The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Rice University
    3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
    4  * All rights reserved.
    5  *
    6  * This software was developed for the FreeBSD Project by Alan L. Cox,
    7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
   22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
   25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
   28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  *      Physical memory system implementation
   34  *
   35  * Any external functions defined by this module are only to be used by the
   36  * virtual memory system.
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/11.0/sys/vm/vm_phys.c 298433 2016-04-21 19:57:40Z pfg $");
   41 
   42 #include "opt_ddb.h"
   43 #include "opt_vm.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/lock.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/queue.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/sbuf.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/tree.h>
   57 #include <sys/vmmeter.h>
   58 #include <sys/seq.h>
   59 
   60 #include <ddb/ddb.h>
   61 
   62 #include <vm/vm.h>
   63 #include <vm/vm_param.h>
   64 #include <vm/vm_kern.h>
   65 #include <vm/vm_object.h>
   66 #include <vm/vm_page.h>
   67 #include <vm/vm_phys.h>
   68 
   69 #include <vm/vm_domain.h>
   70 
   71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
   72     "Too many physsegs.");
   73 
   74 #ifdef VM_NUMA_ALLOC
   75 struct mem_affinity *mem_affinity;
   76 int *mem_locality;
   77 #endif
   78 
   79 int vm_ndomains = 1;
   80 
   81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
   82 int vm_phys_nsegs;
   83 
   84 struct vm_phys_fictitious_seg;
   85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
   86     struct vm_phys_fictitious_seg *);
   87 
   88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
   89     RB_INITIALIZER(_vm_phys_fictitious_tree);
   90 
   91 struct vm_phys_fictitious_seg {
   92         RB_ENTRY(vm_phys_fictitious_seg) node;
   93         /* Memory region data */
   94         vm_paddr_t      start;
   95         vm_paddr_t      end;
   96         vm_page_t       first_page;
   97 };
   98 
   99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
  100     vm_phys_fictitious_cmp);
  101 
  102 static struct rwlock vm_phys_fictitious_reg_lock;
  103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
  104 
  105 static struct vm_freelist
  106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
  107 
  108 static int vm_nfreelists;
  109 
  110 /*
  111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
  112  */
  113 static int vm_freelist_to_flind[VM_NFREELIST];
  114 
  115 CTASSERT(VM_FREELIST_DEFAULT == 0);
  116 
  117 #ifdef VM_FREELIST_ISADMA
  118 #define VM_ISADMA_BOUNDARY      16777216
  119 #endif
  120 #ifdef VM_FREELIST_DMA32
  121 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
  122 #endif
  123 
  124 /*
  125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
  126  * the ordering of the free list boundaries.
  127  */
  128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
  129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
  130 #endif
  131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
  132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
  133 #endif
  134 
  135 static int cnt_prezero;
  136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
  137     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
  138 
  139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
  140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
  141     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
  142 
  143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
  144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
  145     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
  146 
  147 #ifdef VM_NUMA_ALLOC
  148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
  149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
  150     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
  151 #endif
  152 
  153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
  154     &vm_ndomains, 0, "Number of physical memory domains available.");
  155 
  156 /*
  157  * Default to first-touch + round-robin.
