FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Physical memory system implementation
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_phys.h>
71 #include <vm/vm_pagequeue.h>
72
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74 "Too many physsegs.");
75
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 #endif
80
81 int __read_mostly vm_ndomains = 1;
82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
83
84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
85 int __read_mostly vm_phys_nsegs;
86 static struct vm_phys_seg vm_phys_early_segs[8];
87 static int vm_phys_early_nsegs;
88
89 struct vm_phys_fictitious_seg;
90 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
91 struct vm_phys_fictitious_seg *);
92
93 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
94 RB_INITIALIZER(&vm_phys_fictitious_tree);
95
96 struct vm_phys_fictitious_seg {
97 RB_ENTRY(vm_phys_fictitious_seg) node;
98 /* Memory region data */
99 vm_paddr_t start;
100 vm_paddr_t end;
101 vm_page_t first_page;
102 };
103
104 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
105 vm_phys_fictitious_cmp);
106
107 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
108 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
109
110 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
111 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
112 [VM_NFREEORDER_MAX];
113
114 static int __read_mostly vm_nfreelists;
115
116 /*
117 * These "avail lists" are globals used to communicate boot-time physical
118 * memory layout to other parts of the kernel. Each physically contiguous
119 * region of memory is defined by a start address at an even index and an
120 * end address at the following odd index. Each list is terminated by a
121 * pair of zero entries.
122 *
123 * dump_avail tells the dump code what regions to include in a crash dump, and
124 * phys_avail is all of the remaining physical memory that is available for
125 * the vm system.
126 *
127 * Initially dump_avail and phys_avail are identical. Boot time memory
128 * allocations remove extents from phys_avail that may still be included
129 * in dumps.
130 */
131 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
132 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
133
134 /*
135 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
136 */
137 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
138
139 CTASSERT(VM_FREELIST_DEFAULT == 0);
140
141 #ifdef VM_FREELIST_DMA32
142 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
143 #endif
144
145 /*
146 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
147 * the ordering of the free list boundaries.
148 */
149 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
150 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
151 #endif
152
153 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
154 SYSCTL_OID(_vm, OID_AUTO, phys_free,
155 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
156 sysctl_vm_phys_free, "A",
157 "Phys Free Info");
158
159 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
161 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162 sysctl_vm_phys_segs, "A",
163 "Phys Seg Info");
164
165 #ifdef NUMA
166 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
167 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
168 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
169 sysctl_vm_phys_locality, "A",
170 "Phys Locality Info");
171 #endif
172
173 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
174 &vm_ndomains, 0, "Number of physical memory domains available.");
175
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179 int order, int tail);
180
181 /*
182 * Red-black tree helpers for vm fictitious range management.
183 */
184 static inline int
185 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
186 struct vm_phys_fictitious_seg *range)
187 {
188
189 KASSERT(range->start != 0 && range->end != 0,
190 ("Invalid range passed on search for vm_fictitious page"));
191 if (p->start >= range->end)
192 return (1);
193 if (p->start < range->start)
194 return (-1);
195
196 return (0);
197 }
198
199 static int
200 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
201 struct vm_phys_fictitious_seg *p2)
202 {
203
204 /* Check if this is a search for a page */
205 if (p1->end == 0)
206 return (vm_phys_fictitious_in_range(p1, p2));
207
208 KASSERT(p2->end != 0,
209 ("Invalid range passed as second parameter to vm fictitious comparison"));
210
211 /* Searching to add a new range */
212 if (p1->end <= p2->start)
213 return (-1);
214 if (p1->start >= p2->end)
215 return (1);
216
217 panic("Trying to add overlapping vm fictitious ranges:\n"
218 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
219 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
220 }
221
222 int
223 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
224 {
225 #ifdef NUMA
226 domainset_t mask;
227 int i;
228
229 if (vm_ndomains == 1 || mem_affinity == NULL)
230 return (0);
231
232 DOMAINSET_ZERO(&mask);
233 /*
234 * Check for any memory that overlaps low, high.
235 */
236 for (i = 0; mem_affinity[i].end != 0; i++)
237 if (mem_affinity[i].start <= high &&
238 mem_affinity[i].end >= low)
239 DOMAINSET_SET(mem_affinity[i].domain, &mask);
240 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
241 return (prefer);
242 if (DOMAINSET_EMPTY(&mask))
243 panic("vm_phys_domain_match: Impossible constraint");
244 return (DOMAINSET_FFS(&mask) - 1);
245 #else
246 return (0);
247 #endif
248 }
249
250 /*
251 * Outputs the state of the physical memory allocator, specifically,
252 * the amount of physical memory in each free list.
253 */
254 static int
255 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
256 {
257 struct sbuf sbuf;
258 struct vm_freelist *fl;
259 int dom, error, flind, oind, pind;
260
261 error = sysctl_wire_old_buffer(req, 0);
262 if (error != 0)
263 return (error);
264 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
265 for (dom = 0; dom < vm_ndomains; dom++) {
266 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
267 for (flind = 0; flind < vm_nfreelists; flind++) {
268 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
269 "\n ORDER (SIZE) | NUMBER"
270 "\n ", flind);
271 for (pind = 0; pind < VM_NFREEPOOL; pind++)
272 sbuf_printf(&sbuf, " | POOL %d", pind);
273 sbuf_printf(&sbuf, "\n-- ");
274 for (pind = 0; pind < VM_NFREEPOOL; pind++)
275 sbuf_printf(&sbuf, "-- -- ");
276 sbuf_printf(&sbuf, "--\n");
277 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
278 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
279 1 << (PAGE_SHIFT - 10 + oind));
280 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
281 fl = vm_phys_free_queues[dom][flind][pind];
282 sbuf_printf(&sbuf, " | %6d",
283 fl[oind].lcnt);
284 }
285 sbuf_printf(&sbuf, "\n");
286 }
287 }
288 }
289 error = sbuf_finish(&sbuf);
290 sbuf_delete(&sbuf);
291 return (error);
292 }
293
294 /*
295 * Outputs the set of physical memory segments.
296 */
297 static int
298 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
299 {
300 struct sbuf sbuf;
301 struct vm_phys_seg *seg;
302 int error, segind;
303
304 error = sysctl_wire_old_buffer(req, 0);
305 if (error != 0)
306 return (error);
307 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
308 for (segind = 0; segind < vm_phys_nsegs; segind++) {
309 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
310 seg = &vm_phys_segs[segind];
311 sbuf_printf(&sbuf, "start: %#jx\n",
312 (uintmax_t)seg->start);
313 sbuf_printf(&sbuf, "end: %#jx\n",
314 (uintmax_t)seg->end);
315 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
316 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
317 }
318 error = sbuf_finish(&sbuf);
319 sbuf_delete(&sbuf);
320 return (error);
321 }
322
323 /*
324 * Return affinity, or -1 if there's no affinity information.
