FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Physical memory system implementation
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69 "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS 8
79 static struct vm_phys_fictitious_seg {
80 vm_paddr_t start;
81 vm_paddr_t end;
82 vm_page_t first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists;
91
92 /*
93 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
94 */
95 static int vm_freelist_to_flind[VM_NFREELIST];
96
97 CTASSERT(VM_FREELIST_DEFAULT == 0);
98
99 #ifdef VM_FREELIST_ISADMA
100 #define VM_ISADMA_BOUNDARY 16777216
101 #endif
102 #ifdef VM_FREELIST_DMA32
103 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
104 #endif
105
106 /*
107 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
108 * the ordering of the free list boundaries.
109 */
110 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
111 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
112 #endif
113 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
114 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
115 #endif
116
117 static int cnt_prezero;
118 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
119 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
120
121 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
122 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
123 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
124
125 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
126 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
127 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
128
129 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
130 &vm_ndomains, 0, "Number of physical memory domains available.");
131
132 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
133 int order);
134 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
135 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
136 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
137 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
138 int order);
139
140 static __inline int
141 vm_rr_selectdomain(void)
142 {
143 #if MAXMEMDOM > 1
144 struct thread *td;
145
146 td = curthread;
147
148 td->td_dom_rr_idx++;
149 td->td_dom_rr_idx %= vm_ndomains;
150 return (td->td_dom_rr_idx);
151 #else
152 return (0);
153 #endif
154 }
155
156 boolean_t
157 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
158 {
159 struct vm_phys_seg *s;
160 int idx;
161
162 while ((idx = ffsl(mask)) != 0) {
163 idx--; /* ffsl counts from 1 */
164 mask &= ~(1UL << idx);
165 s = &vm_phys_segs[idx];
166 if (low < s->end && high > s->start)
167 return (TRUE);
168 }
169 return (FALSE);
170 }
171
172 /*
173 * Outputs the state of the physical memory allocator, specifically,
174 * the amount of physical memory in each free list.
175 */
176 static int
177 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
178 {
179 struct sbuf sbuf;
180 struct vm_freelist *fl;
181 int dom, error, flind, oind, pind;
182
183 error = sysctl_wire_old_buffer(req, 0);
184 if (error != 0)
185 return (error);
186 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
187 for (dom = 0; dom < vm_ndomains; dom++) {
188 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
189 for (flind = 0; flind < vm_nfreelists; flind++) {
190 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
191 "\n ORDER (SIZE) | NUMBER"
192 "\n ", flind);
193 for (pind = 0; pind < VM_NFREEPOOL; pind++)
194 sbuf_printf(&sbuf, " | POOL %d", pind);
195 sbuf_printf(&sbuf, "\n-- ");
196 for (pind = 0; pind < VM_NFREEPOOL; pind++)
197 sbuf_printf(&sbuf, "-- -- ");
198 sbuf_printf(&sbuf, "--\n");
199 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
200 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
201 1 << (PAGE_SHIFT - 10 + oind));
202 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
203 fl = vm_phys_free_queues[dom][flind][pind];
204 sbuf_printf(&sbuf, " | %6d",
205 fl[oind].lcnt);
206 }
207 sbuf_printf(&sbuf, "\n");
208 }
209 }
210 }
211 error = sbuf_finish(&sbuf);
212 sbuf_delete(&sbuf);
213 return (error);
214 }
215
216 /*
217 * Outputs the set of physical memory segments.
