FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Physical memory system implementation
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_phys.c 256275 2013-10-10 16:11:45Z alc $");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69 "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS 8
79 static struct vm_phys_fictitious_seg {
80 vm_paddr_t start;
81 vm_paddr_t end;
82 vm_page_t first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105 &vm_ndomains, 0, "Number of physical memory domains available.");
106
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108 int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110 int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114 int order);
115
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120 struct thread *td;
121
122 td = curthread;
123
124 td->td_dom_rr_idx++;
125 td->td_dom_rr_idx %= vm_ndomains;
126 return (td->td_dom_rr_idx);
127 #else
128 return (0);
129 #endif
130 }
131
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135 struct vm_phys_seg *s;
136 int idx;
137
138 while ((idx = ffsl(mask)) != 0) {
139 idx--; /* ffsl counts from 1 */
140 mask &= ~(1UL << idx);
141 s = &vm_phys_segs[idx];
142 if (low < s->end && high > s->start)
143 return (TRUE);
144 }
145 return (FALSE);
146 }
147
148 /*
149 * Outputs the state of the physical memory allocator, specifically,
150 * the amount of physical memory in each free list.
151 */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155 struct sbuf sbuf;
156 struct vm_freelist *fl;
157 int dom, error, flind, oind, pind;
158
159 error = sysctl_wire_old_buffer(req, 0);
160 if (error != 0)
161 return (error);
162 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163 for (dom = 0; dom < vm_ndomains; dom++) {
164 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165 for (flind = 0; flind < vm_nfreelists; flind++) {
166 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167 "\n ORDER (SIZE) | NUMBER"
168 "\n ", flind);
169 for (pind = 0; pind < VM_NFREEPOOL; pind++)
170 sbuf_printf(&sbuf, " | POOL %d", pind);
171 sbuf_printf(&sbuf, "\n-- ");
172 for (pind = 0; pind < VM_NFREEPOOL; pind++)
173 sbuf_printf(&sbuf, "-- -- ");
174 sbuf_printf(&sbuf, "--\n");
175 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
177 1 << (PAGE_SHIFT - 10 + oind));
178 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179 fl = vm_phys_free_queues[dom][flind][pind];
180 sbuf_printf(&sbuf, " | %6d",
181 fl[oind].lcnt);
182 }
183 sbuf_printf(&sbuf, "\n");
184 }
185 }
186 }
187 error = sbuf_finish(&sbuf);
188 sbuf_delete(&sbuf);
189 return (error);
190 }
191
192 /*
193 * Outputs the set of physical memory segments.
194 */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198 struct sbuf sbuf;
199 struct vm_phys_seg *seg;
200 int error, segind;
201
202 error = sysctl_wire_old_buffer(req, 0);
203 if (error != 0)
204 return (error);
205 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206 for (segind = 0; segind < vm_phys_nsegs; segind++) {
207 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208 seg = &vm_phys_segs[segind];
209 sbuf_printf(&sbuf, "start: %#jx\n",
210 (uintmax_t)seg->start);
211 sbuf_printf(&sbuf, "end: %#jx\n",
212 (uintmax_t)seg->end);
213 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
214 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215 }
216 error = sbuf_finish(&sbuf);
217 sbuf_delete(&sbuf);
218 return (error);
219 }
220
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224
225 m->order = order;
226 if (tail)
227 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228 else
229 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230 fl[order].lcnt++;
231 }
232
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236
237 TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238 fl[order].lcnt--;
239 m->order = VM_NFREEORDER;
240 }
241
242 /*
243 * Create a physical memory segment.
244 */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248 struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250 long pages;
251 int segind;
252
253 pages = 0;
254 for (segind = 0; segind < vm_phys_nsegs; segind++) {
255 seg = &vm_phys_segs[segind];
256 pages += atop(seg->end - seg->start);
257 }
258 #endif
259 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261 KASSERT(domain < vm_ndomains,
262 ("vm_phys_create_seg: invalid domain provided"));
263 seg = &vm_phys_segs[vm_phys_nsegs++];
264 seg->start = start;
265 seg->end = end;
266 seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268 seg->first_page = &vm_page_array[pages];
269 #else
270 seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272 seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278 int i;
279
280 if (mem_affinity == NULL) {
281 _vm_phys_create_seg(start, end, flind, 0);
282 return;
283 }
284
285 for (i = 0;; i++) {
286 if (mem_affinity[i].end == 0)
287 panic("Reached end of affinity info");
288 if (mem_affinity[i].end <= start)
289 continue;
290 if (mem_affinity[i].start > start)
291 panic("No affinity info for start %jx",
292 (uintmax_t)start);
293 if (mem_affinity[i].end >= end) {
294 _vm_phys_create_seg(start, end, flind,
295 mem_affinity[i].domain);
296 break;
297 }
298 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
299 mem_affinity[i].domain);
300 start = mem_affinity[i].end;
301 }
302 }
303
304 /*
305 * Initialize the physical memory allocator.