325 */
326 int
327 vm_phys_mem_affinity(int f, int t)
328 {
329
330 #ifdef NUMA
331 if (mem_locality == NULL)
332 return (-1);
333 if (f >= vm_ndomains || t >= vm_ndomains)
334 return (-1);
335 return (mem_locality[f * vm_ndomains + t]);
336 #else
337 return (-1);
338 #endif
339 }
340
341 #ifdef NUMA
342 /*
343 * Outputs the VM locality table.
344 */
345 static int
346 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
347 {
348 struct sbuf sbuf;
349 int error, i, j;
350
351 error = sysctl_wire_old_buffer(req, 0);
352 if (error != 0)
353 return (error);
354 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
355
356 sbuf_printf(&sbuf, "\n");
357
358 for (i = 0; i < vm_ndomains; i++) {
359 sbuf_printf(&sbuf, "%d: ", i);
360 for (j = 0; j < vm_ndomains; j++) {
361 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
362 }
363 sbuf_printf(&sbuf, "\n");
364 }
365 error = sbuf_finish(&sbuf);
366 sbuf_delete(&sbuf);
367 return (error);
368 }
369 #endif
370
371 static void
372 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
373 {
374
375 m->order = order;
376 if (tail)
377 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
378 else
379 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
380 fl[order].lcnt++;
381 }
382
383 static void
384 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
385 {
386
387 TAILQ_REMOVE(&fl[order].pl, m, listq);
388 fl[order].lcnt--;
389 m->order = VM_NFREEORDER;
390 }
391
392 /*
393 * Create a physical memory segment.
394 */
395 static void
396 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
397 {
398 struct vm_phys_seg *seg;
399
400 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
401 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
402 KASSERT(domain >= 0 && domain < vm_ndomains,
403 ("vm_phys_create_seg: invalid domain provided"));
404 seg = &vm_phys_segs[vm_phys_nsegs++];
405 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
406 *seg = *(seg - 1);
407 seg--;
408 }
409 seg->start = start;
410 seg->end = end;
411 seg->domain = domain;
412 }
413
414 static void
415 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
416 {
417 #ifdef NUMA
418 int i;
419
420 if (mem_affinity == NULL) {
421 _vm_phys_create_seg(start, end, 0);
422 return;
423 }
424
425 for (i = 0;; i++) {
426 if (mem_affinity[i].end == 0)
427 panic("Reached end of affinity info");
428 if (mem_affinity[i].end <= start)
429 continue;
430 if (mem_affinity[i].start > start)
431 panic("No affinity info for start %jx",
432 (uintmax_t)start);
433 if (mem_affinity[i].end >= end) {
434 _vm_phys_create_seg(start, end,
435 mem_affinity[i].domain);
436 break;
437 }
438 _vm_phys_create_seg(start, mem_affinity[i].end,
439 mem_affinity[i].domain);
440 start = mem_affinity[i].end;
441 }
442 #else
443 _vm_phys_create_seg(start, end, 0);
444 #endif
445 }
446
447 /*
448 * Add a physical memory segment.
449 */
450 void
451 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
452 {
453 vm_paddr_t paddr;
454
455 KASSERT((start & PAGE_MASK) == 0,
456 ("vm_phys_define_seg: start is not page aligned"));
457 KASSERT((end & PAGE_MASK) == 0,
458 ("vm_phys_define_seg: end is not page aligned"));
459
460 /*
461 * Split the physical memory segment if it spans two or more free
462 * list boundaries.
463 */
464 paddr = start;
465 #ifdef VM_FREELIST_LOWMEM
466 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
467 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
468 paddr = VM_LOWMEM_BOUNDARY;
469 }
470 #endif
471 #ifdef VM_FREELIST_DMA32
472 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
473 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
474 paddr = VM_DMA32_BOUNDARY;
475 }
476 #endif
477 vm_phys_create_seg(paddr, end);
478 }
479
480 /*
481 * Initialize the physical memory allocator.
482 *
483 * Requires that vm_page_array is initialized!
484 */
485 void
486 vm_phys_init(void)
487 {
488 struct vm_freelist *fl;
489 struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
490 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
491 u_long npages;
492 #endif
493 int dom, flind, freelist, oind, pind, segind;
494
495 /*
496 * Compute the number of free lists, and generate the mapping from the
497 * manifest constants VM_FREELIST_* to the free list indices.
498 *
499 * Initially, the entries of vm_freelist_to_flind[] are set to either
500 * 0 or 1 to indicate which free lists should be created.
501 */
502 #ifdef VM_DMA32_NPAGES_THRESHOLD
503 npages = 0;
504 #endif
505 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
506 seg = &vm_phys_segs[segind];
507 #ifdef VM_FREELIST_LOWMEM
508 if (seg->end <= VM_LOWMEM_BOUNDARY)
509 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
510 else
511 #endif
512 #ifdef VM_FREELIST_DMA32
513 if (
514 #ifdef VM_DMA32_NPAGES_THRESHOLD
515 /*
516 * Create the DMA32 free list only if the amount of
517 * physical memory above physical address 4G exceeds the
518 * given threshold.
519 */
520 npages > VM_DMA32_NPAGES_THRESHOLD &&
521 #endif
522 seg->end <= VM_DMA32_BOUNDARY)
523 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
524 else
525 #endif
526 {
527 #ifdef VM_DMA32_NPAGES_THRESHOLD
528 npages += atop(seg->end - seg->start);
529 #endif
530 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
531 }
532 }
533 /* Change each entry into a running total of the free lists. */
534 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
535 vm_freelist_to_flind[freelist] +=
536 vm_freelist_to_flind[freelist - 1];
537 }
538 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
539 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
540 /* Change each entry into a free list index. */
541 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
542 vm_freelist_to_flind[freelist]--;
543
544 /*
545 * Initialize the first_page and free_queues fields of each physical
546 * memory segment.
547 */
548 #ifdef VM_PHYSSEG_SPARSE
549 npages = 0;
550 #endif
551 for (segind = 0; segind < vm_phys_nsegs; segind++) {
552 seg = &vm_phys_segs[segind];
553 #ifdef VM_PHYSSEG_SPARSE
554 seg->first_page = &vm_page_array[npages];
555 npages += atop(seg->end - seg->start);
556 #else
557 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
558 #endif
559 #ifdef VM_FREELIST_LOWMEM
560 if (seg->end <= VM_LOWMEM_BOUNDARY) {
561 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
562 KASSERT(flind >= 0,
563 ("vm_phys_init: LOWMEM flind < 0"));
564 } else
565 #endif
566 #ifdef VM_FREELIST_DMA32
567 if (seg->end <= VM_DMA32_BOUNDARY) {
568 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
569 KASSERT(flind >= 0,
570 ("vm_phys_init: DMA32 flind < 0"));
571 } else
572 #endif
573 {
574 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
575 KASSERT(flind >= 0,
576 ("vm_phys_init: DEFAULT flind < 0"));
577 }
578 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
579 }
580
581 /*
582 * Coalesce physical memory segments that are contiguous and share the
583 * same per-domain free queues.