218 */
219 static int
220 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
221 {
222 struct sbuf sbuf;
223 struct vm_phys_seg *seg;
224 int error, segind;
225
226 error = sysctl_wire_old_buffer(req, 0);
227 if (error != 0)
228 return (error);
229 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
230 for (segind = 0; segind < vm_phys_nsegs; segind++) {
231 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
232 seg = &vm_phys_segs[segind];
233 sbuf_printf(&sbuf, "start: %#jx\n",
234 (uintmax_t)seg->start);
235 sbuf_printf(&sbuf, "end: %#jx\n",
236 (uintmax_t)seg->end);
237 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
238 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
239 }
240 error = sbuf_finish(&sbuf);
241 sbuf_delete(&sbuf);
242 return (error);
243 }
244
245 static void
246 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
247 {
248
249 m->order = order;
250 if (tail)
251 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
252 else
253 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
254 fl[order].lcnt++;
255 }
256
257 static void
258 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
259 {
260
261 TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
262 fl[order].lcnt--;
263 m->order = VM_NFREEORDER;
264 }
265
266 /*
267 * Create a physical memory segment.
268 */
269 static void
270 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
271 {
272 struct vm_phys_seg *seg;
273
274 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
275 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
276 KASSERT(domain < vm_ndomains,
277 ("vm_phys_create_seg: invalid domain provided"));
278 seg = &vm_phys_segs[vm_phys_nsegs++];
279 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
280 *seg = *(seg - 1);
281 seg--;
282 }
283 seg->start = start;
284 seg->end = end;
285 seg->domain = domain;
286 }
287
288 static void
289 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
290 {
291 int i;
292
293 if (mem_affinity == NULL) {
294 _vm_phys_create_seg(start, end, 0);
295 return;
296 }
297
298 for (i = 0;; i++) {
299 if (mem_affinity[i].end == 0)
300 panic("Reached end of affinity info");
301 if (mem_affinity[i].end <= start)
302 continue;
303 if (mem_affinity[i].start > start)
304 panic("No affinity info for start %jx",
305 (uintmax_t)start);
306 if (mem_affinity[i].end >= end) {
307 _vm_phys_create_seg(start, end,
308 mem_affinity[i].domain);
309 break;
310 }
311 _vm_phys_create_seg(start, mem_affinity[i].end,
312 mem_affinity[i].domain);
313 start = mem_affinity[i].end;
314 }
315 }
316
317 /*
318 * Add a physical memory segment.
319 */
320 void
321 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
322 {
323 vm_paddr_t paddr;
324
325 KASSERT((start & PAGE_MASK) == 0,
326 ("vm_phys_define_seg: start is not page aligned"));
327 KASSERT((end & PAGE_MASK) == 0,
328 ("vm_phys_define_seg: end is not page aligned"));
329
330 /*
331 * Split the physical memory segment if it spans two or more free
332 * list boundaries.
333 */
334 paddr = start;
335 #ifdef VM_FREELIST_ISADMA
336 if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
337 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
338 paddr = VM_ISADMA_BOUNDARY;
339 }
340 #endif
341 #ifdef VM_FREELIST_LOWMEM
342 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
343 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
344 paddr = VM_LOWMEM_BOUNDARY;
345 }
346 #endif
347 #ifdef VM_FREELIST_DMA32
348 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
349 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
350 paddr = VM_DMA32_BOUNDARY;
351 }
352 #endif
353 vm_phys_create_seg(paddr, end);
354 }
355
356 /*
357 * Initialize the physical memory allocator.
358 *
359 * Requires that vm_page_array is initialized!
360 */
361 void
362 vm_phys_init(void)
363 {
364 struct vm_freelist *fl;
365 struct vm_phys_seg *seg;
366 u_long npages;
367 int dom, flind, freelist, oind, pind, segind;
368
369 /*
370 * Compute the number of free lists, and generate the mapping from the
371 * manifest constants VM_FREELIST_* to the free list indices.
372 *
373 * Initially, the entries of vm_freelist_to_flind[] are set to either
374 * 0 or 1 to indicate which free lists should be created.
375 */
376 npages = 0;
377 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
378 seg = &vm_phys_segs[segind];
379 #ifdef VM_FREELIST_ISADMA
380 if (seg->end <= VM_ISADMA_BOUNDARY)
381 vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
382 else
383 #endif
384 #ifdef VM_FREELIST_LOWMEM
385 if (seg->end <= VM_LOWMEM_BOUNDARY)
386 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
387 else
388 #endif
389 #ifdef VM_FREELIST_DMA32
390 if (
391 #ifdef VM_DMA32_NPAGES_THRESHOLD
392 /*
393 * Create the DMA32 free list only if the amount of
394 * physical memory above physical address 4G exceeds the
395 * given threshold.
