The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Rice University
    3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
    4  * All rights reserved.
    5  *
    6  * This software was developed for the FreeBSD Project by Alan L. Cox,
    7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
   22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
   25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
   28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  *      Physical memory system implementation
   34  *
   35  * Any external functions defined by this module are only to be used by the
   36  * virtual memory system.
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/10.2/sys/vm/vm_phys.c 285634 2015-07-16 14:41:58Z kib $");
   41 
   42 #include "opt_ddb.h"
   43 #include "opt_vm.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/lock.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mutex.h>
   51 #if MAXMEMDOM > 1
   52 #include <sys/proc.h>
   53 #endif
   54 #include <sys/queue.h>
   55 #include <sys/sbuf.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/vmmeter.h>
   58 
   59 #include <ddb/ddb.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_param.h>
   63 #include <vm/vm_kern.h>
   64 #include <vm/vm_object.h>
   65 #include <vm/vm_page.h>
   66 #include <vm/vm_phys.h>
   67 
   68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
   69     "Too many physsegs.");
   70 
   71 struct mem_affinity *mem_affinity;
   72 
   73 int vm_ndomains = 1;
   74 
   75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
   76 int vm_phys_nsegs;
   77 
   78 #define VM_PHYS_FICTITIOUS_NSEGS        8
   79 static struct vm_phys_fictitious_seg {
   80         vm_paddr_t      start;
   81         vm_paddr_t      end;
   82         vm_page_t       first_page;
   83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
   84 static struct mtx vm_phys_fictitious_reg_mtx;
   85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
   86 
   87 static struct vm_freelist
   88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
   89 
   90 static int vm_nfreelists;
   91 
   92 /*
   93  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
   94  */
   95 static int vm_freelist_to_flind[VM_NFREELIST];
   96 
   97 CTASSERT(VM_FREELIST_DEFAULT == 0);
   98 
   99 #ifdef VM_FREELIST_ISADMA
  100 #define VM_ISADMA_BOUNDARY      16777216
  101 #endif
  102 #ifdef VM_FREELIST_DMA32
  103 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
  104 #endif
  105 
  106 /*
  107  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
  108  * the ordering of the free list boundaries.
  109  */
  110 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
  111 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
  112 #endif
  113 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
  114 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
  115 #endif
  116 
  117 static int cnt_prezero;
  118 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
  119     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
  120 
  121 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
  122 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
  123     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
  124 
  125 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
  126 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
  127     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
  128 
  129 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
  130     &vm_ndomains, 0, "Number of physical memory domains available.");
  131 
  132 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
  133     int order);
  134 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
  135 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
  136 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
  137 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
  138     int order);
  139 
  140 static __inline int
  141 vm_rr_selectdomain(void)
  142 {
  143 #if MAXMEMDOM > 1
  144         struct thread *td;
  145 
  146         td = curthread;
  147 
  148         td->td_dom_rr_idx++;
  149         td->td_dom_rr_idx %= vm_ndomains;
  150         return (td->td_dom_rr_idx);
  151 #else
  152         return (0);
  153 #endif
  154 }
  155 
  156 boolean_t
  157 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
  158 {
  159         struct vm_phys_seg *s;
  160         int idx;
  161 
  162         while ((idx = ffsl(mask)) != 0) {
  163                 idx--;  /* ffsl counts from 1 */
  164                 mask &= ~(1UL << idx);
  165                 s = &vm_phys_segs[idx];
  166                 if (low < s->end && high > s->start)
  167                         return (TRUE);
  168         }
  169         return (FALSE);
  170 }
  171 
  172 /*
  173  * Outputs the state of the physical memory allocator, specifically,
  174  * the amount of physical memory in each free list.
  175  */
  176 static int
  177 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
  178 {
  179         struct sbuf sbuf;
  180         struct vm_freelist *fl;
  181         int dom, error, flind, oind, pind;
  182 
  183         error = sysctl_wire_old_buffer(req, 0);
  184         if (error != 0)
  185                 return (error);
  186         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
  187         for (dom = 0; dom < vm_ndomains; dom++) {
  188                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
  189                 for (flind = 0; flind < vm_nfreelists; flind++) {
  190                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
  191                             "\n  ORDER (SIZE)  |  NUMBER"
  192                             "\n              ", flind);
  193                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
  194                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
  195                         sbuf_printf(&sbuf, "\n--            ");
  196                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
  197                                 sbuf_printf(&sbuf, "-- --      ");
  198                         sbuf_printf(&sbuf, "--\n");
  199                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
  200                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
  201                                     1 << (PAGE_SHIFT - 10 + oind));
  202                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  203                                 fl = vm_phys_free_queues[dom][flind][pind];
  204                                         sbuf_printf(&sbuf, "  |  %6d",
  205                                             fl[oind].lcnt);
  206                                 }
  207                                 sbuf_printf(&sbuf, "\n");
  208                         }
  209                 }
  210         }
  211         error = sbuf_finish(&sbuf);
  212         sbuf_delete(&sbuf);
  213         return (error);
  214 }
  215 
  216 /*
  217  * Outputs the set of physical memory segments.