584 */
585 prev_seg = vm_phys_segs;
586 seg = &vm_phys_segs[1];
587 end_seg = &vm_phys_segs[vm_phys_nsegs];
588 while (seg < end_seg) {
589 if (prev_seg->end == seg->start &&
590 prev_seg->free_queues == seg->free_queues) {
591 prev_seg->end = seg->end;
592 KASSERT(prev_seg->domain == seg->domain,
593 ("vm_phys_init: free queues cannot span domains"));
594 vm_phys_nsegs--;
595 end_seg--;
596 for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
597 *tmp_seg = *(tmp_seg + 1);
598 } else {
599 prev_seg = seg;
600 seg++;
601 }
602 }
603
604 /*
605 * Initialize the free queues.
606 */
607 for (dom = 0; dom < vm_ndomains; dom++) {
608 for (flind = 0; flind < vm_nfreelists; flind++) {
609 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
610 fl = vm_phys_free_queues[dom][flind][pind];
611 for (oind = 0; oind < VM_NFREEORDER; oind++)
612 TAILQ_INIT(&fl[oind].pl);
613 }
614 }
615 }
616
617 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
618 }
619
620 /*
621 * Register info about the NUMA topology of the system.
622 *
623 * Invoked by platform-dependent code prior to vm_phys_init().
624 */
625 void
626 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
627 int *locality)
628 {
629 #ifdef NUMA
630 int d, i;
631
632 /*
633 * For now the only override value that we support is 1, which
634 * effectively disables NUMA-awareness in the allocators.
635 */
636 d = 0;
637 TUNABLE_INT_FETCH("vm.numa.disabled", &d);
638 if (d)
639 ndomains = 1;
640
641 if (ndomains > 1) {
642 vm_ndomains = ndomains;
643 mem_affinity = affinity;
644 mem_locality = locality;
645 }
646
647 for (i = 0; i < vm_ndomains; i++)
648 DOMAINSET_SET(i, &all_domains);
649 #else
650 (void)ndomains;
651 (void)affinity;
652 (void)locality;
653 #endif
654 }
655
656 /*
657 * Split a contiguous, power of two-sized set of physical pages.
658 *
659 * When this function is called by a page allocation function, the caller
660 * should request insertion at the head unless the order [order, oind) queues
661 * are known to be empty. The objective being to reduce the likelihood of
662 * long-term fragmentation by promoting contemporaneous allocation and
663 * (hopefully) deallocation.
664 */
665 static __inline void
666 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
667 int tail)
668 {
669 vm_page_t m_buddy;
670
671 while (oind > order) {
672 oind--;
673 m_buddy = &m[1 << oind];
674 KASSERT(m_buddy->order == VM_NFREEORDER,
675 ("vm_phys_split_pages: page %p has unexpected order %d",
676 m_buddy, m_buddy->order));
677 vm_freelist_add(fl, m_buddy, oind, tail);
678 }
679 }
680
681 /*
682 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
683 * and sized set to the specified free list.
684 *
685 * When this function is called by a page allocation function, the caller
686 * should request insertion at the head unless the lower-order queues are
687 * known to be empty. The objective being to reduce the likelihood of long-
688 * term fragmentation by promoting contemporaneous allocation and (hopefully)
689 * deallocation.
690 *
691 * The physical page m's buddy must not be free.
692 */
693 static void
694 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
695 {
696 u_int n;
697 int order;
698
699 KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
700 KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
701 ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
702 ("vm_phys_enq_range: page %p and npages %u are misaligned",
703 m, npages));
704 do {
705 KASSERT(m->order == VM_NFREEORDER,
706 ("vm_phys_enq_range: page %p has unexpected order %d",
707 m, m->order));
708 order = ffs(npages) - 1;
709 KASSERT(order < VM_NFREEORDER,
710 ("vm_phys_enq_range: order %d is out of range", order));
711 vm_freelist_add(fl, m, order, tail);
712 n = 1 << order;
713 m += n;
714 npages -= n;
715 } while (npages > 0);
716 }
717
718 /*
719 * Set the pool for a contiguous, power of two-sized set of physical pages.
720 */
721 static void
722 vm_phys_set_pool(int pool, vm_page_t m, int order)
723 {
724 vm_page_t m_tmp;
725
726 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
727 m_tmp->pool = pool;
728 }
729
730 /*
731 * Tries to allocate the specified number of pages from the specified pool
732 * within the specified domain. Returns the actual number of allocated pages
733 * and a pointer to each page through the array ma[].
734 *
735 * The returned pages may not be physically contiguous. However, in contrast
736 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
737 * calling this function once to allocate the desired number of pages will
738 * avoid wasted time in vm_phys_split_pages().
739 *
740 * The free page queues for the specified domain must be locked.
741 */
742 int
743 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
744 {
745 struct vm_freelist *alt, *fl;
746 vm_page_t m;
747 int avail, end, flind, freelist, i, need, oind, pind;
748
749 KASSERT(domain >= 0 && domain < vm_ndomains,
750 ("vm_phys_alloc_npages: domain %d is out of range", domain));
751 KASSERT(pool < VM_NFREEPOOL,
752 ("vm_phys_alloc_npages: pool %d is out of range", pool));
753 KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
754 ("vm_phys_alloc_npages: npages %d is out of range", npages));
755 vm_domain_free_assert_locked(VM_DOMAIN(domain));
756 i = 0;
757 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
758 flind = vm_freelist_to_flind[freelist];
759 if (flind < 0)
760 continue;
761 fl = vm_phys_free_queues[domain][flind][pool];
762 for (oind = 0; oind < VM_NFREEORDER; oind++) {
763 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
764 vm_freelist_rem(fl, m, oind);
765 avail = 1 << oind;
766 need = imin(npages - i, avail);
767 for (end = i + need; i < end;)
768 ma[i++] = m++;
769 if (need < avail) {
770 /*
771 * Return excess pages to fl. Its
772 * order [0, oind) queues are empty.
773 */
774 vm_phys_enq_range(m, avail - need, fl,
775 1);
776 return (npages);
777 } else if (i == npages)
778 return (npages);
779 }
780 }
781 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
782 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
783 alt = vm_phys_free_queues[domain][flind][pind];
784 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
785 NULL) {
786 vm_freelist_rem(alt, m, oind);
787 vm_phys_set_pool(pool, m, oind);
788 avail = 1 << oind;
789 need = imin(npages - i, avail);
790 for (end = i + need; i < end;)
791 ma[i++] = m++;
792 if (need < avail) {
793 /*
794 * Return excess pages to fl.
795 * Its order [0, oind) queues
796 * are empty.
797 */
798 vm_phys_enq_range(m, avail -
799 need, fl, 1);
800 return (npages);
801 } else if (i == npages)
802 return (npages);
803 }
804 }
805 }
806 }
807 return (i);
808 }
809
810 /*
811 * Allocate a contiguous, power of two-sized set of physical pages
812 * from the free lists.
813 *
814 * The free page queues must be locked.