306 */
307 void
308 vm_phys_init(void)
309 {
310 struct vm_freelist *fl;
311 int dom, flind, i, oind, pind;
312
313 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef VM_FREELIST_ISADMA
315 if (phys_avail[i] < 16777216) {
316 if (phys_avail[i + 1] > 16777216) {
317 vm_phys_create_seg(phys_avail[i], 16777216,
318 VM_FREELIST_ISADMA);
319 vm_phys_create_seg(16777216, phys_avail[i + 1],
320 VM_FREELIST_DEFAULT);
321 } else {
322 vm_phys_create_seg(phys_avail[i],
323 phys_avail[i + 1], VM_FREELIST_ISADMA);
324 }
325 if (VM_FREELIST_ISADMA >= vm_nfreelists)
326 vm_nfreelists = VM_FREELIST_ISADMA + 1;
327 } else
328 #endif
329 #ifdef VM_FREELIST_HIGHMEM
330 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332 vm_phys_create_seg(phys_avail[i],
333 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335 phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336 } else {
337 vm_phys_create_seg(phys_avail[i],
338 phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339 }
340 if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342 } else
343 #endif
344 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345 VM_FREELIST_DEFAULT);
346 }
347 for (dom = 0; dom < vm_ndomains; dom++) {
348 for (flind = 0; flind < vm_nfreelists; flind++) {
349 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350 fl = vm_phys_free_queues[dom][flind][pind];
351 for (oind = 0; oind < VM_NFREEORDER; oind++)
352 TAILQ_INIT(&fl[oind].pl);
353 }
354 }
355 }
356 mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358
359 /*
360 * Split a contiguous, power of two-sized set of physical pages.
361 */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365 vm_page_t m_buddy;
366
367 while (oind > order) {
368 oind--;
369 m_buddy = &m[1 << oind];
370 KASSERT(m_buddy->order == VM_NFREEORDER,
371 ("vm_phys_split_pages: page %p has unexpected order %d",
372 m_buddy, m_buddy->order));
373 vm_freelist_add(fl, m_buddy, oind, 0);
374 }
375 }
376
377 /*
378 * Initialize a physical page and add it to the free lists.
379 */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383 vm_page_t m;
384 struct vm_domain *vmd;
385
386 cnt.v_page_count++;
387 m = vm_phys_paddr_to_vm_page(pa);
388 m->phys_addr = pa;
389 m->queue = PQ_NONE;
390 m->segind = vm_phys_paddr_to_segind(pa);
391 vmd = vm_phys_domain(m);
392 vmd->vmd_page_count++;
393 vmd->vmd_segs |= 1UL << m->segind;
394 m->flags = PG_FREE;
395 KASSERT(m->order == VM_NFREEORDER,
396 ("vm_phys_add_page: page %p has unexpected order %d",
397 m, m->order));
398 m->pool = VM_FREEPOOL_DEFAULT;
399 pmap_page_init(m);
400 mtx_lock(&vm_page_queue_free_mtx);
401 vm_phys_freecnt_adj(m, 1);
402 vm_phys_free_pages(m, 0);
403 mtx_unlock(&vm_page_queue_free_mtx);
404 }
405
406 /*
407 * Allocate a contiguous, power of two-sized set of physical pages
408 * from the free lists.
409 *
410 * The free page queues must be locked.