396 */
397 npages > VM_DMA32_NPAGES_THRESHOLD &&
398 #endif
399 seg->end <= VM_DMA32_BOUNDARY)
400 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
401 else
402 #endif
403 {
404 npages += atop(seg->end - seg->start);
405 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
406 }
407 }
408 /* Change each entry into a running total of the free lists. */
409 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
410 vm_freelist_to_flind[freelist] +=
411 vm_freelist_to_flind[freelist - 1];
412 }
413 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
414 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
415 /* Change each entry into a free list index. */
416 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
417 vm_freelist_to_flind[freelist]--;
418
419 /*
420 * Initialize the first_page and free_queues fields of each physical
421 * memory segment.
422 */
423 #ifdef VM_PHYSSEG_SPARSE
424 npages = 0;
425 #endif
426 for (segind = 0; segind < vm_phys_nsegs; segind++) {
427 seg = &vm_phys_segs[segind];
428 #ifdef VM_PHYSSEG_SPARSE
429 seg->first_page = &vm_page_array[npages];
430 npages += atop(seg->end - seg->start);
431 #else
432 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
433 #endif
434 #ifdef VM_FREELIST_ISADMA
435 if (seg->end <= VM_ISADMA_BOUNDARY) {
436 flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
437 KASSERT(flind >= 0,
438 ("vm_phys_init: ISADMA flind < 0"));
439 } else
440 #endif
441 #ifdef VM_FREELIST_LOWMEM
442 if (seg->end <= VM_LOWMEM_BOUNDARY) {
443 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
444 KASSERT(flind >= 0,
445 ("vm_phys_init: LOWMEM flind < 0"));
446 } else
447 #endif
448 #ifdef VM_FREELIST_DMA32
449 if (seg->end <= VM_DMA32_BOUNDARY) {
450 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
451 KASSERT(flind >= 0,
452 ("vm_phys_init: DMA32 flind < 0"));
453 } else
454 #endif
455 {
456 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
457 KASSERT(flind >= 0,
458 ("vm_phys_init: DEFAULT flind < 0"));
459 }
460 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
461 }
462
463 /*
464 * Initialize the free queues.
465 */
466 for (dom = 0; dom < vm_ndomains; dom++) {
467 for (flind = 0; flind < vm_nfreelists; flind++) {
468 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
469 fl = vm_phys_free_queues[dom][flind][pind];
470 for (oind = 0; oind < VM_NFREEORDER; oind++)
471 TAILQ_INIT(&fl[oind].pl);
472 }
473 }
474 }
475 mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
476 }
477
478 /*
479 * Split a contiguous, power of two-sized set of physical pages.
480 */
481 static __inline void
482 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
483 {
484 vm_page_t m_buddy;
485
486 while (oind > order) {
487 oind--;
488 m_buddy = &m[1 << oind];
489 KASSERT(m_buddy->order == VM_NFREEORDER,
490 ("vm_phys_split_pages: page %p has unexpected order %d",
491 m_buddy, m_buddy->order));
492 vm_freelist_add(fl, m_buddy, oind, 0);
493 }
494 }
495
496 /*
497 * Initialize a physical page and add it to the free lists.