815 */
816 vm_page_t
817 vm_phys_alloc_pages(int domain, int pool, int order)
818 {
819 vm_page_t m;
820 int freelist;
821
822 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
823 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
824 if (m != NULL)
825 return (m);
826 }
827 return (NULL);
828 }
829
830 /*
831 * Allocate a contiguous, power of two-sized set of physical pages from the
832 * specified free list. The free list must be specified using one of the
833 * manifest constants VM_FREELIST_*.
834 *
835 * The free page queues must be locked.
836 */
837 vm_page_t
838 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
839 {
840 struct vm_freelist *alt, *fl;
841 vm_page_t m;
842 int oind, pind, flind;
843
844 KASSERT(domain >= 0 && domain < vm_ndomains,
845 ("vm_phys_alloc_freelist_pages: domain %d is out of range",
846 domain));
847 KASSERT(freelist < VM_NFREELIST,
848 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
849 freelist));
850 KASSERT(pool < VM_NFREEPOOL,
851 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
852 KASSERT(order < VM_NFREEORDER,
853 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
854
855 flind = vm_freelist_to_flind[freelist];
856 /* Check if freelist is present */
857 if (flind < 0)
858 return (NULL);
859
860 vm_domain_free_assert_locked(VM_DOMAIN(domain));
861 fl = &vm_phys_free_queues[domain][flind][pool][0];
862 for (oind = order; oind < VM_NFREEORDER; oind++) {
863 m = TAILQ_FIRST(&fl[oind].pl);
864 if (m != NULL) {
865 vm_freelist_rem(fl, m, oind);
866 /* The order [order, oind) queues are empty. */
867 vm_phys_split_pages(m, oind, fl, order, 1);
868 return (m);
869 }
870 }
871
872 /*
873 * The given pool was empty. Find the largest
874 * contiguous, power-of-two-sized set of pages in any
875 * pool. Transfer these pages to the given pool, and
876 * use them to satisfy the allocation.
877 */
878 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
879 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
880 alt = &vm_phys_free_queues[domain][flind][pind][0];
881 m = TAILQ_FIRST(&alt[oind].pl);
882 if (m != NULL) {
883 vm_freelist_rem(alt, m, oind);
884 vm_phys_set_pool(pool, m, oind);
885 /* The order [order, oind) queues are empty. */
886 vm_phys_split_pages(m, oind, fl, order, 1);
887 return (m);
888 }
889 }
890 }
891 return (NULL);
892 }
893
894 /*
895 * Find the vm_page corresponding to the given physical address.
896 */
897 vm_page_t
898 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
899 {
900 struct vm_phys_seg *seg;
901 int segind;
902
903 for (segind = 0; segind < vm_phys_nsegs; segind++) {
904 seg = &vm_phys_segs[segind];
905 if (pa >= seg->start && pa < seg->end)
906 return (&seg->first_page[atop(pa - seg->start)]);
907 }
908 return (NULL);
909 }
910
911 vm_page_t
912 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
913 {
914 struct vm_phys_fictitious_seg tmp, *seg;
915 vm_page_t m;
916
917 m = NULL;
918 tmp.start = pa;
919 tmp.end = 0;
920
921 rw_rlock(&vm_phys_fictitious_reg_lock);
922 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
923 rw_runlock(&vm_phys_fictitious_reg_lock);
924 if (seg == NULL)
925 return (NULL);
926
927 m = &seg->first_page[atop(pa - seg->start)];
928 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
929
930 return (m);
931 }
932
933 static inline void
934 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
935 long page_count, vm_memattr_t memattr)
936 {
937 long i;
938
939 bzero(range, page_count * sizeof(*range));
940 for (i = 0; i < page_count; i++) {
941 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
942 range[i].oflags &= ~VPO_UNMANAGED;
943 range[i].busy_lock = VPB_UNBUSIED;
944 }
945 }
946
947 int
948 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
949 vm_memattr_t memattr)
950 {
951 struct vm_phys_fictitious_seg *seg;
952 vm_page_t fp;
953 long page_count;
954 #ifdef VM_PHYSSEG_DENSE
955 long pi, pe;
956 long dpage_count;
957 #endif
958
959 KASSERT(start < end,
960 ("Start of segment isn't less than end (start: %jx end: %jx)",
961 (uintmax_t)start, (uintmax_t)end));
962
963 page_count = (end - start) / PAGE_SIZE;
964
965 #ifdef VM_PHYSSEG_DENSE
966 pi = atop(start);
967 pe = atop(end);
968 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
969 fp = &vm_page_array[pi - first_page];
970 if ((pe - first_page) > vm_page_array_size) {
971 /*
972 * We have a segment that starts inside
973 * of vm_page_array, but ends outside of it.
974 *
975 * Use vm_page_array pages for those that are
976 * inside of the vm_page_array range, and
977 * allocate the remaining ones.
978 */
979 dpage_count = vm_page_array_size - (pi - first_page);
980 vm_phys_fictitious_init_range(fp, start, dpage_count,
981 memattr);
982 page_count -= dpage_count;
983 start += ptoa(dpage_count);
984 goto alloc;
985 }
986 /*
987 * We can allocate the full range from vm_page_array,
988 * so there's no need to register the range in the tree.
989 */
990 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
991 return (0);
992 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
993 /*
994 * We have a segment that ends inside of vm_page_array,
995 * but starts outside of it.
996 */
997 fp = &vm_page_array[0];
998 dpage_count = pe - first_page;
999 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1000 memattr);
1001 end -= ptoa(dpage_count);
1002 page_count -= dpage_count;
1003 goto alloc;
1004 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1005 /*
1006 * Trying to register a fictitious range that expands before
1007 * and after vm_page_array.
1008 */
1009 return (EINVAL);
1010 } else {
1011 alloc:
1012 #endif
1013 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1014 M_WAITOK);
1015 #ifdef VM_PHYSSEG_DENSE
1016 }
1017 #endif
1018 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1019
1020 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1021 seg->start = start;
1022 seg->end = end;
1023 seg->first_page = fp;
1024
1025 rw_wlock(&vm_phys_fictitious_reg_lock);
1026 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1027 rw_wunlock(&vm_phys_fictitious_reg_lock);
1028
1029 return (0);
1030 }
1031
1032 void
1033 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1034 {
1035 struct vm_phys_fictitious_seg *seg, tmp;
1036 #ifdef VM_PHYSSEG_DENSE
1037 long pi, pe;
1038 #endif
1039
1040 KASSERT(start < end,
1041 ("Start of segment isn't less than end (start: %jx end: %jx)",
1042 (uintmax_t)start, (uintmax_t)end));
1043
1044 #ifdef VM_PHYSSEG_DENSE
1045 pi = atop(start);
1046 pe = atop(end);
1047 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1048 if ((pe - first_page) <= vm_page_array_size) {
1049 /*
1050 * This segment was allocated using vm_page_array
1051 * only, there's nothing to do since those pages
1052 * were never added to the tree.
1053 */
1054 return;
1055 }
1056 /*
1057 * We have a segment that starts inside
1058 * of vm_page_array, but ends outside of it.
1059 *
1060 * Calculate how many pages were added to the
1061 * tree and free them.