411 */
412 vm_page_t
413 vm_phys_alloc_pages(int pool, int order)
414 {
415 vm_page_t m;
416 int dom, domain, flind;
417
418 KASSERT(pool < VM_NFREEPOOL,
419 ("vm_phys_alloc_pages: pool %d is out of range", pool));
420 KASSERT(order < VM_NFREEORDER,
421 ("vm_phys_alloc_pages: order %d is out of range", order));
422
423 for (dom = 0; dom < vm_ndomains; dom++) {
424 domain = vm_rr_selectdomain();
425 for (flind = 0; flind < vm_nfreelists; flind++) {
426 m = vm_phys_alloc_domain_pages(domain, flind, pool,
427 order);
428 if (m != NULL)
429 return (m);
430 }
431 }
432 return (NULL);
433 }
434
435 /*
436 * Find and dequeue a free page on the given free list, with the
437 * specified pool and order
438 */
439 vm_page_t
440 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
441 {
442 vm_page_t m;
443 int dom, domain;
444
445 KASSERT(flind < VM_NFREELIST,
446 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
447 KASSERT(pool < VM_NFREEPOOL,
448 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
449 KASSERT(order < VM_NFREEORDER,
450 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
451
452 for (dom = 0; dom < vm_ndomains; dom++) {
453 domain = vm_rr_selectdomain();
454 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
455 if (m != NULL)
456 return (m);
457 }
458 return (NULL);
459 }
460
461 static vm_page_t
462 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
463 {
464 struct vm_freelist *fl;
465 struct vm_freelist *alt;
466 int oind, pind;
467 vm_page_t m;
468
469 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
470 fl = &vm_phys_free_queues[domain][flind][pool][0];
471 for (oind = order; oind < VM_NFREEORDER; oind++) {
472 m = TAILQ_FIRST(&fl[oind].pl);
473 if (m != NULL) {
474 vm_freelist_rem(fl, m, oind);
475 vm_phys_split_pages(m, oind, fl, order);
476 return (m);
477 }
478 }
479
480 /*
481 * The given pool was empty. Find the largest
482 * contiguous, power-of-two-sized set of pages in any
483 * pool. Transfer these pages to the given pool, and
484 * use them to satisfy the allocation.
485 */
486 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
487 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
488 alt = &vm_phys_free_queues[domain][flind][pind][0];
489 m = TAILQ_FIRST(&alt[oind].pl);
490 if (m != NULL) {
491 vm_freelist_rem(alt, m, oind);
492 vm_phys_set_pool(pool, m, oind);
493 vm_phys_split_pages(m, oind, fl, order);
494 return (m);
495 }
496 }
497 }
498 return (NULL);
499 }
500
501 /*
502 * Find the vm_page corresponding to the given physical address.
503 */
504 vm_page_t
505 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
506 {
507 struct vm_phys_seg *seg;
508 int segind;
509
510 for (segind = 0; segind < vm_phys_nsegs; segind++) {
511 seg = &vm_phys_segs[segind];
512 if (pa >= seg->start && pa < seg->end)
513 return (&seg->first_page[atop(pa - seg->start)]);
514 }
515 return (NULL);
516 }
517
518 vm_page_t
519 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
520 {
521 struct vm_phys_fictitious_seg *seg;
522 vm_page_t m;
523 int segind;
524
525 m = NULL;
526 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
527 seg = &vm_phys_fictitious_segs[segind];
528 if (pa >= seg->start && pa < seg->end) {
529 m = &seg->first_page[atop(pa - seg->start)];
530 KASSERT((m->flags & PG_FICTITIOUS) != 0,
531 ("%p not fictitious", m));
532 break;
533 }
534 }
535 return (m);
536 }
537
538 int
539 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
540 vm_memattr_t memattr)
541 {
542 struct vm_phys_fictitious_seg *seg;
543 vm_page_t fp;
544 long i, page_count;
545 int segind;
546 #ifdef VM_PHYSSEG_DENSE
547 long pi;
548 boolean_t malloced;
549 #endif
550
551 page_count = (end - start) / PAGE_SIZE;
552
553 #ifdef VM_PHYSSEG_DENSE
554 pi = atop(start);
555 if (pi >= first_page && atop(end) < vm_page_array_size) {
556 fp = &vm_page_array[pi - first_page];
557 malloced = FALSE;
558 } else
559 #endif
560 {
561 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
562 M_WAITOK | M_ZERO);
563 #ifdef VM_PHYSSEG_DENSE
564 malloced = TRUE;
565 #endif
566 }
567 for (i = 0; i < page_count; i++) {
568 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
569 fp[i].oflags &= ~VPO_UNMANAGED;
570 fp[i].busy_lock = VPB_UNBUSIED;
571 }
572 mtx_lock(&vm_phys_fictitious_reg_mtx);
573 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