  218  */
  219 static int
  220 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
  221 {
  222         struct sbuf sbuf;
  223         struct vm_phys_seg *seg;
  224         int error, segind;
  225 
  226         error = sysctl_wire_old_buffer(req, 0);
  227         if (error != 0)
  228                 return (error);
  229         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  230         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  231                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
  232                 seg = &vm_phys_segs[segind];
  233                 sbuf_printf(&sbuf, "start:     %#jx\n",
  234                     (uintmax_t)seg->start);
  235                 sbuf_printf(&sbuf, "end:       %#jx\n",
  236                     (uintmax_t)seg->end);
  237                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
  238                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
  239         }
  240         error = sbuf_finish(&sbuf);
  241         sbuf_delete(&sbuf);
  242         return (error);
  243 }
  244 
  245 static void
  246 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
  247 {
  248 
  249         m->order = order;
  250         if (tail)
  251                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
  252         else
  253                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
  254         fl[order].lcnt++;
  255 }
  256 
  257 static void
  258 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
  259 {
  260 
  261         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
  262         fl[order].lcnt--;
  263         m->order = VM_NFREEORDER;
  264 }
  265 
  266 /*
  267  * Create a physical memory segment.
  268  */
  269 static void
  270 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
  271 {
  272         struct vm_phys_seg *seg;
  273 
  274         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
  275             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
  276         KASSERT(domain < vm_ndomains,
  277             ("vm_phys_create_seg: invalid domain provided"));
  278         seg = &vm_phys_segs[vm_phys_nsegs++];
  279         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
  280                 *seg = *(seg - 1);
  281                 seg--;
  282         }
  283         seg->start = start;
  284         seg->end = end;
  285         seg->domain = domain;
  286 }
  287 
  288 static void
  289 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
  290 {
  291         int i;
  292 
  293         if (mem_affinity == NULL) {
  294                 _vm_phys_create_seg(start, end, 0);
  295                 return;
  296         }
  297 
  298         for (i = 0;; i++) {
  299                 if (mem_affinity[i].end == 0)
  300                         panic("Reached end of affinity info");
  301                 if (mem_affinity[i].end <= start)
  302                         continue;
  303                 if (mem_affinity[i].start > start)
  304                         panic("No affinity info for start %jx",
  305                             (uintmax_t)start);
  306                 if (mem_affinity[i].end >= end) {
  307                         _vm_phys_create_seg(start, end,
  308                             mem_affinity[i].domain);
  309                         break;
  310                 }
  311                 _vm_phys_create_seg(start, mem_affinity[i].end,
  312                     mem_affinity[i].domain);
  313                 start = mem_affinity[i].end;
  314         }
  315 }
  316 
  317 /*
  318  * Add a physical memory segment.
  319  */
  320 void
  321 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
  322 {
  323         vm_paddr_t paddr;
  324 
  325         KASSERT((start & PAGE_MASK) == 0,
  326             ("vm_phys_define_seg: start is not page aligned"));
  327         KASSERT((end & PAGE_MASK) == 0,
  328             ("vm_phys_define_seg: end is not page aligned"));
  329 
  330         /*
  331          * Split the physical memory segment if it spans two or more free
  332          * list boundaries.
  333          */
  334         paddr = start;
  335 #ifdef  VM_FREELIST_ISADMA
  336         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
  337                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
  338                 paddr = VM_ISADMA_BOUNDARY;
  339         }
  340 #endif
  341 #ifdef  VM_FREELIST_LOWMEM
  342         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
  343                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
  344                 paddr = VM_LOWMEM_BOUNDARY;
  345         }
  346 #endif
  347 #ifdef  VM_FREELIST_DMA32
  348         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
  349                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
  350                 paddr = VM_DMA32_BOUNDARY;
  351         }
  352 #endif
  353         vm_phys_create_seg(paddr, end);
  354 }
  355 
  356 /*
  357  * Initialize the physical memory allocator.