498 */
499 void
500 vm_phys_add_page(vm_paddr_t pa)
501 {
502 vm_page_t m;
503 struct vm_domain *vmd;
504
505 cnt.v_page_count++;
506 m = vm_phys_paddr_to_vm_page(pa);
507 m->busy_lock = VPB_UNBUSIED;
508 m->phys_addr = pa;
509 m->queue = PQ_NONE;
510 m->segind = vm_phys_paddr_to_segind(pa);
511 vmd = vm_phys_domain(m);
512 vmd->vmd_page_count++;
513 vmd->vmd_segs |= 1UL << m->segind;
514 m->flags = PG_FREE;
515 KASSERT(m->order == VM_NFREEORDER,
516 ("vm_phys_add_page: page %p has unexpected order %d",
517 m, m->order));
518 m->pool = VM_FREEPOOL_DEFAULT;
519 pmap_page_init(m);
520 mtx_lock(&vm_page_queue_free_mtx);
521 vm_phys_freecnt_adj(m, 1);
522 vm_phys_free_pages(m, 0);
523 mtx_unlock(&vm_page_queue_free_mtx);
524 }
525
526 /*
527 * Allocate a contiguous, power of two-sized set of physical pages
528 * from the free lists.
529 *
530 * The free page queues must be locked.
531 */
532 vm_page_t
533 vm_phys_alloc_pages(int pool, int order)
534 {
535 vm_page_t m;
536 int dom, domain, flind;
537
538 KASSERT(pool < VM_NFREEPOOL,
539 ("vm_phys_alloc_pages: pool %d is out of range", pool));
540 KASSERT(order < VM_NFREEORDER,
541 ("vm_phys_alloc_pages: order %d is out of range", order));
542
543 for (dom = 0; dom < vm_ndomains; dom++) {
544 domain = vm_rr_selectdomain();
545 for (flind = 0; flind < vm_nfreelists; flind++) {
546 m = vm_phys_alloc_domain_pages(domain, flind, pool,
547 order);
548 if (m != NULL)
549 return (m);
550 }
551 }
552 return (NULL);
553 }
554
555 /*
556 * Allocate a contiguous, power of two-sized set of physical pages from the
557 * specified free list. The free list must be specified using one of the
558 * manifest constants VM_FREELIST_*.
559 *
560 * The free page queues must be locked.
561 */
562 vm_page_t
563 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
564 {
565 vm_page_t m;
566 int dom, domain;
567
568 KASSERT(freelist < VM_NFREELIST,
569 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
570 freelist));
571 KASSERT(pool < VM_NFREEPOOL,
572 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
573 KASSERT(order < VM_NFREEORDER,
574 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
575 for (dom = 0; dom < vm_ndomains; dom++) {
576 domain = vm_rr_selectdomain();
577 m = vm_phys_alloc_domain_pages(domain,
578 vm_freelist_to_flind[freelist], pool, order);
579 if (m != NULL)
580 return (m);
581 }
582 return (NULL);
583 }
584
585 static vm_page_t
586 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
587 {
588 struct vm_freelist *fl;
589 struct vm_freelist *alt;
590 int oind, pind;
591 vm_page_t m;
592
593 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
594 fl = &vm_phys_free_queues[domain][flind][pool][0];
595 for (oind = order; oind < VM_NFREEORDER; oind++) {
596 m = TAILQ_FIRST(&fl[oind].pl);
597 if (m != NULL) {
598 vm_freelist_rem(fl, m, oind);
599 vm_phys_split_pages(m, oind, fl, order);
600 return (m);
601 }
602 }
603
604 /*
605 * The given pool was empty. Find the largest
606 * contiguous, power-of-two-sized set of pages in any
607 * pool. Transfer these pages to the given pool, and
608 * use them to satisfy the allocation.
609 */
610 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
611 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
612 alt = &vm_phys_free_queues[domain][flind][pind][0];
613 m = TAILQ_FIRST(&alt[oind].pl);
614 if (m != NULL) {
615 vm_freelist_rem(alt, m, oind);
616 vm_phys_set_pool(pool, m, oind);
617 vm_phys_split_pages(m, oind, fl, order);
618 return (m);
619 }
620 }
621 }
622 return (NULL);
623 }
624
625 /*
626 * Find the vm_page corresponding to the given physical address.