  158  */
  159 static struct mtx vm_default_policy_mtx;
  160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
  161     MTX_DEF);
  162 #ifdef VM_NUMA_ALLOC
  163 static struct vm_domain_policy vm_default_policy =
  164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
  165 #else
  166 /* Use round-robin so the domain policy code will only try once per allocation */
  167 static struct vm_domain_policy vm_default_policy =
  168     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
  169 #endif
  170 
  171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
  172     int order);
  173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
  174     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
  175     vm_paddr_t boundary);
  176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
  177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
  178 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
  179 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
  180     int order);
  181 
  182 static int
  183 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
  184 {
  185         char policy_name[32];
  186         int error;
  187 
  188         mtx_lock(&vm_default_policy_mtx);
  189 
  190         /* Map policy to output string */
  191         switch (vm_default_policy.p.policy) {
  192         case VM_POLICY_FIRST_TOUCH:
  193                 strcpy(policy_name, "first-touch");
  194                 break;
  195         case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
  196                 strcpy(policy_name, "first-touch-rr");
  197                 break;
  198         case VM_POLICY_ROUND_ROBIN:
  199         default:
  200                 strcpy(policy_name, "rr");
  201                 break;
  202         }
  203         mtx_unlock(&vm_default_policy_mtx);
  204 
  205         error = sysctl_handle_string(oidp, &policy_name[0],
  206             sizeof(policy_name), req);
  207         if (error != 0 || req->newptr == NULL)
  208                 return (error);
  209 
  210         mtx_lock(&vm_default_policy_mtx);
  211         /* Set: match on the subset of policies that make sense as a default */
  212         if (strcmp("first-touch-rr", policy_name) == 0) {
  213                 vm_domain_policy_set(&vm_default_policy,
  214                     VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
  215         } else if (strcmp("first-touch", policy_name) == 0) {
  216                 vm_domain_policy_set(&vm_default_policy,
  217                     VM_POLICY_FIRST_TOUCH, 0);
  218         } else if (strcmp("rr", policy_name) == 0) {
  219                 vm_domain_policy_set(&vm_default_policy,
  220                     VM_POLICY_ROUND_ROBIN, 0);
  221         } else {
  222                 error = EINVAL;
  223                 goto finish;
  224         }
  225 
  226         error = 0;
  227 finish:
  228         mtx_unlock(&vm_default_policy_mtx);
  229         return (error);
  230 }
  231 
  232 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
  233     0, 0, sysctl_vm_default_policy, "A",
  234     "Default policy (rr, first-touch, first-touch-rr");
  235 
  236 /*
  237  * Red-black tree helpers for vm fictitious range management.
  238  */
  239 static inline int
  240 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
  241     struct vm_phys_fictitious_seg *range)
  242 {
  243 
  244         KASSERT(range->start != 0 && range->end != 0,
  245             ("Invalid range passed on search for vm_fictitious page"));
  246         if (p->start >= range->end)
  247                 return (1);
  248         if (p->start < range->start)
  249                 return (-1);
  250 
  251         return (0);
  252 }
  253 
  254 static int
  255 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
  256     struct vm_phys_fictitious_seg *p2)
  257 {
  258 
  259         /* Check if this is a search for a page */
  260         if (p1->end == 0)
  261                 return (vm_phys_fictitious_in_range(p1, p2));
  262 
  263         KASSERT(p2->end != 0,
  264     ("Invalid range passed as second parameter to vm fictitious comparison"));
  265 
  266         /* Searching to add a new range */
  267         if (p1->end <= p2->start)
  268                 return (-1);
  269         if (p1->start >= p2->end)
  270                 return (1);
  271 
  272         panic("Trying to add overlapping vm fictitious ranges:\n"
  273             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
  274             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
  275 }
  276 
  277 static __inline int
  278 vm_rr_selectdomain(void)
  279 {
  280 #ifdef VM_NUMA_ALLOC
  281         struct thread *td;
  282 
  283         td = curthread;
  284 
  285         td->td_dom_rr_idx++;
  286         td->td_dom_rr_idx %= vm_ndomains;
  287         return (td->td_dom_rr_idx);
  288 #else
  289         return (0);
  290 #endif
  291 }
  292 
  293 /*
  294  * Initialise a VM domain iterator.
  295  *
  296  * Check the thread policy, then the proc policy,
  297  * then default to the system policy.
  298  *
  299  * Later on the various layers will have this logic
  300  * plumbed into them and the phys code will be explicitly
  301  * handed a VM domain policy to use.