1062 */
1063 start = ptoa(first_page + vm_page_array_size);
1064 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1065 /*
1066 * We have a segment that ends inside of vm_page_array,
1067 * but starts outside of it.
1068 */
1069 end = ptoa(first_page);
1070 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1071 /* Since it's not possible to register such a range, panic. */
1072 panic(
1073 "Unregistering not registered fictitious range [%#jx:%#jx]",
1074 (uintmax_t)start, (uintmax_t)end);
1075 }
1076 #endif
1077 tmp.start = start;
1078 tmp.end = 0;
1079
1080 rw_wlock(&vm_phys_fictitious_reg_lock);
1081 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1082 if (seg->start != start || seg->end != end) {
1083 rw_wunlock(&vm_phys_fictitious_reg_lock);
1084 panic(
1085 "Unregistering not registered fictitious range [%#jx:%#jx]",
1086 (uintmax_t)start, (uintmax_t)end);
1087 }
1088 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1089 rw_wunlock(&vm_phys_fictitious_reg_lock);
1090 free(seg->first_page, M_FICT_PAGES);
1091 free(seg, M_FICT_PAGES);
1092 }
1093
1094 /*
1095 * Free a contiguous, power of two-sized set of physical pages.
1096 *
1097 * The free page queues must be locked.
1098 */
1099 void
1100 vm_phys_free_pages(vm_page_t m, int order)
1101 {
1102 struct vm_freelist *fl;
1103 struct vm_phys_seg *seg;
1104 vm_paddr_t pa;
1105 vm_page_t m_buddy;
1106
1107 KASSERT(m->order == VM_NFREEORDER,
1108 ("vm_phys_free_pages: page %p has unexpected order %d",
1109 m, m->order));
1110 KASSERT(m->pool < VM_NFREEPOOL,
1111 ("vm_phys_free_pages: page %p has unexpected pool %d",
1112 m, m->pool));
1113 KASSERT(order < VM_NFREEORDER,
1114 ("vm_phys_free_pages: order %d is out of range", order));
1115 seg = &vm_phys_segs[m->segind];
1116 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1117 if (order < VM_NFREEORDER - 1) {
1118 pa = VM_PAGE_TO_PHYS(m);
1119 do {
1120 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1121 if (pa < seg->start || pa >= seg->end)
1122 break;
1123 m_buddy = &seg->first_page[atop(pa - seg->start)];
1124 if (m_buddy->order != order)
1125 break;
1126 fl = (*seg->free_queues)[m_buddy->pool];
1127 vm_freelist_rem(fl, m_buddy, order);
1128 if (m_buddy->pool != m->pool)
1129 vm_phys_set_pool(m->pool, m_buddy, order);
1130 order++;
1131 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1132 m = &seg->first_page[atop(pa - seg->start)];
1133 } while (order < VM_NFREEORDER - 1);
1134 }
1135 fl = (*seg->free_queues)[m->pool];
1136 vm_freelist_add(fl, m, order, 1);
1137 }
1138
1139 /*
1140 * Return the largest possible order of a set of pages starting at m.
1141 */
1142 static int
1143 max_order(vm_page_t m)
1144 {
1145
1146 /*
1147 * Unsigned "min" is used here so that "order" is assigned
1148 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1149 * or the low-order bits of its physical address are zero
1150 * because the size of a physical address exceeds the size of
1151 * a long.
1152 */
1153 return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1154 VM_NFREEORDER - 1));
1155 }
1156
1157 /*
1158 * Free a contiguous, arbitrarily sized set of physical pages, without
1159 * merging across set boundaries.
1160 *
1161 * The free page queues must be locked.
1162 */
1163 void
1164 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1165 {
1166 struct vm_freelist *fl;
1167 struct vm_phys_seg *seg;
1168 vm_page_t m_end;
1169 int order;
1170
1171 /*
1172 * Avoid unnecessary coalescing by freeing the pages in the largest
1173 * possible power-of-two-sized subsets.
1174 */
1175 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1176 seg = &vm_phys_segs[m->segind];
1177 fl = (*seg->free_queues)[m->pool];
1178 m_end = m + npages;
1179 /* Free blocks of increasing size. */
1180 while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1181 m + (1 << order) <= m_end) {
1182 KASSERT(seg == &vm_phys_segs[m->segind],
1183 ("%s: page range [%p,%p) spans multiple segments",
1184 __func__, m_end - npages, m));
1185 vm_freelist_add(fl, m, order, 1);
1186 m += 1 << order;
1187 }
1188 /* Free blocks of maximum size. */
1189 while (m + (1 << order) <= m_end) {
1190 KASSERT(seg == &vm_phys_segs[m->segind],
1191 ("%s: page range [%p,%p) spans multiple segments",
1192 __func__, m_end - npages, m));
1193 vm_freelist_add(fl, m, order, 1);
1194 m += 1 << order;
1195 }
1196 /* Free blocks of diminishing size. */
1197 while (m < m_end) {
1198 KASSERT(seg == &vm_phys_segs[m->segind],
1199 ("%s: page range [%p,%p) spans multiple segments",
1200 __func__, m_end - npages, m));
1201 order = flsl(m_end - m) - 1;
1202 vm_freelist_add(fl, m, order, 1);
1203 m += 1 << order;
1204 }
1205 }
1206
1207 /*
1208 * Free a contiguous, arbitrarily sized set of physical pages.
1209 *
1210 * The free page queues must be locked.
1211 */
1212 void
1213 vm_phys_free_contig(vm_page_t m, u_long npages)
1214 {
1215 int order_start, order_end;
1216 vm_page_t m_start, m_end;
1217
1218 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1219
1220 m_start = m;
1221 order_start = max_order(m_start);
1222 if (order_start < VM_NFREEORDER - 1)
1223 m_start += 1 << order_start;
1224 m_end = m + npages;
1225 order_end = max_order(m_end);
1226 if (order_end < VM_NFREEORDER - 1)
1227 m_end -= 1 << order_end;
1228 /*
1229 * Avoid unnecessary coalescing by freeing the pages at the start and
1230 * end of the range last.
1231 */
1232 if (m_start < m_end)
1233 vm_phys_enqueue_contig(m_start, m_end - m_start);
1234 if (order_start < VM_NFREEORDER - 1)
1235 vm_phys_free_pages(m, order_start);
1236 if (order_end < VM_NFREEORDER - 1)
1237 vm_phys_free_pages(m_end, order_end);
1238 }
1239
1240 /*
1241 * Scan physical memory between the specified addresses "low" and "high" for a
1242 * run of contiguous physical pages that satisfy the specified conditions, and
1243 * return the lowest page in the run. The specified "alignment" determines
1244 * the alignment of the lowest physical page in the run. If the specified
1245 * "boundary" is non-zero, then the run of physical pages cannot span a
1246 * physical address that is a multiple of "boundary".
1247 *
1248 * "npages" must be greater than zero. Both "alignment" and "boundary" must
1249 * be a power of two.