627 */
628 vm_page_t
629 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
630 {
631 struct vm_phys_seg *seg;
632 int segind;
633
634 for (segind = 0; segind < vm_phys_nsegs; segind++) {
635 seg = &vm_phys_segs[segind];
636 if (pa >= seg->start && pa < seg->end)
637 return (&seg->first_page[atop(pa - seg->start)]);
638 }
639 return (NULL);
640 }
641
642 vm_page_t
643 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
644 {
645 struct vm_phys_fictitious_seg *seg;
646 vm_page_t m;
647 int segind;
648
649 m = NULL;
650 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
651 seg = &vm_phys_fictitious_segs[segind];
652 if (pa >= seg->start && pa < seg->end) {
653 m = &seg->first_page[atop(pa - seg->start)];
654 KASSERT((m->flags & PG_FICTITIOUS) != 0,
655 ("%p not fictitious", m));
656 break;
657 }
658 }
659 return (m);
660 }
661
662 int
663 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
664 vm_memattr_t memattr)
665 {
666 struct vm_phys_fictitious_seg *seg;
667 vm_page_t fp;
668 long i, page_count;
669 int segind;
670 #ifdef VM_PHYSSEG_DENSE
671 long pi;
672 boolean_t malloced;
673 #endif
674
675 page_count = (end - start) / PAGE_SIZE;
676
677 #ifdef VM_PHYSSEG_DENSE
678 pi = atop(start);
679 if (pi >= first_page && pi < vm_page_array_size + first_page) {
680 if (atop(end) >= vm_page_array_size + first_page)
681 return (EINVAL);
682 fp = &vm_page_array[pi - first_page];
683 malloced = FALSE;
684 } else
685 #endif
686 {
687 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
688 M_WAITOK | M_ZERO);
689 #ifdef VM_PHYSSEG_DENSE
690 malloced = TRUE;
691 #endif
692 }
693 for (i = 0; i < page_count; i++) {
694 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
695 fp[i].oflags &= ~VPO_UNMANAGED;
696 fp[i].busy_lock = VPB_UNBUSIED;
697 }
698 mtx_lock(&vm_phys_fictitious_reg_mtx);
699 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
700 seg = &vm_phys_fictitious_segs[segind];
701 if (seg->start == 0 && seg->end == 0) {
702 seg->start = start;
703 seg->end = end;
704 seg->first_page = fp;
705 mtx_unlock(&vm_phys_fictitious_reg_mtx);
706 return (0);
707 }
708 }
709 mtx_unlock(&vm_phys_fictitious_reg_mtx);
710 #ifdef VM_PHYSSEG_DENSE
711 if (malloced)
712 #endif
713 free(fp, M_FICT_PAGES);
714 return (EBUSY);
715 }
716
717 void
718 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
719 {
720 struct vm_phys_fictitious_seg *seg;
721 vm_page_t fp;
722 int segind;
723 #ifdef VM_PHYSSEG_DENSE
724 long pi;
725 #endif
726
727 #ifdef VM_PHYSSEG_DENSE
728 pi = atop(start);
729 #endif
730
731 mtx_lock(&vm_phys_fictitious_reg_mtx);
732 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
733 seg = &vm_phys_fictitious_segs[segind];
734 if (seg->start == start && seg->end == end) {
735 seg->start = seg->end = 0;
736 fp = seg->first_page;
737 seg->first_page = NULL;
738 mtx_unlock(&vm_phys_fictitious_reg_mtx);
739 #ifdef VM_PHYSSEG_DENSE
740 if (pi < first_page || atop(end) >= vm_page_array_size)
741 #endif
742 free(fp, M_FICT_PAGES);
743 return;
744 }
745 }
746 mtx_unlock(&vm_phys_fictitious_reg_mtx);
747 KASSERT(0, ("Unregistering not registered fictitious range"));
748 }
749
750 /*
751 * Find the segment containing the given physical address.
752 */
753 static int
754 vm_phys_paddr_to_segind(vm_paddr_t pa)
755 {
756 struct vm_phys_seg *seg;
757 int segind;
758
759 for (segind = 0; segind < vm_phys_nsegs; segind++) {
760 seg = &vm_phys_segs[segind];
761 if (pa >= seg->start && pa < seg->end)
762 return (segind);
763 }
764 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
765 (uintmax_t)pa);
766 }
767
768 /*
769 * Free a contiguous, power of two-sized set of physical pages.
