The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)vm_pager.c    8.6 (Berkeley) 1/12/94
   37  *
   38  *
   39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   40  * All rights reserved.
   41  *
   42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   43  *
   44  * Permission to use, copy, modify and distribute this software and
   45  * its documentation is hereby granted, provided that both the copyright
   46  * notice and this permission notice appear in all copies of the
   47  * software, derivative works or modified versions, and any portions
   48  * thereof, and that both notices appear in supporting documentation.
   49  *
   50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   53  *
   54  * Carnegie Mellon requests users of this software to return to
   55  *
   56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   57  *  School of Computer Science
   58  *  Carnegie Mellon University
   59  *  Pittsburgh PA 15213-3890
   60  *
   61  * any improvements or extensions that they make and grant Carnegie the
   62  * rights to redistribute these changes.
   63  *
   64  * $FreeBSD$
   65  */
   66 
   67 /*
   68  *      Paging space routine stubs.  Emulates a matchmaker-like interface
   69  *      for builtin pagers.
   70  */
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/kernel.h>
   75 #include <sys/vnode.h>
   76 #include <sys/buf.h>
   77 #include <sys/ucred.h>
   78 #include <sys/malloc.h>
   79 #include <sys/proc.h>
   80 
   81 #include <vm/vm.h>
   82 #include <vm/vm_param.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_page.h>
   85 #include <vm/vm_pager.h>
   86 #include <vm/vm_extern.h>
   87 
   88 MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
   89 
   90 extern struct pagerops defaultpagerops;
   91 extern struct pagerops swappagerops;
   92 extern struct pagerops vnodepagerops;
   93 extern struct pagerops devicepagerops;
   94 extern struct pagerops physpagerops;
   95 
   96 int cluster_pbuf_freecnt = -1;  /* unlimited to begin with */
   97 
   98 static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
   99 static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
  100         vm_ooffset_t));
  101 static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
  102 static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
  103 static void dead_pager_dealloc __P((vm_object_t));
  104 
  105 static int
  106 dead_pager_getpages(obj, ma, count, req)
  107         vm_object_t obj;
  108         vm_page_t *ma;
  109         int count;
  110         int req;
  111 {
  112         return VM_PAGER_FAIL;
  113 }
  114 
  115 static vm_object_t
  116 dead_pager_alloc(handle, size, prot, off)
  117         void *handle;
  118         vm_ooffset_t size;
  119         vm_prot_t prot;
  120         vm_ooffset_t off;
  121 {
  122         return NULL;
  123 }
  124 
  125 static void
  126 dead_pager_putpages(object, m, count, flags, rtvals)
  127         vm_object_t object;
  128         vm_page_t *m;
  129         int count;
  130         int flags;
  131         int *rtvals;
  132 {
  133         int i;
  134 
  135         for (i = 0; i < count; i++) {
  136                 rtvals[i] = VM_PAGER_AGAIN;
  137         }
  138 }
  139 
  140 static int
  141 dead_pager_haspage(object, pindex, prev, next)
  142         vm_object_t object;
  143         vm_pindex_t pindex;
  144         int *prev;
  145         int *next;
  146 {
  147         if (prev)
  148                 *prev = 0;
  149         if (next)
  150                 *next = 0;
  151         return FALSE;
  152 }
  153 
  154 static void
  155 dead_pager_dealloc(object)
  156         vm_object_t object;
  157 {
  158         return;
  159 }
  160 
  161 static struct pagerops deadpagerops = {
  162         NULL,
  163         dead_pager_alloc,
  164         dead_pager_dealloc,
  165         dead_pager_getpages,
  166         dead_pager_putpages,
  167         dead_pager_haspage,
  168         NULL
  169 };
  170 
  171 struct pagerops *pagertab[] = {
  172         &defaultpagerops,       /* OBJT_DEFAULT */
  173         &swappagerops,          /* OBJT_SWAP */
  174         &vnodepagerops,         /* OBJT_VNODE */
  175         &devicepagerops,        /* OBJT_DEVICE */
  176         &physpagerops,          /* OBJT_PHYS */
  177         &deadpagerops           /* OBJT_DEAD */
  178 };
  179 
  180 int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
  181 
  182 /*
  183  * Kernel address space for mapping pages.
  184  * Used by pagers where KVAs are needed for IO.
  185  *
  186  * XXX needs to be large enough to support the number of pending async
  187  * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
  188  * (MAXPHYS == 64k) if you want to get the most efficiency.