  302  */
  303 static void
  304 vm_policy_iterator_init(struct vm_domain_iterator *vi)
  305 {
  306 #ifdef VM_NUMA_ALLOC
  307         struct vm_domain_policy lcl;
  308 #endif
  309 
  310         vm_domain_iterator_init(vi);
  311 
  312 #ifdef VM_NUMA_ALLOC
  313         /* Copy out the thread policy */
  314         vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
  315         if (lcl.p.policy != VM_POLICY_NONE) {
  316                 /* Thread policy is present; use it */
  317                 vm_domain_iterator_set_policy(vi, &lcl);
  318                 return;
  319         }
  320 
  321         vm_domain_policy_localcopy(&lcl,
  322             &curthread->td_proc->p_vm_dom_policy);
  323         if (lcl.p.policy != VM_POLICY_NONE) {
  324                 /* Process policy is present; use it */
  325                 vm_domain_iterator_set_policy(vi, &lcl);
  326                 return;
  327         }
  328 #endif
  329         /* Use system default policy */
  330         vm_domain_iterator_set_policy(vi, &vm_default_policy);
  331 }
  332 
  333 static void
  334 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
  335 {
  336 
  337         vm_domain_iterator_cleanup(vi);
  338 }
  339 
  340 boolean_t
  341 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
  342 {
  343         struct vm_phys_seg *s;
  344         int idx;
  345 
  346         while ((idx = ffsl(mask)) != 0) {
  347                 idx--;  /* ffsl counts from 1 */
  348                 mask &= ~(1UL << idx);
  349                 s = &vm_phys_segs[idx];
  350                 if (low < s->end && high > s->start)
  351                         return (TRUE);
  352         }
  353         return (FALSE);
  354 }
  355 
  356 /*
  357  * Outputs the state of the physical memory allocator, specifically,
  358  * the amount of physical memory in each free list.
  359  */
  360 static int
  361 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
  362 {
  363         struct sbuf sbuf;
  364         struct vm_freelist *fl;
  365         int dom, error, flind, oind, pind;
  366 
  367         error = sysctl_wire_old_buffer(req, 0);
  368         if (error != 0)
  369                 return (error);
  370         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
  371         for (dom = 0; dom < vm_ndomains; dom++) {
  372                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
  373                 for (flind = 0; flind < vm_nfreelists; flind++) {
  374                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
  375                             "\n  ORDER (SIZE)  |  NUMBER"
  376                             "\n              ", flind);
  377                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
  378                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
  379                         sbuf_printf(&sbuf, "\n--            ");
  380                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
  381                                 sbuf_printf(&sbuf, "-- --      ");
  382                         sbuf_printf(&sbuf, "--\n");
  383                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
  384                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
  385                                     1 << (PAGE_SHIFT - 10 + oind));
  386                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  387                                 fl = vm_phys_free_queues[dom][flind][pind];
  388                                         sbuf_printf(&sbuf, "  |  %6d",
  389                                             fl[oind].lcnt);
  390                                 }
  391                                 sbuf_printf(&sbuf, "\n");
  392                         }
  393                 }
  394         }
  395         error = sbuf_finish(&sbuf);
  396         sbuf_delete(&sbuf);
  397         return (error);
  398 }
  399 
  400 /*
  401  * Outputs the set of physical memory segments.
  402  */
  403 static int
  404 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
  405 {
  406         struct sbuf sbuf;
  407         struct vm_phys_seg *seg;
  408         int error, segind;
  409 
  410         error = sysctl_wire_old_buffer(req, 0);
  411         if (error != 0)
  412                 return (error);
  413         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  414         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  415                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
  416                 seg = &vm_phys_segs[segind];
  417                 sbuf_printf(&sbuf, "start:     %#jx\n",
  418                     (uintmax_t)seg->start);
  419                 sbuf_printf(&sbuf, "end:       %#jx\n",
  420                     (uintmax_t)seg->end);
  421                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
  422                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
  423         }
  424         error = sbuf_finish(&sbuf);
  425         sbuf_delete(&sbuf);
  426         return (error);
  427 }
  428 
  429 /*
  430  * Return affinity, or -1 if there's no affinity information.