770 *
771 * The free page queues must be locked.
772 */
773 void
774 vm_phys_free_pages(vm_page_t m, int order)
775 {
776 struct vm_freelist *fl;
777 struct vm_phys_seg *seg;
778 vm_paddr_t pa;
779 vm_page_t m_buddy;
780
781 KASSERT(m->order == VM_NFREEORDER,
782 ("vm_phys_free_pages: page %p has unexpected order %d",
783 m, m->order));
784 KASSERT(m->pool < VM_NFREEPOOL,
785 ("vm_phys_free_pages: page %p has unexpected pool %d",
786 m, m->pool));
787 KASSERT(order < VM_NFREEORDER,
788 ("vm_phys_free_pages: order %d is out of range", order));
789 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
790 seg = &vm_phys_segs[m->segind];
791 if (order < VM_NFREEORDER - 1) {
792 pa = VM_PAGE_TO_PHYS(m);
793 do {
794 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
795 if (pa < seg->start || pa >= seg->end)
796 break;
797 m_buddy = &seg->first_page[atop(pa - seg->start)];
798 if (m_buddy->order != order)
799 break;
800 fl = (*seg->free_queues)[m_buddy->pool];
801 vm_freelist_rem(fl, m_buddy, order);
802 if (m_buddy->pool != m->pool)
803 vm_phys_set_pool(m->pool, m_buddy, order);
804 order++;
805 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
806 m = &seg->first_page[atop(pa - seg->start)];
807 } while (order < VM_NFREEORDER - 1);
808 }
809 fl = (*seg->free_queues)[m->pool];
810 vm_freelist_add(fl, m, order, 1);
811 }
812
813 /*
814 * Free a contiguous, arbitrarily sized set of physical pages.
815 *
816 * The free page queues must be locked.
817 */
818 void
819 vm_phys_free_contig(vm_page_t m, u_long npages)
820 {
821 u_int n;
822 int order;
823
824 /*
825 * Avoid unnecessary coalescing by freeing the pages in the largest
826 * possible power-of-two-sized subsets.
827 */
828 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
829 for (;; npages -= n) {
830 /*
831 * Unsigned "min" is used here so that "order" is assigned
832 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
833 * or the low-order bits of its physical address are zero
834 * because the size of a physical address exceeds the size of
835 * a long.
836 */
837 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
838 VM_NFREEORDER - 1);
839 n = 1 << order;
840 if (npages < n)
841 break;
842 vm_phys_free_pages(m, order);
843 m += n;
844 }
845 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
846 for (; npages > 0; npages -= n) {
847 order = flsl(npages) - 1;
848 n = 1 << order;
849 vm_phys_free_pages(m, order);
850 m += n;
851 }
852 }
853
854 /*
855 * Set the pool for a contiguous, power of two-sized set of physical pages.
856 */
857 void
858 vm_phys_set_pool(int pool, vm_page_t m, int order)
859 {
860 vm_page_t m_tmp;
861
862 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
863 m_tmp->pool = pool;
864 }
865
866 /*
867 * Search for the given physical page "m" in the free lists. If the search
868 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
869 * FALSE, indicating that "m" is not in the free lists.
870 *
871 * The free page queues must be locked.
872 */
873 boolean_t
874 vm_phys_unfree_page(vm_page_t m)
875 {
876 struct vm_freelist *fl;
877 struct vm_phys_seg *seg;
878 vm_paddr_t pa, pa_half;
879 vm_page_t m_set, m_tmp;
880 int order;
881
882 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
883
884 /*
885 * First, find the contiguous, power of two-sized set of free
886 * physical pages containing the given physical page "m" and
887 * assign it to "m_set".
