m, MA_NOTOWNED);
 1444                 if (!vm_pageout_page_lock(m, &next)) {
 1445                         vm_page_unlock(m);
 1446                         m = next;
 1447                         continue;
 1448                 }
 1449                 object = m->object;
 1450                 if (!VM_OBJECT_TRYLOCK(object) &&
 1451                     !vm_pageout_fallback_object_lock(m, &next)) {
 1452                         VM_OBJECT_UNLOCK(object);
 1453                         vm_page_unlock(m);
 1454                         m = next;
 1455                         continue;
 1456                 }
 1457 
 1458                 /*
 1459                  * Don't deactivate pages that are busy.
 1460                  */
 1461                 if ((m->busy != 0) ||
 1462                     (m->oflags & VPO_BUSY) ||
 1463                     (m->hold_count != 0)) {
 1464                         vm_page_unlock(m);
 1465                         VM_OBJECT_UNLOCK(object);
 1466                         vm_page_requeue(m);
 1467                         m = next;
 1468                         continue;
 1469                 }
 1470 
 1471                 actcount = 0;
 1472                 if (m->aflags & PGA_REFERENCED) {
 1473                         vm_page_aflag_clear(m, PGA_REFERENCED);
 1474                         actcount += 1;
 1475                 }
 1476 
 1477                 actcount += pmap_ts_referenced(m);
 1478                 if (actcount) {
 1479                         m->act_count += ACT_ADVANCE + actcount;
 1480                         if (m->act_count > ACT_MAX)
 1481                                 m->act_count = ACT_MAX;
 1482                         vm_page_requeue(m);
 1483                 } else {
 1484                         if (m->act_count == 0) {
 1485                                 /*
 1486                                  * We turn off page access, so that we have
 1487                                  * more accurate RSS stats.  We don't do this
 1488                                  * in the normal page deactivation when the
 1489                                  * system is loaded VM wise, because the
 1490                                  * cost of the large number of page protect
 1491                                  * operations would be higher than the value
 1492                                  * of doing the operation.
 1493                                  */
 1494                                 pmap_remove_all(m);
 1495                                 vm_page_deactivate(m);
 1496                         } else {
 1497                                 m->act_count -= min(m->act_count, ACT_DECLINE);
 1498                                 vm_page_requeue(m);
 1499                         }
 1500                 }
 1501                 vm_page_unlock(m);
 1502                 VM_OBJECT_UNLOCK(object);
 1503                 m = next;
 1504         }
 1505         vm_page_unlock_queues();
 1506 }
 1507 
 1508 /*
 1509  *      vm_pageout is the high level pageout daemon.
 1510  */
 1511 static void
 1512 vm_pageout()
 1513 {
 1514         int error, pass;
 1515 
 1516         /*
 1517          * Initialize some paging parameters.
 1518          */
 1519         cnt.v_interrupt_free_min = 2;
 1520         if (cnt.v_page_count < 2000)
 1521                 vm_pageout_page_count = 8;
 1522 
 1523         /*
 1524          * v_free_reserved needs to include enough for the largest
 1525          * swap pager structures plus enough for any pv_entry structs
 1526          * when paging. 
 1527          */
 1528         if (cnt.v_page_count > 1024)
 1529                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
 1530         else
 1531                 cnt.v_free_min = 4;
 1532         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
 1533             cnt.v_interrupt_free_min;
 1534         cnt.v_free_reserved = vm_pageout_page_count +
 1535             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
 1536         cnt.v_free_severe = cnt.v_free_min / 2;
 1537         cnt.v_free_min += cnt.v_free_reserved;
 1538         cnt.v_free_severe += cnt.v_free_reserved;
 1539 
 1540         /*
 1541          * v_free_target and v_cache_min control pageout hysteresis.  Note
 1542          * that these are more a measure of the VM cache queue hysteresis
 1543          * then the VM free queue.  Specifically, v_free_target is the
 1544          * high water mark (free+cache pages).
 1545          *
 1546          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
 1547          * low water mark, while v_free_min is the stop.  v_cache_min must
 1548          * be big enough to handle memory needs while the pageout daemon
 1549          * is signalled and run to free more pages.