  358  *
  359  * Requires that vm_page_array is initialized!
  360  */
  361 void
  362 vm_phys_init(void)
  363 {
  364         struct vm_freelist *fl;
  365         struct vm_phys_seg *seg;
  366         u_long npages;
  367         int dom, flind, freelist, oind, pind, segind;
  368 
  369         /*
  370          * Compute the number of free lists, and generate the mapping from the
  371          * manifest constants VM_FREELIST_* to the free list indices.
  372          *
  373          * Initially, the entries of vm_freelist_to_flind[] are set to either
  374          * 0 or 1 to indicate which free lists should be created.
  375          */
  376         npages = 0;
  377         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
  378                 seg = &vm_phys_segs[segind];
  379 #ifdef  VM_FREELIST_ISADMA
  380                 if (seg->end <= VM_ISADMA_BOUNDARY)
  381                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
  382                 else
  383 #endif
  384 #ifdef  VM_FREELIST_LOWMEM
  385                 if (seg->end <= VM_LOWMEM_BOUNDARY)
  386                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
  387                 else
  388 #endif
  389 #ifdef  VM_FREELIST_DMA32
  390                 if (
  391 #ifdef  VM_DMA32_NPAGES_THRESHOLD
  392                     /*
  393                      * Create the DMA32 free list only if the amount of
  394                      * physical memory above physical address 4G exceeds the
  395                      * given threshold.
  396                      */
  397                     npages > VM_DMA32_NPAGES_THRESHOLD &&
  398 #endif
  399                     seg->end <= VM_DMA32_BOUNDARY)
  400                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
  401                 else
  402 #endif
  403                 {
  404                         npages += atop(seg->end - seg->start);
  405                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
  406                 }
  407         }
  408         /* Change each entry into a running total of the free lists. */
  409         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
  410                 vm_freelist_to_flind[freelist] +=
  411                     vm_freelist_to_flind[freelist - 1];
  412         }
  413         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
  414         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
  415         /* Change each entry into a free list index. */
  416         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
  417                 vm_freelist_to_flind[freelist]--;
  418 
  419         /*
  420          * Initialize the first_page and free_queues fields of each physical
  421          * memory segment.
  422          */
  423 #ifdef VM_PHYSSEG_SPARSE
  424         npages = 0;
  425 #endif
  426         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  427                 seg = &vm_phys_segs[segind];
  428 #ifdef VM_PHYSSEG_SPARSE
  429                 seg->first_page = &vm_page_array[npages];
  430                 npages += atop(seg->end - seg->start);
  431 #else
  432                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
  433 #endif
  434 #ifdef  VM_FREELIST_ISADMA
  435                 if (seg->end <= VM_ISADMA_BOUNDARY) {
  436                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
  437                         KASSERT(flind >= 0,
  438                             ("vm_phys_init: ISADMA flind < 0"));
  439                 } else
  440 #endif
  441 #ifdef  VM_FREELIST_LOWMEM
  442                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
  443                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
  444                         KASSERT(flind >= 0,
  445                             ("vm_phys_init: LOWMEM flind < 0"));
  446                 } else
  447 #endif
  448 #ifdef  VM_FREELIST_DMA32
  449                 if (seg->end <= VM_DMA32_BOUNDARY) {
  450                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
  451                         KASSERT(flind >= 0,
  452                             ("vm_phys_init: DMA32 flind < 0"));
  453                 } else
  454 #endif
  455                 {
  456                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
  457                         KASSERT(flind >= 0,
  458                             ("vm_phys_init: DEFAULT flind < 0"));
  459                 }
  460                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
  461         }
  462 
  463         /*
  464          * Initialize the free queues.
  465          */
  466         for (dom = 0; dom < vm_ndomains; dom++) {
  467                 for (flind = 0; flind < vm_nfreelists; flind++) {
  468                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  469                                 fl = vm_phys_free_queues[dom][flind][pind];
  470                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
  471                                         TAILQ_INIT(&fl[oind].pl);
  472                         }
  473                 }
  474         }
  475         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
  476 }
  477 
  478 /*
  479  * Split a contiguous, power of two-sized set of physical pages.
  480  */
  481 static __inline void
  482 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
  483 {
  484         vm_page_t m_buddy;
  485 
  486         while (oind > order) {
  487                 oind--;
  488                 m_buddy = &m[1 << oind];
  489                 KASSERT(m_buddy->order == VM_NFREEORDER,
  490                     ("vm_phys_split_pages: page %p has unexpected order %d",
  491                     m_buddy, m_buddy->order));
  492                 vm_freelist_add(fl, m_buddy, oind, 0);
  493         }
  494 }
  495 
  496 /*
  497  * Initialize a physical page and add it to the free lists.