888 */
889 seg = &vm_phys_segs[m->segind];
890 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
891 order < VM_NFREEORDER - 1; ) {
892 order++;
893 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
894 if (pa >= seg->start)
895 m_set = &seg->first_page[atop(pa - seg->start)];
896 else
897 return (FALSE);
898 }
899 if (m_set->order < order)
900 return (FALSE);
901 if (m_set->order == VM_NFREEORDER)
902 return (FALSE);
903 KASSERT(m_set->order < VM_NFREEORDER,
904 ("vm_phys_unfree_page: page %p has unexpected order %d",
905 m_set, m_set->order));
906
907 /*
908 * Next, remove "m_set" from the free lists. Finally, extract
909 * "m" from "m_set" using an iterative algorithm: While "m_set"
910 * is larger than a page, shrink "m_set" by returning the half
911 * of "m_set" that does not contain "m" to the free lists.
912 */
913 fl = (*seg->free_queues)[m_set->pool];
914 order = m_set->order;
915 vm_freelist_rem(fl, m_set, order);
916 while (order > 0) {
917 order--;
918 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
919 if (m->phys_addr < pa_half)
920 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
921 else {
922 m_tmp = m_set;
923 m_set = &seg->first_page[atop(pa_half - seg->start)];
924 }
925 vm_freelist_add(fl, m_tmp, order, 0);
926 }
927 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
928 return (TRUE);
929 }
930
931 /*
932 * Try to zero one physical page. Used by an idle priority thread.
933 */
934 boolean_t
935 vm_phys_zero_pages_idle(void)
936 {
937 static struct vm_freelist *fl;
938 static int flind, oind, pind;
939 vm_page_t m, m_tmp;
940 int domain;
941
942 domain = vm_rr_selectdomain();
943 fl = vm_phys_free_queues[domain][0][0];
944 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
945 for (;;) {
946 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
947 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
948 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
949 vm_phys_unfree_page(m_tmp);
950 vm_phys_freecnt_adj(m, -1);
951 mtx_unlock(&vm_page_queue_free_mtx);
952 pmap_zero_page_idle(m_tmp);
953 m_tmp->flags |= PG_ZERO;
954 mtx_lock(&vm_page_queue_free_mtx);
955 vm_phys_freecnt_adj(m, 1);
956 vm_phys_free_pages(m_tmp, 0);
957 vm_page_zero_count++;
958 cnt_prezero++;
959 return (TRUE);
960 }
961 }
962 }
963 oind++;
964 if (oind == VM_NFREEORDER) {
965 oind = 0;
966 pind++;
967 if (pind == VM_NFREEPOOL) {
968 pind = 0;
969 flind++;
970 if (flind == vm_nfreelists)
971 flind = 0;
972 }
973 fl = vm_phys_free_queues[domain][flind][pind];
974 }
975 }
976 }
977
978 /*
979 * Allocate a contiguous set of physical pages of the given size
980 * "npages" from the free lists. All of the physical pages must be at
981 * or above the given physical address "low" and below the given
982 * physical address "high". The given value "alignment" determines the
983 * alignment of the first physical page in the set. If the given value
984 * "boundary" is non-zero, then the set of physical pages cannot cross
985 * any physical address boundary that is a multiple of that value. Both
986 * "alignment" and "boundary" must be a power of two.
987 */
988 vm_page_t
989 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
990 u_long alignment, vm_paddr_t boundary)
991 {
992 struct vm_freelist *fl;
993 struct vm_phys_seg *seg;
994 vm_paddr_t pa, pa_last, size;
995 vm_page_t m, m_ret;
996 u_long npages_end;
997 int dom, domain, flind, oind, order, pind;
998
999 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1000 size = npages << PAGE_SHIFT;
1001 KASSERT(size != 0,
1002 ("vm_phys_alloc_contig: size must not be 0"));
1003 KASSERT((alignment & (alignment - 1)) == 0,
1004 ("vm_phys_alloc_contig: alignment must be a power of 2"));
1005 KASSERT((boundary & (boundary - 1)) == 0,
1006 ("vm_phys_alloc_contig: boundary must be a power of 2"));
1007 /* Compute the queue that is the best fit for npages. */
1008 for (order = 0; (1 << order) < npages; order++);
1009 dom = 0;
1010 restartdom:
1011 domain = vm_rr_selectdomain();
1012 for (flind = 0; flind < vm_nfreelists; flind++) {
1013 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1014 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1015 fl = &vm_phys_free_queues[domain][flind][pind][0];
1016 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1017 /*
1018 * A free list may contain physical pages
1019 * from one or more segments.