 1550          */
 1551         if (cnt.v_free_count > 6144)
 1552                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
 1553         else
 1554                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
 1555 
 1556         if (cnt.v_free_count > 2048) {
 1557                 cnt.v_cache_min = cnt.v_free_target;
 1558                 cnt.v_cache_max = 2 * cnt.v_cache_min;
 1559                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
 1560         } else {
 1561                 cnt.v_cache_min = 0;
 1562                 cnt.v_cache_max = 0;
 1563                 cnt.v_inactive_target = cnt.v_free_count / 4;
 1564         }
 1565         if (cnt.v_inactive_target > cnt.v_free_count / 3)
 1566                 cnt.v_inactive_target = cnt.v_free_count / 3;
 1567 
 1568         /* XXX does not really belong here */
 1569         if (vm_page_max_wired == 0)
 1570                 vm_page_max_wired = cnt.v_free_count / 3;
 1571 
 1572         if (vm_pageout_stats_max == 0)
 1573                 vm_pageout_stats_max = cnt.v_free_target;
 1574 
 1575         /*
 1576          * Set interval in seconds for stats scan.
 1577          */
 1578         if (vm_pageout_stats_interval == 0)
 1579                 vm_pageout_stats_interval = 5;
 1580         if (vm_pageout_full_stats_interval == 0)
 1581                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
 1582 
 1583         swap_pager_swap_init();
 1584         pass = 0;
 1585         /*
 1586          * The pageout daemon is never done, so loop forever.
 1587          */
 1588         while (TRUE) {
 1589                 /*
 1590                  * If we have enough free memory, wakeup waiters.  Do
 1591                  * not clear vm_pages_needed until we reach our target,
 1592                  * otherwise we may be woken up over and over again and
 1593                  * waste a lot of cpu.
 1594                  */
 1595                 mtx_lock(&vm_page_queue_free_mtx);
 1596                 if (vm_pages_needed && !vm_page_count_min()) {
 1597                         if (!vm_paging_needed())
 1598                                 vm_pages_needed = 0;
 1599                         wakeup(&cnt.v_free_count);
 1600                 }
 1601                 if (vm_pages_needed) {
 1602                         /*
 1603                          * Still not done, take a second pass without waiting
 1604                          * (unlimited dirty cleaning), otherwise sleep a bit
 1605                          * and try again.
 1606                          */
 1607                         ++pass;
 1608                         if (pass > 1)
 1609                                 msleep(&vm_pages_needed,
 1610                                     &vm_page_queue_free_mtx, PVM, "psleep",
 1611                                     hz / 2);
 1612                 } else {
 1613                         /*
 1614                          * Good enough, sleep & handle stats.  Prime the pass
 1615                          * for the next run.
 1616                          */
 1617                         if (pass > 1)
 1618                                 pass = 1;
 1619                         else
 1620                                 pass = 0;
 1621                         error = msleep(&vm_pages_needed,
 1622                             &vm_page_queue_free_mtx, PVM, "psleep",
 1623                             vm_pageout_stats_interval * hz);
 1624                         if (error && !vm_pages_needed) {
 1625                                 mtx_unlock(&vm_page_queue_free_mtx);
 1626                                 pass = 0;
 1627                                 vm_pageout_page_stats();
 1628                                 continue;
 1629                         }
 1630                 }
 1631                 if (vm_pages_needed)
 1632                         cnt.v_pdwakeups++;
 1633                 mtx_unlock(&vm_page_queue_free_mtx);
 1634                 vm_pageout_scan(pass);
 1635         }
 1636 }
 1637 
 1638 /*
 1639  * Unless the free page queue lock is held by the caller, this function
 1640  * should be regarded as advisory.  Specifically, the caller should
 1641  * not msleep() on &cnt.v_free_count following this function unless
 1642  * the free page queue lock is held until the msleep() is performed.
 1643  */
 1644 void
 1645 pagedaemon_wakeup()
 1646 {
 1647 
 1648         if (!vm_pages_needed && curthread->td_proc != pageproc) {
 1649                 vm_pages_needed = 1;
 1650                 wakeup(&vm_pages_needed);
 1651         }
 1652 }
 1653 
 1654 #if !defined(NO_SWAPPING)
 1655 static void
 1656 vm_req_vmdaemon(int req)
 1657 {
 1658         static int lastrun = 0;
 1659 
 1660         mtx_lock(&vm_daemon_mtx);
 1661         vm_pageout_req_swapout |= req;
 1662         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
 1663                 wakeup(&vm_daemon_needed);
 1664                 lastrun = ticks;
 1665         }
 1666         mtx_unlock(&vm_daemon_mtx);
 1667 }
 1668 
 1669 static void
 1670 vm_daemon()
 1671 {
 1672         struct rlimit rsslim;
 1673         struct proc *p;
 1674         struct thread *td;
 1675         struct vmspace *vm;
 1676         int breakout, swapout_flags, tryagain, attempts;
 1677 #ifdef RACCT
 1678         uint64_t rsize, ravailable;
 1679 #endif
 1680 
 1681         while (TRUE) {
 1682                 mtx_lock(&vm_daemon_mtx);
 1683 #ifdef RACCT
 1684                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
 1685 #else
 1686                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
 1687 #endif
 1688                 swapout_flags = vm_pageout_req_swapout;
 1689                 vm_pageout_req_swapout = 0;
 1690                 mtx_unlock(&vm_daemon_mtx);
 1691                 if (swapout_flags)
 1692                         swapout_procs(swapout_flags);
 1693 
 1694                 /*
 1695                  * scan the processes for exceeding their rlimits or if
 1696                  * process is swapped out -- deactivate pages
 1697                  */
 1698                 tryagain = 0;
 1699                 attempts = 0;
 1700 again:
 1701                 attempts++;
 1702                 sx_slock(&allproc_lock);
 1703                 FOREACH_PROC_IN_SYSTEM(p) {
 1704                         vm_pindex_t limit, size;
 1705 
 1706                         /*
 1707                          * if this is a system process or if we have already
 1708                          * looked at this process, skip it.