1250 */
1251 vm_page_t
1252 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1253 u_long alignment, vm_paddr_t boundary, int options)
1254 {
1255 vm_paddr_t pa_end;
1256 vm_page_t m_end, m_run, m_start;
1257 struct vm_phys_seg *seg;
1258 int segind;
1259
1260 KASSERT(npages > 0, ("npages is 0"));
1261 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1262 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1263 if (low >= high)
1264 return (NULL);
1265 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1266 seg = &vm_phys_segs[segind];
1267 if (seg->domain != domain)
1268 continue;
1269 if (seg->start >= high)
1270 break;
1271 if (low >= seg->end)
1272 continue;
1273 if (low <= seg->start)
1274 m_start = seg->first_page;
1275 else
1276 m_start = &seg->first_page[atop(low - seg->start)];
1277 if (high < seg->end)
1278 pa_end = high;
1279 else
1280 pa_end = seg->end;
1281 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1282 continue;
1283 m_end = &seg->first_page[atop(pa_end - seg->start)];
1284 m_run = vm_page_scan_contig(npages, m_start, m_end,
1285 alignment, boundary, options);
1286 if (m_run != NULL)
1287 return (m_run);
1288 }
1289 return (NULL);
1290 }
1291
1292 /*
1293 * Search for the given physical page "m" in the free lists. If the search
1294 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
1295 * FALSE, indicating that "m" is not in the free lists.
1296 *
1297 * The free page queues must be locked.
1298 */
1299 boolean_t
1300 vm_phys_unfree_page(vm_page_t m)
1301 {
1302 struct vm_freelist *fl;
1303 struct vm_phys_seg *seg;
1304 vm_paddr_t pa, pa_half;
1305 vm_page_t m_set, m_tmp;
1306 int order;
1307
1308 /*
1309 * First, find the contiguous, power of two-sized set of free
1310 * physical pages containing the given physical page "m" and
1311 * assign it to "m_set".
1312 */
1313 seg = &vm_phys_segs[m->segind];
1314 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1315 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1316 order < VM_NFREEORDER - 1; ) {
1317 order++;
1318 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1319 if (pa >= seg->start)
1320 m_set = &seg->first_page[atop(pa - seg->start)];
1321 else
1322 return (FALSE);
1323 }
1324 if (m_set->order < order)
1325 return (FALSE);
1326 if (m_set->order == VM_NFREEORDER)
1327 return (FALSE);
1328 KASSERT(m_set->order < VM_NFREEORDER,
1329 ("vm_phys_unfree_page: page %p has unexpected order %d",
1330 m_set, m_set->order));
1331
1332 /*
1333 * Next, remove "m_set" from the free lists. Finally, extract
1334 * "m" from "m_set" using an iterative algorithm: While "m_set"
1335 * is larger than a page, shrink "m_set" by returning the half
1336 * of "m_set" that does not contain "m" to the free lists.
1337 */
1338 fl = (*seg->free_queues)[m_set->pool];
1339 order = m_set->order;
1340 vm_freelist_rem(fl, m_set, order);
1341 while (order > 0) {
1342 order--;
1343 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1344 if (m->phys_addr < pa_half)
1345 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1346 else {
1347 m_tmp = m_set;
1348 m_set = &seg->first_page[atop(pa_half - seg->start)];
1349 }
1350 vm_freelist_add(fl, m_tmp, order, 0);
1351 }
1352 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1353 return (TRUE);
1354 }
1355
1356 /*
1357 * Find a run of contiguous physical pages from the specified page list.
1358 */
1359 static vm_page_t
1360 vm_phys_find_freelist_contig(struct vm_freelist *fl, int oind, u_long npages,
1361 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1362 {
1363 struct vm_phys_seg *seg;
1364 vm_paddr_t frag, lbound, pa, page_size, pa_end, pa_pre, size;
1365 vm_page_t m, m_listed, m_ret;
1366 int order;
1367
1368 KASSERT(npages > 0, ("npages is 0"));
1369 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1370 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1371 /* Search for a run satisfying the specified conditions. */
1372 page_size = PAGE_SIZE;
1373 size = npages << PAGE_SHIFT;
1374 frag = (npages & ~(~0UL << oind)) << PAGE_SHIFT;
1375 TAILQ_FOREACH(m_listed, &fl[oind].pl, listq) {
1376 /*
1377 * Determine if the address range starting at pa is
1378 * too low.
1379 */
1380 pa = VM_PAGE_TO_PHYS(m_listed);
1381 if (pa < low)
1382 continue;
1383
1384 /*
1385 * If this is not the first free oind-block in this range, bail
1386 * out. We have seen the first free block already, or will see
1387 * it before failing to find an appropriate range.
1388 */
1389 seg = &vm_phys_segs[m_listed->segind];
1390 lbound = low > seg->start ? low : seg->start;
1391 pa_pre = pa - (page_size << oind);
1392 m = &seg->first_page[atop(pa_pre - seg->start)];
1393 if (pa != 0 && pa_pre >= lbound && m->order == oind)
1394 continue;
1395
1396 if (!vm_addr_align_ok(pa, alignment))
1397 /* Advance to satisfy alignment condition. */
1398 pa = roundup2(pa, alignment);
1399 else if (frag != 0 && lbound + frag <= pa) {
1400 /*
1401 * Back up to the first aligned free block in this
1402 * range, without moving below lbound.
1403 */
1404 pa_end = pa;
1405 for (order = oind - 1; order >= 0; order--) {
1406 pa_pre = pa_end - (page_size << order);
1407 if (!vm_addr_align_ok(pa_pre, alignment))
1408 break;
1409 m = &seg->first_page[atop(pa_pre - seg->start)];
1410 if (pa_pre >= lbound && m->order == order)
1411 pa_end = pa_pre;
1412 }
1413 /*
1414 * If the extra small blocks are enough to complete the
1415 * fragment, use them. Otherwise, look to allocate the
1416 * fragment at the other end.
1417 */
1418 if (pa_end + frag <= pa)
1419 pa = pa_end;
1420 }
1421
1422 /* Advance as necessary to satisfy boundary conditions. */
1423 if (!vm_addr_bound_ok(pa, size, boundary))
1424 pa = roundup2(pa + 1, boundary);
1425 pa_end = pa + size;
1426
1427 /*
1428 * Determine if the address range is valid (without overflow in
1429 * pa_end calculation), and fits within the segment.
1430 */
1431 if (pa_end < pa || seg->end < pa_end)
1432 continue;
1433
1434 m_ret = &seg->first_page[atop(pa - seg->start)];
1435
1436 /*
1437 * Determine whether there are enough free oind-blocks here to
1438 * satisfy the allocation request.
1439 */
1440 pa = VM_PAGE_TO_PHYS(m_listed);
1441 do {
1442 pa += page_size << oind;
1443 if (pa >= pa_end)
1444 return (m_ret);
1445 m = &seg->first_page[atop(pa - seg->start)];
1446 } while (oind == m->order);
1447
1448 /*
1449 * Determine if an additional series of free blocks of
1450 * diminishing size can help to satisfy the allocation request.