  431  */
  432 int
  433 vm_phys_mem_affinity(int f, int t)
  434 {
  435 
  436 #ifdef VM_NUMA_ALLOC
  437         if (mem_locality == NULL)
  438                 return (-1);
  439         if (f >= vm_ndomains || t >= vm_ndomains)
  440                 return (-1);
  441         return (mem_locality[f * vm_ndomains + t]);
  442 #else
  443         return (-1);
  444 #endif
  445 }
  446 
  447 #ifdef VM_NUMA_ALLOC
  448 /*
  449  * Outputs the VM locality table.
  450  */
  451 static int
  452 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
  453 {
  454         struct sbuf sbuf;
  455         int error, i, j;
  456 
  457         error = sysctl_wire_old_buffer(req, 0);
  458         if (error != 0)
  459                 return (error);
  460         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  461 
  462         sbuf_printf(&sbuf, "\n");
  463 
  464         for (i = 0; i < vm_ndomains; i++) {
  465                 sbuf_printf(&sbuf, "%d: ", i);
  466                 for (j = 0; j < vm_ndomains; j++) {
  467                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
  468                 }
  469                 sbuf_printf(&sbuf, "\n");
  470         }
  471         error = sbuf_finish(&sbuf);
  472         sbuf_delete(&sbuf);
  473         return (error);
  474 }
  475 #endif
  476 
  477 static void
  478 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
  479 {
  480 
  481         m->order = order;
  482         if (tail)
  483                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
  484         else
  485                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
  486         fl[order].lcnt++;
  487 }
  488 
  489 static void
  490 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
  491 {
  492 
  493         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
  494         fl[order].lcnt--;
  495         m->order = VM_NFREEORDER;
  496 }
  497 
  498 /*
  499  * Create a physical memory segment.
  500  */
  501 static void
  502 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
  503 {
  504         struct vm_phys_seg *seg;
  505 
  506         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
  507             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
  508         KASSERT(domain < vm_ndomains,
  509             ("vm_phys_create_seg: invalid domain provided"));
  510         seg = &vm_phys_segs[vm_phys_nsegs++];
  511         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
  512                 *seg = *(seg - 1);
  513                 seg--;
  514         }
  515         seg->start = start;
  516         seg->end = end;
  517         seg->domain = domain;
  518 }
  519 
  520 static void
  521 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
  522 {
  523 #ifdef VM_NUMA_ALLOC
  524         int i;
  525 
  526         if (mem_affinity == NULL) {
  527                 _vm_phys_create_seg(start, end, 0);
  528                 return;
  529         }
  530 
  531         for (i = 0;; i++) {
  532                 if (mem_affinity[i].end == 0)
  533                         panic("Reached end of affinity info");
  534                 if (mem_affinity[i].end <= start)
  535                         continue;
  536                 if (mem_affinity[i].start > start)
  537                         panic("No affinity info for start %jx",
  538                             (uintmax_t)start);
  539                 if (mem_affinity[i].end >= end) {
  540                         _vm_phys_create_seg(start, end,
  541                             mem_affinity[i].domain);
  542                         break;
  543                 }
  544                 _vm_phys_create_seg(start, mem_affinity[i].end,
  545                     mem_affinity[i].domain);
  546                 start = mem_affinity[i].end;
  547         }
  548 #else
  549         _vm_phys_create_seg(start, end, 0);
  550 #endif
  551 }
  552 
  553 /*
  554  * Add a physical memory segment.
  555  */
  556 void
  557 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
  558 {
  559         vm_paddr_t paddr;
  560 
  561         KASSERT((start & PAGE_MASK) == 0,
  562             ("vm_phys_define_seg: start is not page aligned"));
  563         KASSERT((end & PAGE_MASK) == 0,
  564             ("vm_phys_define_seg: end is not page aligned"));
  565 
  566         /*
  567          * Split the physical memory segment if it spans two or more free
  568          * list boundaries.