1020 */
1021 seg = &vm_phys_segs[m_ret->segind];
1022 if (seg->start > high ||
1023 low >= seg->end)
1024 continue;
1025
1026 /*
1027 * Is the size of this allocation request
1028 * larger than the largest block size?
1029 */
1030 if (order >= VM_NFREEORDER) {
1031 /*
1032 * Determine if a sufficient number
1033 * of subsequent blocks to satisfy
1034 * the allocation request are free.
1035 */
1036 pa = VM_PAGE_TO_PHYS(m_ret);
1037 pa_last = pa + size;
1038 for (;;) {
1039 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1040 if (pa >= pa_last)
1041 break;
1042 if (pa < seg->start ||
1043 pa >= seg->end)
1044 break;
1045 m = &seg->first_page[atop(pa - seg->start)];
1046 if (m->order != VM_NFREEORDER - 1)
1047 break;
1048 }
1049 /* If not, continue to the next block. */
1050 if (pa < pa_last)
1051 continue;
1052 }
1053
1054 /*
1055 * Determine if the blocks are within the given range,
1056 * satisfy the given alignment, and do not cross the
1057 * given boundary.
1058 */
1059 pa = VM_PAGE_TO_PHYS(m_ret);
1060 if (pa >= low &&
1061 pa + size <= high &&
1062 (pa & (alignment - 1)) == 0 &&
1063 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1064 goto done;
1065 }
1066 }
1067 }
1068 }
1069 if (++dom < vm_ndomains)
1070 goto restartdom;
1071 return (NULL);
1072 done:
1073 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1074 fl = (*seg->free_queues)[m->pool];
1075 vm_freelist_rem(fl, m, m->order);
1076 }
1077 if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1078 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1079 fl = (*seg->free_queues)[m_ret->pool];
1080 vm_phys_split_pages(m_ret, oind, fl, order);
1081 /* Return excess pages to the free lists. */
1082 npages_end = roundup2(npages, 1 << imin(oind, order));
1083 if (npages < npages_end)
1084 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1085 return (m_ret);
1086 }
1087
1088 #ifdef DDB
1089 /*
1090 * Show the number of physical pages in each of the free lists.
1091 */
1092 DB_SHOW_COMMAND(freepages, db_show_freepages)
1093 {
1094 struct vm_freelist *fl;
1095 int flind, oind, pind, dom;
1096
1097 for (dom = 0; dom < vm_ndomains; dom++) {
1098 db_printf("DOMAIN: %d\n", dom);
1099 for (flind = 0; flind < vm_nfreelists; flind++) {
1100 db_printf("FREE LIST %d:\n"
1101 "\n ORDER (SIZE) | NUMBER"
1102 "\n ", flind);
1103 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1104 db_printf(" | POOL %d", pind);
1105 db_printf("\n-- ");
1106 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1107 db_printf("-- -- ");
1108 db_printf("--\n");
1109 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1110 db_printf(" %2.2d (%6.6dK)", oind,
1111 1 << (PAGE_SHIFT - 10 + oind));
1112 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1113 fl = vm_phys_free_queues[dom][flind][pind];
1114 db_printf(" | %6.6d", fl[oind].lcnt);
1115 }
1116 db_printf("\n");
1117 }
1118 db_printf("\n");
1119 }
1120 db_printf("\n");
1121 }
1122 }
1123 #endif
Cache object: a7b5fe40a1108aa50fb9c46f94eca3d0
|