  498  */
  499 void
  500 vm_phys_add_page(vm_paddr_t pa)
  501 {
  502         vm_page_t m;
  503         struct vm_domain *vmd;
  504 
  505         cnt.v_page_count++;
  506         m = vm_phys_paddr_to_vm_page(pa);
  507         m->phys_addr = pa;
  508         m->queue = PQ_NONE;
  509         m->segind = vm_phys_paddr_to_segind(pa);
  510         vmd = vm_phys_domain(m);
  511         vmd->vmd_page_count++;
  512         vmd->vmd_segs |= 1UL << m->segind;
  513         m->flags = PG_FREE;
  514         KASSERT(m->order == VM_NFREEORDER,
  515             ("vm_phys_add_page: page %p has unexpected order %d",
  516             m, m->order));
  517         m->pool = VM_FREEPOOL_DEFAULT;
  518         pmap_page_init(m);
  519         mtx_lock(&vm_page_queue_free_mtx);
  520         vm_phys_freecnt_adj(m, 1);
  521         vm_phys_free_pages(m, 0);
  522         mtx_unlock(&vm_page_queue_free_mtx);
  523 }
  524 
  525 /*
  526  * Allocate a contiguous, power of two-sized set of physical pages
  527  * from the free lists.
  528  *
  529  * The free page queues must be locked.
  530  */
  531 vm_page_t
  532 vm_phys_alloc_pages(int pool, int order)
  533 {
  534         vm_page_t m;
  535         int dom, domain, flind;
  536 
  537         KASSERT(pool < VM_NFREEPOOL,
  538             ("vm_phys_alloc_pages: pool %d is out of range", pool));
  539         KASSERT(order < VM_NFREEORDER,
  540             ("vm_phys_alloc_pages: order %d is out of range", order));
  541 
  542         for (dom = 0; dom < vm_ndomains; dom++) {
  543                 domain = vm_rr_selectdomain();
  544                 for (flind = 0; flind < vm_nfreelists; flind++) {
  545                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
  546                             order);
  547                         if (m != NULL)
  548                                 return (m);
  549                 }
  550         }
  551         return (NULL);
  552 }
  553 
  554 /*
  555  * Allocate a contiguous, power of two-sized set of physical pages from the
  556  * specified free list.  The free list must be specified using one of the
  557  * manifest constants VM_FREELIST_*.
  558  *
  559  * The free page queues must be locked.
  560  */
  561 vm_page_t
  562 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
  563 {
  564         vm_page_t m;
  565         int dom, domain;
  566 
  567         KASSERT(freelist < VM_NFREELIST,
  568             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
  569             freelist));
  570         KASSERT(pool < VM_NFREEPOOL,
  571             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
  572         KASSERT(order < VM_NFREEORDER,
  573             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
  574         for (dom = 0; dom < vm_ndomains; dom++) {
  575                 domain = vm_rr_selectdomain();
  576                 m = vm_phys_alloc_domain_pages(domain,
  577                     vm_freelist_to_flind[freelist], pool, order);
  578                 if (m != NULL)
  579                         return (m);
  580         }
  581         return (NULL);
  582 }
  583 
  584 static vm_page_t
  585 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
  586 {       
  587         struct vm_freelist *fl;
  588         struct vm_freelist *alt;
  589         int oind, pind;
  590         vm_page_t m;
  591 
  592         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  593         fl = &vm_phys_free_queues[domain][flind][pool][0];
  594         for (oind = order; oind < VM_NFREEORDER; oind++) {
  595                 m = TAILQ_FIRST(&fl[oind].pl);
  596                 if (m != NULL) {
  597                         vm_freelist_rem(fl, m, oind);
  598                         vm_phys_split_pages(m, oind, fl, order);
  599                         return (m);
  600                 }
  601         }
  602 
  603         /*
  604          * The given pool was empty.  Find the largest
  605          * contiguous, power-of-two-sized set of pages in any
  606          * pool.  Transfer these pages to the given pool, and
  607          * use them to satisfy the allocation.