  569          */
  570         paddr = start;
  571 #ifdef  VM_FREELIST_ISADMA
  572         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
  573                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
  574                 paddr = VM_ISADMA_BOUNDARY;
  575         }
  576 #endif
  577 #ifdef  VM_FREELIST_LOWMEM
  578         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
  579                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
  580                 paddr = VM_LOWMEM_BOUNDARY;
  581         }
  582 #endif
  583 #ifdef  VM_FREELIST_DMA32
  584         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
  585                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
  586                 paddr = VM_DMA32_BOUNDARY;
  587         }
  588 #endif
  589         vm_phys_create_seg(paddr, end);
  590 }
  591 
  592 /*
  593  * Initialize the physical memory allocator.
  594  *
  595  * Requires that vm_page_array is initialized!
  596  */
  597 void
  598 vm_phys_init(void)
  599 {
  600         struct vm_freelist *fl;
  601         struct vm_phys_seg *seg;
  602         u_long npages;
  603         int dom, flind, freelist, oind, pind, segind;
  604 
  605         /*
  606          * Compute the number of free lists, and generate the mapping from the
  607          * manifest constants VM_FREELIST_* to the free list indices.
  608          *
  609          * Initially, the entries of vm_freelist_to_flind[] are set to either
  610          * 0 or 1 to indicate which free lists should be created.
  611          */
  612         npages = 0;
  613         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
  614                 seg = &vm_phys_segs[segind];
  615 #ifdef  VM_FREELIST_ISADMA
  616                 if (seg->end <= VM_ISADMA_BOUNDARY)
  617                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
  618                 else
  619 #endif
  620 #ifdef  VM_FREELIST_LOWMEM
  621                 if (seg->end <= VM_LOWMEM_BOUNDARY)
  622                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
  623                 else
  624 #endif
  625 #ifdef  VM_FREELIST_DMA32
  626                 if (
  627 #ifdef  VM_DMA32_NPAGES_THRESHOLD
  628                     /*
  629                      * Create the DMA32 free list only if the amount of
  630                      * physical memory above physical address 4G exceeds the
  631                      * given threshold.
  632                      */
  633                     npages > VM_DMA32_NPAGES_THRESHOLD &&
  634 #endif
  635                     seg->end <= VM_DMA32_BOUNDARY)
  636                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
  637                 else
  638 #endif
  639                 {
  640                         npages += atop(seg->end - seg->start);
  641                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
  642                 }
  643         }
  644         /* Change each entry into a running total of the free lists. */
  645         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
  646                 vm_freelist_to_flind[freelist] +=
  647                     vm_freelist_to_flind[freelist - 1];
  648         }
  649         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
  650         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
  651         /* Change each entry into a free list index. */
  652         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
  653                 vm_freelist_to_flind[freelist]--;
  654 
  655         /*
  656          * Initialize the first_page and free_queues fields of each physical
  657          * memory segment.
  658          */
  659 #ifdef VM_PHYSSEG_SPARSE
  660         npages = 0;
  661 #endif
  662         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  663                 seg = &vm_phys_segs[segind];
  664 #ifdef VM_PHYSSEG_SPARSE
  665                 seg->first_page = &vm_page_array[npages];
  666                 npages += atop(seg->end - seg->start);
  667 #else
  668                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
  669 #endif
  670 #ifdef  VM_FREELIST_ISADMA
  671                 if (seg->end <= VM_ISADMA_BOUNDARY) {
  672                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
  673                         KASSERT(flind >= 0,
  674                             ("vm_phys_init: ISADMA flind < 0"));
  675                 } else
  676 #endif
  677 #ifdef  VM_FREELIST_LOWMEM
  678                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
  679                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
  680                         KASSERT(flind >= 0,
  681                             ("vm_phys_init: LOWMEM flind < 0"));
  682                 } else
  683 #endif
  684 #ifdef  VM_FREELIST_DMA32
  685                 if (seg->end <= VM_DMA32_BOUNDARY) {
  686                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
  687                         KASSERT(flind >= 0,
  688                             ("vm_phys_init: DMA32 flind < 0"));
  689                 } else
  690 #endif
  691                 {
  692                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
  693                         KASSERT(flind >= 0,
  694                             ("vm_phys_init: DEFAULT flind < 0"));
  695                 }
  696                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
  697         }
  698 
  699         /*
  700          * Initialize the free queues.