574 seg = &vm_phys_fictitious_segs[segind];
575 if (seg->start == 0 && seg->end == 0) {
576 seg->start = start;
577 seg->end = end;
578 seg->first_page = fp;
579 mtx_unlock(&vm_phys_fictitious_reg_mtx);
580 return (0);
581 }
582 }
583 mtx_unlock(&vm_phys_fictitious_reg_mtx);
584 #ifdef VM_PHYSSEG_DENSE
585 if (malloced)
586 #endif
587 free(fp, M_FICT_PAGES);
588 return (EBUSY);
589 }
590
591 void
592 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
593 {
594 struct vm_phys_fictitious_seg *seg;
595 vm_page_t fp;
596 int segind;
597 #ifdef VM_PHYSSEG_DENSE
598 long pi;
599 #endif
600
601 #ifdef VM_PHYSSEG_DENSE
602 pi = atop(start);
603 #endif
604
605 mtx_lock(&vm_phys_fictitious_reg_mtx);
606 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
607 seg = &vm_phys_fictitious_segs[segind];
608 if (seg->start == start && seg->end == end) {
609 seg->start = seg->end = 0;
610 fp = seg->first_page;
611 seg->first_page = NULL;
612 mtx_unlock(&vm_phys_fictitious_reg_mtx);
613 #ifdef VM_PHYSSEG_DENSE
614 if (pi < first_page || atop(end) >= vm_page_array_size)
615 #endif
616 free(fp, M_FICT_PAGES);
617 return;
618 }
619 }
620 mtx_unlock(&vm_phys_fictitious_reg_mtx);
621 KASSERT(0, ("Unregistering not registered fictitious range"));
622 }
623
624 /*
625 * Find the segment containing the given physical address.
626 */
627 static int
628 vm_phys_paddr_to_segind(vm_paddr_t pa)
629 {
630 struct vm_phys_seg *seg;
631 int segind;
632
633 for (segind = 0; segind < vm_phys_nsegs; segind++) {
634 seg = &vm_phys_segs[segind];
635 if (pa >= seg->start && pa < seg->end)
636 return (segind);
637 }
638 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
639 (uintmax_t)pa);
640 }
641
642 /*
643 * Free a contiguous, power of two-sized set of physical pages.
644 *
645 * The free page queues must be locked.
646 */
647 void
648 vm_phys_free_pages(vm_page_t m, int order)
649 {
650 struct vm_freelist *fl;
651 struct vm_phys_seg *seg;
652 vm_paddr_t pa;
653 vm_page_t m_buddy;
654
655 KASSERT(m->order == VM_NFREEORDER,
656 ("vm_phys_free_pages: page %p has unexpected order %d",
657 m, m->order));
658 KASSERT(m->pool < VM_NFREEPOOL,
659 ("vm_phys_free_pages: page %p has unexpected pool %d",
660 m, m->pool));
661 KASSERT(order < VM_NFREEORDER,
662 ("vm_phys_free_pages: order %d is out of range", order));
663 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
664 seg = &vm_phys_segs[m->segind];
665 if (order < VM_NFREEORDER - 1) {
666 pa = VM_PAGE_TO_PHYS(m);
667 do {
668 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
669 if (pa < seg->start || pa >= seg->end)
670 break;
671 m_buddy = &seg->first_page[atop(pa - seg->start)];
672 if (m_buddy->order != order)
673 break;
674 fl = (*seg->free_queues)[m_buddy->pool];
675 vm_freelist_rem(fl, m_buddy, order);
676 if (m_buddy->pool != m->pool)
677 vm_phys_set_pool(m->pool, m_buddy, order);
678 order++;
679 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
680 m = &seg->first_page[atop(pa - seg->start)];
681 } while (order < VM_NFREEORDER - 1);
682 }
683 fl = (*seg->free_queues)[m->pool];
684 vm_freelist_add(fl, m, order, 1);
685 }
686
687 /*
688 * Free a contiguous, arbitrarily sized set of physical pages.
689 *
690 * The free page queues must be locked.
691 */
692 void
693 vm_phys_free_contig(vm_page_t m, u_long npages)
694 {
695 u_int n;
696 int order;
697
698 /*
699 * Avoid unnecessary coalescing by freeing the pages in the largest
700 * possible power-of-two-sized subsets.
701 */
702 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
703 for (;; npages -= n) {
704 /*
705 * Unsigned "min" is used here so that "order" is assigned
706 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
707 * or the low-order bits of its physical address are zero
708 * because the size of a physical address exceeds the size of
709 * a long.
710 */
711 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
712 VM_NFREEORDER - 1);
713 n = 1 << order;
714 if (npages < n)
715 break;
716 vm_phys_free_pages(m, order);
717 m += n;
718 }
719 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
720 for (; npages > 0; npages -= n) {
721 order = flsl(npages) - 1;
722 n = 1 << order;
723 vm_phys_free_pages(m, order);
724 m += n;
725 }
726 }
727
728 /*
729 * Set the pool for a contiguous, power of two-sized set of physical pages.