  189  */
  190 #define PAGER_MAP_SIZE  (8 * 1024 * 1024)
  191 
  192 int pager_map_size = PAGER_MAP_SIZE;
  193 vm_map_t pager_map;
  194 static int bswneeded;
  195 static vm_offset_t swapbkva;            /* swap buffers kva */
  196 
  197 void
  198 vm_pager_init()
  199 {
  200         struct pagerops **pgops;
  201 
  202         /*
  203          * Initialize known pagers
  204          */
  205         for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
  206                 if (pgops && ((*pgops)->pgo_init != NULL))
  207                         (*(*pgops)->pgo_init) ();
  208 }
  209 
  210 void
  211 vm_pager_bufferinit()
  212 {
  213         struct buf *bp;
  214         int i;
  215 
  216         bp = swbuf;
  217         /*
  218          * Now set up swap and physical I/O buffer headers.
  219          */
  220         for (i = 0; i < nswbuf; i++, bp++) {
  221                 TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
  222                 BUF_LOCKINIT(bp);
  223                 LIST_INIT(&bp->b_dep);
  224                 bp->b_rcred = bp->b_wcred = NOCRED;
  225                 bp->b_xflags = 0;
  226         }
  227 
  228         cluster_pbuf_freecnt = nswbuf / 2;
  229 
  230         swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
  231         if (!swapbkva)
  232                 panic("Not enough pager_map VM space for physical buffers");
  233 }
  234 
  235 /*
  236  * Allocate an instance of a pager of the given type.
  237  * Size, protection and offset parameters are passed in for pagers that
  238  * need to perform page-level validation (e.g. the device pager).
  239  */
  240 vm_object_t
  241 vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
  242                   vm_ooffset_t off)
  243 {
  244         struct pagerops *ops;
  245 
  246         ops = pagertab[type];
  247         if (ops)
  248                 return ((*ops->pgo_alloc) (handle, size, prot, off));
  249         return (NULL);
  250 }
  251 
  252 void
  253 vm_pager_deallocate(object)
  254         vm_object_t object;
  255 {
  256         (*pagertab[object->type]->pgo_dealloc) (object);
  257 }
  258 
  259 /*
  260  *      vm_pager_strategy:
  261  *
  262  *      called with no specific spl
  263  *      Execute strategy routine directly to pager.
  264  */
  265 
  266 void
  267 vm_pager_strategy(vm_object_t object, struct buf *bp)
  268 {
  269         if (pagertab[object->type]->pgo_strategy) {
  270             (*pagertab[object->type]->pgo_strategy)(object, bp);
  271         } else {
  272                 bp->b_flags |= B_ERROR;
  273                 bp->b_error = ENXIO;
  274                 biodone(bp);
  275         }
  276 }
  277 
  278 /*
  279  * vm_pager_get_pages() - inline, see vm/vm_pager.h
  280  * vm_pager_put_pages() - inline, see vm/vm_pager.h
  281  * vm_pager_has_page() - inline, see vm/vm_pager.h
  282  * vm_pager_page_inserted() - inline, see vm/vm_pager.h
  283  * vm_pager_page_removed() - inline, see vm/vm_pager.h
  284  */
  285 
  286 #if 0
  287 /*
  288  *      vm_pager_sync:
  289  *
  290  *      Called by pageout daemon before going back to sleep.
  291  *      Gives pagers a chance to clean up any completed async pageing 
  292  *      operations.
  293  */
  294 void
  295 vm_pager_sync()
  296 {
  297         struct pagerops **pgops;
  298 
  299         for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
  300                 if (pgops && ((*pgops)->pgo_sync != NULL))
  301                         (*(*pgops)->pgo_sync) ();
  302 }
  303 
  304 #endif
  305 
  306 vm_offset_t
  307 vm_pager_map_page(m)
  308         vm_page_t m;
  309 {
  310         vm_offset_t kva;
  311 
  312         kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
  313         pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
  314         return (kva);
  315 }
  316 
  317 void
  318 vm_pager_unmap_page(kva)
  319         vm_offset_t kva;
  320 {
  321         pmap_kremove(kva);
  322         kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
  323 }
  324 
  325 vm_object_t
  326 vm_pager_object_lookup(pg_list, handle)
  327         register struct pagerlst *pg_list;
  328         void *handle;
  329 {
  330         register vm_object_t object;
  331 
  332         for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
  333                 if (object->handle == handle)
  334                         return (object);
  335         return (NULL);
  336 }
  337 
  338 /*
  339  * initialize a physical buffer
  340  */
  341 
  342 static void
  343 initpbuf(struct buf *bp)
  344 {
  345         bp->b_rcred = NOCRED;
  346         bp->b_wcred = NOCRED;
  347         bp->b_qindex = QUEUE_NONE;
  348         bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
  349         bp->b_kvabase = bp->b_data;
  350         bp->b_kvasize = MAXPHYS;
  351         bp->b_xflags = 0;
  352         bp->b_flags = 0;
  353         bp->b_error = 0;
  354         BUF_LOCK(bp, LK_EXCLUSIVE);
  355 }
  356 
  357 /*
  358  * allocate a physical buffer
  359  *
  360  *      There are a limited number (nswbuf) of physical buffers.  We need
  361  *      to make sure that no single subsystem is able to hog all of them,
  362  *      so each subsystem implements a counter which is typically initialized
  363  *      to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
  364  *      increments it on release, and blocks if the counter hits zero.  A
  365  *      subsystem may initialize the counter to -1 to disable the feature,
  366  *      but it must still be sure to match up all uses of getpbuf() with 
  367  *      relpbuf() using the same variable.