  701          */
  702         for (dom = 0; dom < vm_ndomains; dom++) {
  703                 for (flind = 0; flind < vm_nfreelists; flind++) {
  704                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  705                                 fl = vm_phys_free_queues[dom][flind][pind];
  706                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
  707                                         TAILQ_INIT(&fl[oind].pl);
  708                         }
  709                 }
  710         }
  711 
  712         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
  713 }
  714 
  715 /*
  716  * Split a contiguous, power of two-sized set of physical pages.
  717  */
  718 static __inline void
  719 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
  720 {
  721         vm_page_t m_buddy;
  722 
  723         while (oind > order) {
  724                 oind--;
  725                 m_buddy = &m[1 << oind];
  726                 KASSERT(m_buddy->order == VM_NFREEORDER,
  727                     ("vm_phys_split_pages: page %p has unexpected order %d",
  728                     m_buddy, m_buddy->order));
  729                 vm_freelist_add(fl, m_buddy, oind, 0);
  730         }
  731 }
  732 
  733 /*
  734  * Initialize a physical page and add it to the free lists.
  735  */
  736 void
  737 vm_phys_add_page(vm_paddr_t pa)
  738 {
  739         vm_page_t m;
  740         struct vm_domain *vmd;
  741 
  742         vm_cnt.v_page_count++;
  743         m = vm_phys_paddr_to_vm_page(pa);
  744         m->phys_addr = pa;
  745         m->queue = PQ_NONE;
  746         m->segind = vm_phys_paddr_to_segind(pa);
  747         vmd = vm_phys_domain(m);
  748         vmd->vmd_page_count++;
  749         vmd->vmd_segs |= 1UL << m->segind;
  750         KASSERT(m->order == VM_NFREEORDER,
  751             ("vm_phys_add_page: page %p has unexpected order %d",
  752             m, m->order));
  753         m->pool = VM_FREEPOOL_DEFAULT;
  754         pmap_page_init(m);
  755         mtx_lock(&vm_page_queue_free_mtx);
  756         vm_phys_freecnt_adj(m, 1);
  757         vm_phys_free_pages(m, 0);
  758         mtx_unlock(&vm_page_queue_free_mtx);
  759 }
  760 
  761 /*
  762  * Allocate a contiguous, power of two-sized set of physical pages
  763  * from the free lists.
  764  *
  765  * The free page queues must be locked.
  766  */
  767 vm_page_t
  768 vm_phys_alloc_pages(int pool, int order)
  769 {
  770         vm_page_t m;
  771         int domain, flind;
  772         struct vm_domain_iterator vi;
  773 
  774         KASSERT(pool < VM_NFREEPOOL,
  775             ("vm_phys_alloc_pages: pool %d is out of range", pool));
  776         KASSERT(order < VM_NFREEORDER,
  777             ("vm_phys_alloc_pages: order %d is out of range", order));
  778 
  779         vm_policy_iterator_init(&vi);
  780 
  781         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
  782                 for (flind = 0; flind < vm_nfreelists; flind++) {
  783                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
  784                             order);
  785                         if (m != NULL)
  786                                 return (m);
  787                 }
  788         }
  789 
  790         vm_policy_iterator_finish(&vi);
  791         return (NULL);
  792 }
  793 
  794 /*
  795  * Allocate a contiguous, power of two-sized set of physical pages from the
  796  * specified free list.  The free list must be specified using one of the
  797  * manifest constants VM_FREELIST_*.