1451 */
1452 while (m->order < oind &&
1453 pa + 2 * (page_size << m->order) > pa_end) {
1454 pa += page_size << m->order;
1455 if (pa >= pa_end)
1456 return (m_ret);
1457 m = &seg->first_page[atop(pa - seg->start)];
1458 }
1459 }
1460 return (NULL);
1461 }
1462
1463 /*
1464 * Find a run of contiguous physical pages from the specified free list
1465 * table.
1466 */
1467 static vm_page_t
1468 vm_phys_find_queues_contig(
1469 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1470 u_long npages, vm_paddr_t low, vm_paddr_t high,
1471 u_long alignment, vm_paddr_t boundary)
1472 {
1473 struct vm_freelist *fl;
1474 vm_page_t m_ret;
1475 vm_paddr_t pa, pa_end, size;
1476 int oind, order, pind;
1477
1478 KASSERT(npages > 0, ("npages is 0"));
1479 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1480 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1481 /* Compute the queue that is the best fit for npages. */
1482 order = flsl(npages - 1);
1483 /* Search for a large enough free block. */
1484 size = npages << PAGE_SHIFT;
1485 for (oind = order; oind < VM_NFREEORDER; oind++) {
1486 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1487 fl = (*queues)[pind];
1488 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1489 /*
1490 * Determine if the address range starting at pa
1491 * is within the given range, satisfies the
1492 * given alignment, and does not cross the given
1493 * boundary.
1494 */
1495 pa = VM_PAGE_TO_PHYS(m_ret);
1496 pa_end = pa + size;
1497 if (low <= pa && pa_end <= high &&
1498 vm_addr_ok(pa, size, alignment, boundary))
1499 return (m_ret);
1500 }
1501 }
1502 }
1503 if (order < VM_NFREEORDER)
1504 return (NULL);
1505 /* Search for a long-enough sequence of small blocks. */
1506 oind = VM_NFREEORDER - 1;
1507 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1508 fl = (*queues)[pind];
1509 m_ret = vm_phys_find_freelist_contig(fl, oind, npages,
1510 low, high, alignment, boundary);
1511 if (m_ret != NULL)
1512 return (m_ret);
1513 }
1514 return (NULL);
1515 }
1516
1517 /*
1518 * Allocate a contiguous set of physical pages of the given size
1519 * "npages" from the free lists. All of the physical pages must be at
1520 * or above the given physical address "low" and below the given
1521 * physical address "high". The given value "alignment" determines the
1522 * alignment of the first physical page in the set. If the given value
1523 * "boundary" is non-zero, then the set of physical pages cannot cross
1524 * any physical address boundary that is a multiple of that value. Both
1525 * "alignment" and "boundary" must be a power of two.
1526 */
1527 vm_page_t
1528 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1529 u_long alignment, vm_paddr_t boundary)
1530 {
1531 vm_paddr_t pa_end, pa_start;
1532 struct vm_freelist *fl;
1533 vm_page_t m, m_run;
1534 struct vm_phys_seg *seg;
1535 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1536 int oind, segind;
1537
1538 KASSERT(npages > 0, ("npages is 0"));
1539 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1540 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1541 vm_domain_free_assert_locked(VM_DOMAIN(domain));
1542 if (low >= high)
1543 return (NULL);
1544 queues = NULL;
1545 m_run = NULL;
1546 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1547 seg = &vm_phys_segs[segind];
1548 if (seg->start >= high || seg->domain != domain)
1549 continue;
1550 if (low >= seg->end)
1551 break;
1552 if (low <= seg->start)
1553 pa_start = seg->start;
1554 else
1555 pa_start = low;
1556 if (high < seg->end)
1557 pa_end = high;
1558 else
1559 pa_end = seg->end;
1560 if (pa_end - pa_start < ptoa(npages))
1561 continue;
1562 /*
1563 * If a previous segment led to a search using
1564 * the same free lists as would this segment, then
1565 * we've actually already searched within this
1566 * too. So skip it.
1567 */
1568 if (seg->free_queues == queues)
1569 continue;
1570 queues = seg->free_queues;
1571 m_run = vm_phys_find_queues_contig(queues, npages,
1572 low, high, alignment, boundary);
1573 if (m_run != NULL)
1574 break;
1575 }
1576 if (m_run == NULL)
1577 return (NULL);
1578
1579 /* Allocate pages from the page-range found. */
1580 for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1581 fl = (*queues)[m->pool];
1582 oind = m->order;
1583 vm_freelist_rem(fl, m, oind);
1584 if (m->pool != VM_FREEPOOL_DEFAULT)
1585 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1586 }
1587 /* Return excess pages to the free lists. */
1588 if (&m_run[npages] < m) {
1589 fl = (*queues)[VM_FREEPOOL_DEFAULT];
1590 vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1591 }
1592 return (m_run);
1593 }
1594
1595 /*
1596 * Return the index of the first unused slot which may be the terminating
1597 * entry.
1598 */
1599 static int
1600 vm_phys_avail_count(void)
1601 {
1602 int i;
1603
1604 for (i = 0; phys_avail[i + 1]; i += 2)
1605 continue;
1606 if (i > PHYS_AVAIL_ENTRIES)
1607 panic("Improperly terminated phys_avail %d entries", i);
1608
1609 return (i);
1610 }
1611
1612 /*
1613 * Assert that a phys_avail entry is valid.
1614 */
1615 static void
1616 vm_phys_avail_check(int i)
1617 {
1618 if (phys_avail[i] & PAGE_MASK)
1619 panic("Unaligned phys_avail[%d]: %#jx", i,
1620 (intmax_t)phys_avail[i]);
1621 if (phys_avail[i+1] & PAGE_MASK)
1622 panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1623 (intmax_t)phys_avail[i]);
1624 if (phys_avail[i + 1] < phys_avail[i])
1625 panic("phys_avail[%d] start %#jx < end %#jx", i,
1626 (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1627 }
1628
1629 /*
1630 * Return the index of an overlapping phys_avail entry or -1.
1631 */
1632 #ifdef NUMA
1633 static int
1634 vm_phys_avail_find(vm_paddr_t pa)
1635 {
1636 int i;
1637
1638 for (i = 0; phys_avail[i + 1]; i += 2)
1639 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1640 return (i);
1641 return (-1);
1642 }
1643 #endif
1644
1645 /*
1646 * Return the index of the largest entry.
1647 */
1648 int
1649 vm_phys_avail_largest(void)
1650 {
1651 vm_paddr_t sz, largesz;
1652 int largest;
1653 int i;
1654
1655 largest = 0;
1656 largesz = 0;
1657 for (i = 0; phys_avail[i + 1]; i += 2) {
1658 sz = vm_phys_avail_size(i);
1659 if (sz > largesz) {
1660 largesz = sz;
1661 largest = i;
1662 }
1663 }
1664
1665 return (largest);
1666 }
1667
1668 vm_paddr_t
1669 vm_phys_avail_size(int i)
1670 {
1671
1672 return (phys_avail[i + 1] - phys_avail[i]);
1673 }
1674
1675 /*
1676 * Split an entry at the address 'pa'. Return zero on success or errno.