  608          */
  609         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
  610                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  611                         alt = &vm_phys_free_queues[domain][flind][pind][0];
  612                         m = TAILQ_FIRST(&alt[oind].pl);
  613                         if (m != NULL) {
  614                                 vm_freelist_rem(alt, m, oind);
  615                                 vm_phys_set_pool(pool, m, oind);
  616                                 vm_phys_split_pages(m, oind, fl, order);
  617                                 return (m);
  618                         }
  619                 }
  620         }
  621         return (NULL);
  622 }
  623 
  624 /*
  625  * Find the vm_page corresponding to the given physical address.
  626  */
  627 vm_page_t
  628 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
  629 {
  630         struct vm_phys_seg *seg;
  631         int segind;
  632 
  633         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  634                 seg = &vm_phys_segs[segind];
  635                 if (pa >= seg->start && pa < seg->end)
  636                         return (&seg->first_page[atop(pa - seg->start)]);
  637         }
  638         return (NULL);
  639 }
  640 
  641 vm_page_t
  642 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
  643 {
  644         struct vm_phys_fictitious_seg *seg;
  645         vm_page_t m;
  646         int segind;
  647 
  648         m = NULL;
  649         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
  650                 seg = &vm_phys_fictitious_segs[segind];
  651                 if (pa >= seg->start && pa < seg->end) {
  652                         m = &seg->first_page[atop(pa - seg->start)];
  653                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
  654                             ("%p not fictitious", m));
  655                         break;
  656                 }
  657         }
  658         return (m);
  659 }
  660 
  661 int
  662 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
  663     vm_memattr_t memattr)
  664 {
  665         struct vm_phys_fictitious_seg *seg;
  666         vm_page_t fp;
  667         long i, page_count;
  668         int segind;
  669 #ifdef VM_PHYSSEG_DENSE
  670         long pi;
  671         boolean_t malloced;
  672 #endif
  673 
  674         page_count = (end - start) / PAGE_SIZE;
  675 
  676 #ifdef VM_PHYSSEG_DENSE
  677         pi = atop(start);
  678         if (pi >= first_page && pi < vm_page_array_size + first_page) {
  679                 if (atop(end) >= vm_page_array_size + first_page)
  680                         return (EINVAL);
  681                 fp = &vm_page_array[pi - first_page];
  682                 malloced = FALSE;
  683         } else
  684 #endif
  685         {
  686                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
  687                     M_WAITOK | M_ZERO);
  688 #ifdef VM_PHYSSEG_DENSE
  689                 malloced = TRUE;
  690 #endif
  691         }
  692         for (i = 0; i < page_count; i++) {
  693                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
  694                 fp[i].oflags &= ~VPO_UNMANAGED;
  695                 fp[i].busy_lock = VPB_UNBUSIED;
  696         }
  697         mtx_lock(&vm_phys_fictitious_reg_mtx);
  698         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
  699                 seg = &vm_phys_fictitious_segs[segind];
  700                 if (seg->start == 0 && seg->end == 0) {
  701                         seg->start = start;
  702                         seg->end = end;
  703                         seg->first_page = fp;
  704                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
  705                         return (0);
  706                 }
  707         }
  708         mtx_unlock(&vm_phys_fictitious_reg_mtx);
  709 #ifdef VM_PHYSSEG_DENSE
  710         if (malloced)
  711 #endif
  712                 free(fp, M_FICT_PAGES);
  713         return (EBUSY);
  714 }
  715 
  716 void
  717 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
  718 {
  719         struct vm_phys_fictitious_seg *seg;
  720         vm_page_t fp;
  721         int segind;
  722 #ifdef VM_PHYSSEG_DENSE
  723         long pi;
  724 #endif
  725 
  726 #ifdef VM_PHYSSEG_DENSE
  727         pi = atop(start);
  728 #endif
  729 
  730         mtx_lock(&vm_phys_fictitious_reg_mtx);
  731         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
  732                 seg = &vm_phys_fictitious_segs[segind];
  733                 if (seg->start == start && seg->end == end) {
  734                         seg->start = seg->end = 0;
  735                         fp = seg->first_page;
  736                         seg->first_page = NULL;
  737                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
  738 #ifdef VM_PHYSSEG_DENSE
  739                         if (pi < first_page || atop(end) >= vm_page_array_size)
  740 #endif
  741                                 free(fp, M_FICT_PAGES);
  742                         return;
  743                 }
  744         }
  745         mtx_unlock(&vm_phys_fictitious_reg_mtx);
  746         KASSERT(0, ("Unregistering not registered fictitious range"));
  747 }
  748 
  749 /*
  750  * Find the segment containing the given physical address.