730 */
731 void
732 vm_phys_set_pool(int pool, vm_page_t m, int order)
733 {
734 vm_page_t m_tmp;
735
736 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
737 m_tmp->pool = pool;
738 }
739
740 /*
741 * Search for the given physical page "m" in the free lists. If the search
742 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
743 * FALSE, indicating that "m" is not in the free lists.
744 *
745 * The free page queues must be locked.
746 */
747 boolean_t
748 vm_phys_unfree_page(vm_page_t m)
749 {
750 struct vm_freelist *fl;
751 struct vm_phys_seg *seg;
752 vm_paddr_t pa, pa_half;
753 vm_page_t m_set, m_tmp;
754 int order;
755
756 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
757
758 /*
759 * First, find the contiguous, power of two-sized set of free
760 * physical pages containing the given physical page "m" and
761 * assign it to "m_set".
762 */
763 seg = &vm_phys_segs[m->segind];
764 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
765 order < VM_NFREEORDER - 1; ) {
766 order++;
767 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
768 if (pa >= seg->start)
769 m_set = &seg->first_page[atop(pa - seg->start)];
770 else
771 return (FALSE);
772 }
773 if (m_set->order < order)
774 return (FALSE);
775 if (m_set->order == VM_NFREEORDER)
776 return (FALSE);
777 KASSERT(m_set->order < VM_NFREEORDER,
778 ("vm_phys_unfree_page: page %p has unexpected order %d",
779 m_set, m_set->order));
780
781 /*
782 * Next, remove "m_set" from the free lists. Finally, extract
783 * "m" from "m_set" using an iterative algorithm: While "m_set"
784 * is larger than a page, shrink "m_set" by returning the half
785 * of "m_set" that does not contain "m" to the free lists.
786 */
787 fl = (*seg->free_queues)[m_set->pool];
788 order = m_set->order;
789 vm_freelist_rem(fl, m_set, order);
790 while (order > 0) {
791 order--;
792 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
793 if (m->phys_addr < pa_half)
794 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
795 else {
796 m_tmp = m_set;
797 m_set = &seg->first_page[atop(pa_half - seg->start)];
798 }
799 vm_freelist_add(fl, m_tmp, order, 0);
800 }
801 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
802 return (TRUE);
803 }
804
805 /*
806 * Try to zero one physical page. Used by an idle priority thread.
807 */
808 boolean_t
809 vm_phys_zero_pages_idle(void)
810 {
811 static struct vm_freelist *fl;
812 static int flind, oind, pind;
813 vm_page_t m, m_tmp;
814 int domain;
815
816 domain = vm_rr_selectdomain();
817 fl = vm_phys_free_queues[domain][0][0];
818 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
819 for (;;) {
820 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
821 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
822 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
823 vm_phys_unfree_page(m_tmp);
824 vm_phys_freecnt_adj(m, -1);
825 mtx_unlock(&vm_page_queue_free_mtx);
826 pmap_zero_page_idle(m_tmp);
827 m_tmp->flags |= PG_ZERO;
828 mtx_lock(&vm_page_queue_free_mtx);
829 vm_phys_freecnt_adj(m, 1);
830 vm_phys_free_pages(m_tmp, 0);
831 vm_page_zero_count++;
832 cnt_prezero++;
833 return (TRUE);
834 }
835 }
836 }
837 oind++;
838 if (oind == VM_NFREEORDER) {
839 oind = 0;
840 pind++;
841 if (pind == VM_NFREEPOOL) {
842 pind = 0;
843 flind++;
844 if (flind == vm_nfreelists)
845 flind = 0;
846 }
847 fl = vm_phys_free_queues[domain][flind][pind];
848 }
849 }
850 }
851
852 /*
853 * Allocate a contiguous set of physical pages of the given size
854 * "npages" from the free lists. All of the physical pages must be at
855 * or above the given physical address "low" and below the given
856 * physical address "high". The given value "alignment" determines the
857 * alignment of the first physical page in the set. If the given value
858 * "boundary" is non-zero, then the set of physical pages cannot cross
859 * any physical address boundary that is a multiple of that value. Both
860 * "alignment" and "boundary" must be a power of two.