  368  *
  369  *      NOTE: pfreecnt can be NULL, but this 'feature' will be removed
  370  *      relatively soon when the rest of the subsystems get smart about it. XXX
  371  */
  372 struct buf *
  373 getpbuf(pfreecnt)
  374         int *pfreecnt;
  375 {
  376         int s;
  377         struct buf *bp;
  378 
  379         s = splvm();
  380 
  381         for (;;) {
  382                 if (pfreecnt) {
  383                         while (*pfreecnt == 0) {
  384                                 tsleep(pfreecnt, PVM, "wswbuf0", 0);
  385                         }
  386                 }
  387 
  388                 /* get a bp from the swap buffer header pool */
  389                 if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
  390                         break;
  391 
  392                 bswneeded = 1;
  393                 tsleep(&bswneeded, PVM, "wswbuf1", 0);
  394                 /* loop in case someone else grabbed one */
  395         }
  396         TAILQ_REMOVE(&bswlist, bp, b_freelist);
  397         if (pfreecnt)
  398                 --*pfreecnt;
  399         splx(s);
  400 
  401         initpbuf(bp);
  402         return bp;
  403 }
  404 
  405 /*
  406  * allocate a physical buffer, if one is available.
  407  *
  408  *      Note that there is no NULL hack here - all subsystems using this
  409  *      call understand how to use pfreecnt.
  410  */
  411 struct buf *
  412 trypbuf(pfreecnt)
  413         int *pfreecnt;
  414 {
  415         int s;
  416         struct buf *bp;
  417 
  418         s = splvm();
  419         if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
  420                 splx(s);
  421                 return NULL;
  422         }
  423         TAILQ_REMOVE(&bswlist, bp, b_freelist);
  424 
  425         --*pfreecnt;
  426 
  427         splx(s);
  428 
  429         initpbuf(bp);
  430 
  431         return bp;
  432 }
  433 
  434 /*
  435  * release a physical buffer
  436  *
  437  *      NOTE: pfreecnt can be NULL, but this 'feature' will be removed
  438  *      relatively soon when the rest of the subsystems get smart about it. XXX
  439  */
  440 void
  441 relpbuf(bp, pfreecnt)
  442         struct buf *bp;
  443         int *pfreecnt;
  444 {
  445         int s;
  446 
  447         s = splvm();
  448 
  449         if (bp->b_rcred != NOCRED) {
  450                 crfree(bp->b_rcred);
  451                 bp->b_rcred = NOCRED;
  452         }
  453         if (bp->b_wcred != NOCRED) {
  454                 crfree(bp->b_wcred);
  455                 bp->b_wcred = NOCRED;
  456         }
  457 
  458         if (bp->b_vp)
  459                 pbrelvp(bp);
  460 
  461         BUF_UNLOCK(bp);
  462 
  463         TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
  464 
  465         if (bswneeded) {
  466                 bswneeded = 0;
  467                 wakeup(&bswneeded);
  468         }
  469         if (pfreecnt) {
  470                 if (++*pfreecnt == 1)
  471                         wakeup(pfreecnt);
  472         }
  473         splx(s);
  474 }
  475 
  476 /********************************************************
  477  *              CHAINING FUNCTIONS                      *
  478  ********************************************************
  479  *
  480  *      These functions support recursion of I/O operations
  481  *      on bp's, typically by chaining one or more 'child' bp's
  482  *      to the parent.  Synchronous, asynchronous, and semi-synchronous
  483  *      chaining is possible.