1677 */
1678 static int
1679 vm_phys_avail_split(vm_paddr_t pa, int i)
1680 {
1681 int cnt;
1682
1683 vm_phys_avail_check(i);
1684 if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1685 panic("vm_phys_avail_split: invalid address");
1686 cnt = vm_phys_avail_count();
1687 if (cnt >= PHYS_AVAIL_ENTRIES)
1688 return (ENOSPC);
1689 memmove(&phys_avail[i + 2], &phys_avail[i],
1690 (cnt - i) * sizeof(phys_avail[0]));
1691 phys_avail[i + 1] = pa;
1692 phys_avail[i + 2] = pa;
1693 vm_phys_avail_check(i);
1694 vm_phys_avail_check(i+2);
1695
1696 return (0);
1697 }
1698
1699 /*
1700 * Check if a given physical address can be included as part of a crash dump.
1701 */
1702 bool
1703 vm_phys_is_dumpable(vm_paddr_t pa)
1704 {
1705 vm_page_t m;
1706 int i;
1707
1708 if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1709 return ((m->flags & PG_NODUMP) == 0);
1710
1711 for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1712 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1713 return (true);
1714 }
1715 return (false);
1716 }
1717
1718 void
1719 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1720 {
1721 struct vm_phys_seg *seg;
1722
1723 if (vm_phys_early_nsegs == -1)
1724 panic("%s: called after initialization", __func__);
1725 if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1726 panic("%s: ran out of early segments", __func__);
1727
1728 seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1729 seg->start = start;
1730 seg->end = end;
1731 }
1732
1733 /*
1734 * This routine allocates NUMA node specific memory before the page
1735 * allocator is bootstrapped.
1736 */
1737 vm_paddr_t
1738 vm_phys_early_alloc(int domain, size_t alloc_size)
1739 {
1740 #ifdef NUMA
1741 int mem_index;
1742 #endif
1743 int i, biggestone;
1744 vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1745
1746 KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1747 ("%s: invalid domain index %d", __func__, domain));
1748
1749 /*
1750 * Search the mem_affinity array for the biggest address
1751 * range in the desired domain. This is used to constrain
1752 * the phys_avail selection below.
1753 */
1754 biggestsize = 0;
1755 mem_start = 0;
1756 mem_end = -1;
1757 #ifdef NUMA
1758 mem_index = 0;
1759 if (mem_affinity != NULL) {
1760 for (i = 0;; i++) {
1761 size = mem_affinity[i].end - mem_affinity[i].start;
1762 if (size == 0)
1763 break;
1764 if (domain != -1 && mem_affinity[i].domain != domain)
1765 continue;
1766 if (size > biggestsize) {
1767 mem_index = i;
1768 biggestsize = size;
1769 }
1770 }
1771 mem_start = mem_affinity[mem_index].start;
1772 mem_end = mem_affinity[mem_index].end;
1773 }
1774 #endif
1775
1776 /*
1777 * Now find biggest physical segment in within the desired
1778 * numa domain.
1779 */
1780 biggestsize = 0;
1781 biggestone = 0;
1782 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1783 /* skip regions that are out of range */
1784 if (phys_avail[i+1] - alloc_size < mem_start ||
1785 phys_avail[i+1] > mem_end)
1786 continue;
1787 size = vm_phys_avail_size(i);
1788 if (size > biggestsize) {
1789 biggestone = i;
1790 biggestsize = size;
1791 }
1792 }
1793 alloc_size = round_page(alloc_size);
1794
1795 /*
1796 * Grab single pages from the front to reduce fragmentation.
1797 */
1798 if (alloc_size == PAGE_SIZE) {
1799 pa = phys_avail[biggestone];
1800 phys_avail[biggestone] += PAGE_SIZE;
1801 vm_phys_avail_check(biggestone);
1802 return (pa);
1803 }
1804
1805 /*
1806 * Naturally align large allocations.
1807 */
1808 align = phys_avail[biggestone + 1] & (alloc_size - 1);
1809 if (alloc_size + align > biggestsize)
1810 panic("cannot find a large enough size\n");
1811 if (align != 0 &&
1812 vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1813 biggestone) != 0)
1814 /* Wasting memory. */
1815 phys_avail[biggestone + 1] -= align;
1816
1817 phys_avail[biggestone + 1] -= alloc_size;
1818 vm_phys_avail_check(biggestone);
1819 pa = phys_avail[biggestone + 1];
1820 return (pa);
1821 }
1822
1823 void
1824 vm_phys_early_startup(void)
1825 {
1826 struct vm_phys_seg *seg;
1827 int i;
1828
1829 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1830 phys_avail[i] = round_page(phys_avail[i]);
1831 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1832 }
1833
1834 for (i = 0; i < vm_phys_early_nsegs; i++) {
1835 seg = &vm_phys_early_segs[i];
1836 vm_phys_add_seg(seg->start, seg->end);
1837 }
1838 vm_phys_early_nsegs = -1;
1839
1840 #ifdef NUMA
1841 /* Force phys_avail to be split by domain. */
1842 if (mem_affinity != NULL) {
1843 int idx;
1844
1845 for (i = 0; mem_affinity[i].end != 0; i++) {
1846 idx = vm_phys_avail_find(mem_affinity[i].start);
1847 if (idx != -1 &&
1848 phys_avail[idx] != mem_affinity[i].start)
1849 vm_phys_avail_split(mem_affinity[i].start, idx);
1850 idx = vm_phys_avail_find(mem_affinity[i].end);
1851 if (idx != -1 &&
1852 phys_avail[idx] != mem_affinity[i].end)
1853 vm_phys_avail_split(mem_affinity[i].end, idx);
1854 }
1855 }
1856 #endif
1857 }
1858
1859 #ifdef DDB
1860 /*
1861 * Show the number of physical pages in each of the free lists.
1862 */
1863 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
1864 {
1865 struct vm_freelist *fl;
1866 int flind, oind, pind, dom;
1867
1868 for (dom = 0; dom < vm_ndomains; dom++) {
1869 db_printf("DOMAIN: %d\n", dom);
1870 for (flind = 0; flind < vm_nfreelists; flind++) {
1871 db_printf("FREE LIST %d:\n"
1872 "\n ORDER (SIZE) | NUMBER"
1873 "\n ", flind);
1874 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1875 db_printf(" | POOL %d", pind);
1876 db_printf("\n-- ");
1877 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1878 db_printf("-- -- ");
1879 db_printf("--\n");
1880 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1881 db_printf(" %2.2d (%6.6dK)", oind,
1882 1 << (PAGE_SHIFT - 10 + oind));
1883 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1884 fl = vm_phys_free_queues[dom][flind][pind];
1885 db_printf(" | %6.6d", fl[oind].lcnt);
1886 }
1887 db_printf("\n");
1888 }
1889 db_printf("\n");
1890 }
1891 db_printf("\n");
1892 }
1893 }
1894 #endif
Cache object: 4009230b5ae970c220caefde1852fe33
|