  751  */
  752 static int
  753 vm_phys_paddr_to_segind(vm_paddr_t pa)
  754 {
  755         struct vm_phys_seg *seg;
  756         int segind;
  757 
  758         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  759                 seg = &vm_phys_segs[segind];
  760                 if (pa >= seg->start && pa < seg->end)
  761                         return (segind);
  762         }
  763         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
  764             (uintmax_t)pa);
  765 }
  766 
  767 /*
  768  * Free a contiguous, power of two-sized set of physical pages.
  769  *
  770  * The free page queues must be locked.
  771  */
  772 void
  773 vm_phys_free_pages(vm_page_t m, int order)
  774 {
  775         struct vm_freelist *fl;
  776         struct vm_phys_seg *seg;
  777         vm_paddr_t pa;
  778         vm_page_t m_buddy;
  779 
  780         KASSERT(m->order == VM_NFREEORDER,
  781             ("vm_phys_free_pages: page %p has unexpected order %d",
  782             m, m->order));
  783         KASSERT(m->pool < VM_NFREEPOOL,
  784             ("vm_phys_free_pages: page %p has unexpected pool %d",
  785             m, m->pool));
  786         KASSERT(order < VM_NFREEORDER,
  787             ("vm_phys_free_pages: order %d is out of range", order));
  788         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  789         seg = &vm_phys_segs[m->segind];
  790         if (order < VM_NFREEORDER - 1) {
  791                 pa = VM_PAGE_TO_PHYS(m);
  792                 do {
  793                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
  794                         if (pa < seg->start || pa >= seg->end)
  795                                 break;
  796                         m_buddy = &seg->first_page[atop(pa - seg->start)];
  797                         if (m_buddy->order != order)
  798                                 break;
  799                         fl = (*seg->free_queues)[m_buddy->pool];
  800                         vm_freelist_rem(fl, m_buddy, order);
  801                         if (m_buddy->pool != m->pool)
  802                                 vm_phys_set_pool(m->pool, m_buddy, order);
  803                         order++;
  804                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
  805                         m = &seg->first_page[atop(pa - seg->start)];
  806                 } while (order < VM_NFREEORDER - 1);
  807         }
  808         fl = (*seg->free_queues)[m->pool];
  809         vm_freelist_add(fl, m, order, 1);
  810 }
  811 
  812 /*
  813  * Free a contiguous, arbitrarily sized set of physical pages.
  814  *
  815  * The free page queues must be locked.
  816  */
  817 void
  818 vm_phys_free_contig(vm_page_t m, u_long npages)
  819 {
  820         u_int n;
  821         int order;
  822 
  823         /*
  824          * Avoid unnecessary coalescing by freeing the pages in the largest
  825          * possible power-of-two-sized subsets.
  826          */
  827         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  828         for (;; npages -= n) {
  829                 /*
  830                  * Unsigned "min" is used here so that "order" is assigned
  831                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
  832                  * or the low-order bits of its physical address are zero
  833                  * because the size of a physical address exceeds the size of
  834                  * a long.
  835                  */
  836                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
  837                     VM_NFREEORDER - 1);
  838                 n = 1 << order;
  839                 if (npages < n)
  840                         break;
  841                 vm_phys_free_pages(m, order);
  842                 m += n;
  843         }
  844         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
  845         for (; npages > 0; npages -= n) {
  846                 order = flsl(npages) - 1;
  847                 n = 1 << order;
  848                 vm_phys_free_pages(m, order);
  849                 m += n;
  850         }
  851 }
  852 
  853 /*
  854  * Set the pool for a contiguous, power of two-sized set of physical pages. 
  855  */
  856 void
  857 vm_phys_set_pool(int pool, vm_page_t m, int order)
  858 {
  859         vm_page_t m_tmp;
  860 
  861         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
  862                 m_tmp->pool = pool;
  863 }
  864 
  865 /*
  866  * Search for the given physical page "m" in the free lists.  If the search
  867  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
  868  * FALSE, indicating that "m" is not in the free lists.
  869  *
  870  * The free page queues must be locked.
  871  */
  872 boolean_t
  873 vm_phys_unfree_page(vm_page_t m)
  874 {
  875         struct vm_freelist *fl;
  876         struct vm_phys_seg *seg;
  877         vm_paddr_t pa, pa_half;
  878         vm_page_t m_set, m_tmp;
  879         int order;
  880 
  881         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  882 
  883         /*
  884          * First, find the contiguous, power of two-sized set of free
  885          * physical pages containing the given physical page "m" and
  886          * assign it to "m_set".