  484  */
  485 
  486 /*
  487  *      vm_pager_chain_iodone:
  488  *
  489  *      io completion routine for child bp.  Currently we fudge a bit
  490  *      on dealing with b_resid.   Since users of these routines may issue
  491  *      multiple children simultaniously, sequencing of the error can be lost.
  492  */
  493 
  494 static void
  495 vm_pager_chain_iodone(struct buf *nbp)
  496 {
  497         struct buf *bp;
  498 
  499         if ((bp = nbp->b_chain.parent) != NULL) {
  500                 if (nbp->b_flags & B_ERROR) {
  501                         bp->b_flags |= B_ERROR;
  502                         bp->b_error = nbp->b_error;
  503                 } else if (nbp->b_resid != 0) {
  504                         bp->b_flags |= B_ERROR;
  505                         bp->b_error = EINVAL;
  506                 } else {
  507                         bp->b_resid -= nbp->b_bcount;
  508                 }
  509                 nbp->b_chain.parent = NULL;
  510                 --bp->b_chain.count;
  511                 if (bp->b_flags & B_WANT) {
  512                         bp->b_flags &= ~B_WANT;
  513                         wakeup(bp);
  514                 }
  515                 if (!bp->b_chain.count && (bp->b_xflags & BX_AUTOCHAINDONE)) {
  516                         bp->b_xflags &= ~BX_AUTOCHAINDONE;
  517                         if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
  518                                 bp->b_flags |= B_ERROR;
  519                                 bp->b_error = EINVAL;
  520                         }
  521                         biodone(bp);
  522                 }
  523         }
  524         nbp->b_flags |= B_DONE;
  525         nbp->b_flags &= ~B_ASYNC;
  526         relpbuf(nbp, NULL);
  527 }
  528 
  529 /*
  530  *      getchainbuf:
  531  *
  532  *      Obtain a physical buffer and chain it to its parent buffer.  When
  533  *      I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
  534  *      automatically propogated to the parent
  535  *
  536  *      Since these are brand new buffers, we do not have to clear B_INVAL
  537  *      and B_ERROR because they are already clear.
  538  */
  539 
  540 struct buf *
  541 getchainbuf(struct buf *bp, struct vnode *vp, int flags)
  542 {
  543         struct buf *nbp = getpbuf(NULL);
  544 
  545         nbp->b_chain.parent = bp;
  546         ++bp->b_chain.count;
  547 
  548         if (bp->b_chain.count > 4)
  549                 waitchainbuf(bp, 4, 0);
  550 
  551         nbp->b_flags = B_CALL | (bp->b_flags & B_ORDERED) | flags;
  552         nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
  553         nbp->b_iodone = vm_pager_chain_iodone;
  554 
  555         crhold(nbp->b_rcred);
  556         crhold(nbp->b_wcred);
  557 
  558         if (vp)
  559                 pbgetvp(vp, nbp);
  560         return(nbp);
  561 }
  562 
  563 void
  564 flushchainbuf(struct buf *nbp)
  565 {
  566         if (nbp->b_bcount) {
  567                 nbp->b_bufsize = nbp->b_bcount;
  568                 if ((nbp->b_flags & B_READ) == 0)
  569                         nbp->b_dirtyend = nbp->b_bcount;
  570                 BUF_KERNPROC(nbp);
  571                 VOP_STRATEGY(nbp->b_vp, nbp);
  572         } else {
  573                 biodone(nbp);
  574         }
  575 }
  576 
  577 void
  578 waitchainbuf(struct buf *bp, int count, int done)
  579 {
  580         int s;
  581 
  582         s = splbio();
  583         while (bp->b_chain.count > count) {
  584                 bp->b_flags |= B_WANT;
  585                 tsleep(bp, PRIBIO + 4, "bpchain", 0);
  586         }
  587         if (done) {
  588                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
  589                         bp->b_flags |= B_ERROR;
  590                         bp->b_error = EINVAL;
  591                 }
  592                 biodone(bp);
  593         }
  594         splx(s);
  595 }
  596 
  597 void
  598 autochaindone(struct buf *bp)
  599 {
  600         int s;
  601 
  602         s = splbio();
  603         if (bp->b_chain.count == 0)
  604                 biodone(bp);
  605         else
  606                 bp->b_xflags |= BX_AUTOCHAINDONE;
  607         splx(s);
  608 }
  609 

Cache object: bfe543a237e60dca1f82f26cf60b4eef


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.