 1709                          */
 1710                         PROC_LOCK(p);
 1711                         if (p->p_state != PRS_NORMAL ||
 1712                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
 1713                                 PROC_UNLOCK(p);
 1714                                 continue;
 1715                         }
 1716                         /*
 1717                          * if the process is in a non-running type state,
 1718                          * don't touch it.
 1719                          */
 1720                         breakout = 0;
 1721                         FOREACH_THREAD_IN_PROC(p, td) {
 1722                                 thread_lock(td);
 1723                                 if (!TD_ON_RUNQ(td) &&
 1724                                     !TD_IS_RUNNING(td) &&
 1725                                     !TD_IS_SLEEPING(td) &&
 1726                                     !TD_IS_SUSPENDED(td)) {
 1727                                         thread_unlock(td);
 1728                                         breakout = 1;
 1729                                         break;
 1730                                 }
 1731                                 thread_unlock(td);
 1732                         }
 1733                         if (breakout) {
 1734                                 PROC_UNLOCK(p);
 1735                                 continue;
 1736                         }
 1737                         /*
 1738                          * get a limit
 1739                          */
 1740                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
 1741                         limit = OFF_TO_IDX(
 1742                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
 1743 
 1744                         /*
 1745                          * let processes that are swapped out really be
 1746                          * swapped out set the limit to nothing (will force a
 1747                          * swap-out.)
 1748                          */
 1749                         if ((p->p_flag & P_INMEM) == 0)
 1750                                 limit = 0;      /* XXX */
 1751                         vm = vmspace_acquire_ref(p);
 1752                         PROC_UNLOCK(p);
 1753                         if (vm == NULL)
 1754                                 continue;
 1755 
 1756                         size = vmspace_resident_count(vm);
 1757                         if (limit >= 0 && size >= limit) {
 1758                                 vm_pageout_map_deactivate_pages(
 1759                                     &vm->vm_map, limit);
 1760                         }
 1761 #ifdef RACCT
 1762                         rsize = IDX_TO_OFF(size);
 1763                         PROC_LOCK(p);
 1764                         racct_set(p, RACCT_RSS, rsize);
 1765                         ravailable = racct_get_available(p, RACCT_RSS);
 1766                         PROC_UNLOCK(p);
 1767                         if (rsize > ravailable) {
 1768                                 /*
 1769                                  * Don't be overly aggressive; this might be
 1770                                  * an innocent process, and the limit could've
 1771                                  * been exceeded by some memory hog.  Don't
 1772                                  * try to deactivate more than 1/4th of process'
 1773                                  * resident set size.
 1774                                  */
 1775                                 if (attempts <= 8) {
 1776                                         if (ravailable < rsize - (rsize / 4))
 1777                                                 ravailable = rsize - (rsize / 4);
 1778                                 }
 1779                                 vm_pageout_map_deactivate_pages(
 1780                                     &vm->vm_map, OFF_TO_IDX(ravailable));
 1781                                 /* Update RSS usage after paging out. */
 1782                                 size = vmspace_resident_count(vm);
 1783                                 rsize = IDX_TO_OFF(size);
 1784                                 PROC_LOCK(p);
 1785                                 racct_set(p, RACCT_RSS, rsize);
 1786                                 PROC_UNLOCK(p);
 1787                                 if (rsize > ravailable)
 1788                                         tryagain = 1;
 1789                         }
 1790 #endif
 1791                         vmspace_free(vm);
 1792                 }
 1793                 sx_sunlock(&allproc_lock);
 1794                 if (tryagain != 0 && attempts <= 10)
 1795                         goto again;
 1796         }
 1797 }
 1798 #endif                  /* !defined(NO_SWAPPING) */

Cache object: b307a8a066baab4c75505665c0f1a856


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.