  887          */
  888         seg = &vm_phys_segs[m->segind];
  889         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
  890             order < VM_NFREEORDER - 1; ) {
  891                 order++;
  892                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
  893                 if (pa >= seg->start)
  894                         m_set = &seg->first_page[atop(pa - seg->start)];
  895                 else
  896                         return (FALSE);
  897         }
  898         if (m_set->order < order)
  899                 return (FALSE);
  900         if (m_set->order == VM_NFREEORDER)
  901                 return (FALSE);
  902         KASSERT(m_set->order < VM_NFREEORDER,
  903             ("vm_phys_unfree_page: page %p has unexpected order %d",
  904             m_set, m_set->order));
  905 
  906         /*
  907          * Next, remove "m_set" from the free lists.  Finally, extract
  908          * "m" from "m_set" using an iterative algorithm: While "m_set"
  909          * is larger than a page, shrink "m_set" by returning the half
  910          * of "m_set" that does not contain "m" to the free lists.
  911          */
  912         fl = (*seg->free_queues)[m_set->pool];
  913         order = m_set->order;
  914         vm_freelist_rem(fl, m_set, order);
  915         while (order > 0) {
  916                 order--;
  917                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
  918                 if (m->phys_addr < pa_half)
  919                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
  920                 else {
  921                         m_tmp = m_set;
  922                         m_set = &seg->first_page[atop(pa_half - seg->start)];
  923                 }
  924                 vm_freelist_add(fl, m_tmp, order, 0);
  925         }
  926         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
  927         return (TRUE);
  928 }
  929 
  930 /*
  931  * Try to zero one physical page.  Used by an idle priority thread.
  932  */
  933 boolean_t
  934 vm_phys_zero_pages_idle(void)
  935 {
  936         static struct vm_freelist *fl;
  937         static int flind, oind, pind;
  938         vm_page_t m, m_tmp;
  939         int domain;
  940 
  941         domain = vm_rr_selectdomain();
  942         fl = vm_phys_free_queues[domain][0][0];
  943         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  944         for (;;) {
  945                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
  946                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
  947                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
  948                                         vm_phys_unfree_page(m_tmp);
  949                                         vm_phys_freecnt_adj(m, -1);
  950                                         mtx_unlock(&vm_page_queue_free_mtx);
  951                                         pmap_zero_page_idle(m_tmp);
  952                                         m_tmp->flags |= PG_ZERO;
  953                                         mtx_lock(&vm_page_queue_free_mtx);
  954                                         vm_phys_freecnt_adj(m, 1);
  955                                         vm_phys_free_pages(m_tmp, 0);
  956                                         vm_page_zero_count++;
  957                                         cnt_prezero++;
  958                                         return (TRUE);
  959                                 }
  960                         }
  961                 }
  962                 oind++;
  963                 if (oind == VM_NFREEORDER) {
  964                         oind = 0;
  965                         pind++;
  966                         if (pind == VM_NFREEPOOL) {
  967                                 pind = 0;
  968                                 flind++;
  969                                 if (flind == vm_nfreelists)
  970                                         flind = 0;
  971                         }
  972                         fl = vm_phys_free_queues[domain][flind][pind];
  973                 }
  974         }
  975 }
  976 
  977 /*
  978  * Allocate a contiguous set of physical pages of the given size
  979  * "npages" from the free lists.  All of the physical pages must be at
  980  * or above the given physical address "low" and below the given
  981  * physical address "high".  The given value "alignment" determines the
  982  * alignment of the first physical page in the set.  If the given value
  983  * "boundary" is non-zero, then the set of physical pages cannot cross
  984  * any physical address boundary that is a multiple of that value.  Both
  985  * "alignment" and "boundary" must be a power of two.
  986  */
  987 vm_page_t
  988 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
  989     u_long alignment, vm_paddr_t boundary)
  990 {
  991         struct vm_freelist *fl;
  992         struct vm_phys_seg *seg;
  993         vm_paddr_t pa, pa_last, size;
  994         vm_page_t m, m_ret;
  995         u_long npages_end;
  996         int dom, domain, flind, oind, order, pind;
  997 
  998         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  999         size = npages << PAGE_SHIFT;
 1000         KASSERT(size != 0,
 1001             ("vm_phys_alloc_contig: size must not be 0"));
 1002         KASSERT((alignment & (alignment - 1)) == 0,
 1003             ("vm_phys_alloc_contig: alignment must be a power of 2"));
 1004         KASSERT((boundary & (boundary - 1)) == 0,
 1005             ("vm_phys_alloc_contig: boundary must be a power of 2"));
 1006         /* Compute the queue that is the best fit for npages. */
 1007         for (order = 0; (1 << order) < npages; order++);
 1008         dom = 0;
 1009 restartdom:
 1010         domain = vm_rr_selectdomain();
 1011         for (flind = 0; flind < vm_nfreelists; flind++) {
 1012                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
 1013                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
 1014                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
 1015                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
 1016                                         /*
 1017                                          * A free list may contain physical pages
 1018                                          * from one or more segments.