861 */
862 vm_page_t
863 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
864 u_long alignment, vm_paddr_t boundary)
865 {
866 struct vm_freelist *fl;
867 struct vm_phys_seg *seg;
868 vm_paddr_t pa, pa_last, size;
869 vm_page_t m, m_ret;
870 u_long npages_end;
871 int dom, domain, flind, oind, order, pind;
872
873 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
874 size = npages << PAGE_SHIFT;
875 KASSERT(size != 0,
876 ("vm_phys_alloc_contig: size must not be 0"));
877 KASSERT((alignment & (alignment - 1)) == 0,
878 ("vm_phys_alloc_contig: alignment must be a power of 2"));
879 KASSERT((boundary & (boundary - 1)) == 0,
880 ("vm_phys_alloc_contig: boundary must be a power of 2"));
881 /* Compute the queue that is the best fit for npages. */
882 for (order = 0; (1 << order) < npages; order++);
883 dom = 0;
884 restartdom:
885 domain = vm_rr_selectdomain();
886 for (flind = 0; flind < vm_nfreelists; flind++) {
887 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
888 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
889 fl = &vm_phys_free_queues[domain][flind][pind][0];
890 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
891 /*
892 * A free list may contain physical pages
893 * from one or more segments.
894 */
895 seg = &vm_phys_segs[m_ret->segind];
896 if (seg->start > high ||
897 low >= seg->end)
898 continue;
899
900 /*
901 * Is the size of this allocation request
902 * larger than the largest block size?
903 */
904 if (order >= VM_NFREEORDER) {
905 /*
906 * Determine if a sufficient number
907 * of subsequent blocks to satisfy
908 * the allocation request are free.
909 */
910 pa = VM_PAGE_TO_PHYS(m_ret);
911 pa_last = pa + size;
912 for (;;) {
913 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
914 if (pa >= pa_last)
915 break;
916 if (pa < seg->start ||
917 pa >= seg->end)
918 break;
919 m = &seg->first_page[atop(pa - seg->start)];
920 if (m->order != VM_NFREEORDER - 1)
921 break;
922 }
923 /* If not, continue to the next block. */
924 if (pa < pa_last)
925 continue;
926 }
927
928 /*
929 * Determine if the blocks are within the given range,
930 * satisfy the given alignment, and do not cross the
931 * given boundary.
932 */
933 pa = VM_PAGE_TO_PHYS(m_ret);
934 if (pa >= low &&
935 pa + size <= high &&
936 (pa & (alignment - 1)) == 0 &&
937 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
938 goto done;
939 }
940 }
941 }
942 }
943 if (++dom < vm_ndomains)
944 goto restartdom;
945 return (NULL);
946 done:
947 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
948 fl = (*seg->free_queues)[m->pool];
949 vm_freelist_rem(fl, m, m->order);
950 }
951 if (m_ret->pool != VM_FREEPOOL_DEFAULT)
952 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
953 fl = (*seg->free_queues)[m_ret->pool];
954 vm_phys_split_pages(m_ret, oind, fl, order);
955 /* Return excess pages to the free lists. */
956 npages_end = roundup2(npages, 1 << imin(oind, order));
957 if (npages < npages_end)
958 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
959 return (m_ret);
960 }
961
962 #ifdef DDB
963 /*
964 * Show the number of physical pages in each of the free lists.
965 */
966 DB_SHOW_COMMAND(freepages, db_show_freepages)
967 {
968 struct vm_freelist *fl;
969 int flind, oind, pind, dom;
970
971 for (dom = 0; dom < vm_ndomains; dom++) {
972 db_printf("DOMAIN: %d\n", dom);
973 for (flind = 0; flind < vm_nfreelists; flind++) {
974 db_printf("FREE LIST %d:\n"
975 "\n ORDER (SIZE) | NUMBER"
976 "\n ", flind);
977 for (pind = 0; pind < VM_NFREEPOOL; pind++)
978 db_printf(" | POOL %d", pind);
979 db_printf("\n-- ");
980 for (pind = 0; pind < VM_NFREEPOOL; pind++)
981 db_printf("-- -- ");
982 db_printf("--\n");
983 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
984 db_printf(" %2.2d (%6.6dK)", oind,
985 1 << (PAGE_SHIFT - 10 + oind));
986 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
987 fl = vm_phys_free_queues[dom][flind][pind];
988 db_printf(" | %6.6d", fl[oind].lcnt);
989 }
990 db_printf("\n");
991 }
992 db_printf("\n");
993 }
994 db_printf("\n");
995 }
996 }
997 #endif
Cache object: dcf5cd74b988086b6796e0070eba354c
|