 1019                                          */
 1020                                         seg = &vm_phys_segs[m_ret->segind];
 1021                                         if (seg->start > high ||
 1022                                             low >= seg->end)
 1023                                                 continue;
 1024 
 1025                                         /*
 1026                                          * Is the size of this allocation request
 1027                                          * larger than the largest block size?
 1028                                          */
 1029                                         if (order >= VM_NFREEORDER) {
 1030                                                 /*
 1031                                                  * Determine if a sufficient number
 1032                                                  * of subsequent blocks to satisfy
 1033                                                  * the allocation request are free.
 1034                                                  */
 1035                                                 pa = VM_PAGE_TO_PHYS(m_ret);
 1036                                                 pa_last = pa + size;
 1037                                                 for (;;) {
 1038                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
 1039                                                         if (pa >= pa_last)
 1040                                                                 break;
 1041                                                         if (pa < seg->start ||
 1042                                                             pa >= seg->end)
 1043                                                                 break;
 1044                                                         m = &seg->first_page[atop(pa - seg->start)];
 1045                                                         if (m->order != VM_NFREEORDER - 1)
 1046                                                                 break;
 1047                                                 }
 1048                                                 /* If not, continue to the next block. */
 1049                                                 if (pa < pa_last)
 1050                                                         continue;
 1051                                         }
 1052 
 1053                                         /*
 1054                                          * Determine if the blocks are within the given range,
 1055                                          * satisfy the given alignment, and do not cross the
 1056                                          * given boundary.
 1057                                          */
 1058                                         pa = VM_PAGE_TO_PHYS(m_ret);
 1059                                         if (pa >= low &&
 1060                                             pa + size <= high &&
 1061                                             (pa & (alignment - 1)) == 0 &&
 1062                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
 1063                                                 goto done;
 1064                                 }
 1065                         }
 1066                 }
 1067         }
 1068         if (++dom < vm_ndomains)
 1069                 goto restartdom;
 1070         return (NULL);
 1071 done:
 1072         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
 1073                 fl = (*seg->free_queues)[m->pool];
 1074                 vm_freelist_rem(fl, m, m->order);
 1075         }
 1076         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
 1077                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
 1078         fl = (*seg->free_queues)[m_ret->pool];
 1079         vm_phys_split_pages(m_ret, oind, fl, order);
 1080         /* Return excess pages to the free lists. */
 1081         npages_end = roundup2(npages, 1 << imin(oind, order));
 1082         if (npages < npages_end)
 1083                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
 1084         return (m_ret);
 1085 }
 1086 
 1087 #ifdef DDB
 1088 /*
 1089  * Show the number of physical pages in each of the free lists.
 1090  */
 1091 DB_SHOW_COMMAND(freepages, db_show_freepages)
 1092 {
 1093         struct vm_freelist *fl;
 1094         int flind, oind, pind, dom;
 1095 
 1096         for (dom = 0; dom < vm_ndomains; dom++) {
 1097                 db_printf("DOMAIN: %d\n", dom);
 1098                 for (flind = 0; flind < vm_nfreelists; flind++) {
 1099                         db_printf("FREE LIST %d:\n"
 1100                             "\n  ORDER (SIZE)  |  NUMBER"
 1101                             "\n              ", flind);
 1102                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
 1103                                 db_printf("  |  POOL %d", pind);
 1104                         db_printf("\n--            ");
 1105                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
 1106                                 db_printf("-- --      ");
 1107                         db_printf("--\n");
 1108                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
 1109                                 db_printf("  %2.2d (%6.6dK)", oind,
 1110                                     1 << (PAGE_SHIFT - 10 + oind));
 1111                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
 1112                                 fl = vm_phys_free_queues[dom][flind][pind];
 1113                                         db_printf("  |  %6.6d", fl[oind].lcnt);
 1114                                 }
 1115                                 db_printf("\n");
 1116                         }
 1117                         db_printf("\n");
 1118                 }
 1119                 db_printf("\n");
 1120         }
 1121 }
 1122 #endif

Cache object: 2dbbd29508a94b2904b052b471906946


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.