  798  *
  799  * The free page queues must be locked.
  800  */
  801 vm_page_t
  802 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
  803 {
  804         vm_page_t m;
  805         struct vm_domain_iterator vi;
  806         int domain;
  807 
  808         KASSERT(freelist < VM_NFREELIST,
  809             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
  810             freelist));
  811         KASSERT(pool < VM_NFREEPOOL,
  812             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
  813         KASSERT(order < VM_NFREEORDER,
  814             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
  815 
  816         vm_policy_iterator_init(&vi);
  817 
  818         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
  819                 m = vm_phys_alloc_domain_pages(domain,
  820                     vm_freelist_to_flind[freelist], pool, order);
  821                 if (m != NULL)
  822                         return (m);
  823         }
  824 
  825         vm_policy_iterator_finish(&vi);
  826         return (NULL);
  827 }
  828 
  829 static vm_page_t
  830 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
  831 {       
  832         struct vm_freelist *fl;
  833         struct vm_freelist *alt;
  834         int oind, pind;
  835         vm_page_t m;
  836 
  837         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  838         fl = &vm_phys_free_queues[domain][flind][pool][0];
  839         for (oind = order; oind < VM_NFREEORDER; oind++) {
  840                 m = TAILQ_FIRST(&fl[oind].pl);
  841                 if (m != NULL) {
  842                         vm_freelist_rem(fl, m, oind);
  843                         vm_phys_split_pages(m, oind, fl, order);
  844                         return (m);
  845                 }
  846         }
  847 
  848         /*
  849          * The given pool was empty.  Find the largest
  850          * contiguous, power-of-two-sized set of pages in any
  851          * pool.  Transfer these pages to the given pool, and
  852          * use them to satisfy the allocation.
  853          */
  854         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
  855                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  856                         alt = &vm_phys_free_queues[domain][flind][pind][0];
  857                         m = TAILQ_FIRST(&alt[oind].pl);
  858                         if (m != NULL) {
  859                                 vm_freelist_rem(alt, m, oind);
  860                                 vm_phys_set_pool(pool, m, oind);
  861                                 vm_phys_split_pages(m, oind, fl, order);
  862                                 return (m);
  863                         }
  864                 }
  865         }
  866         return (NULL);
  867 }
  868 
  869 /*
  870  * Find the vm_page corresponding to the given physical address.
  871  */
  872 vm_page_t
  873 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
  874 {
  875         struct vm_phys_seg *seg;
  876         int segind;
  877 
  878         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  879                 seg = &vm_phys_segs[segind];
  880                 if (pa >= seg->start && pa < seg->end)
  881                         return (&seg->first_page[atop(pa - seg->start)]);
  882         }
  883         return (NULL);
  884 }
  885 
  886 vm_page_t
  887 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
  888 {
  889         struct vm_phys_fictitious_seg tmp, *seg;
  890         vm_page_t m;
  891 
  892         m = NULL;
  893         tmp.start = pa;
  894         tmp.end = 0;
  895 
  896         rw_rlock(&vm_phys_fictitious_reg_lock);
  897         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
  898         rw_runlock(&vm_phys_fictitious_reg_lock);
  899         if (seg == NULL)
  900                 return (NULL);
  901 
  902         m = &seg->first_page[atop(pa - seg->start)];
  903         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
  904 
  905         return (m);
  906 }
  907 
  908 static inline void
  909 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
  910     long page_count, vm_memattr_t memattr)
  911 {
  912         long i;
  913 
  914         for (i = 0; i < page_count; i++) {
  915                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
  916                 range[i].oflags &= ~VPO_UNMANAGED;
  917                 range[i].busy_lock = VPB_UNBUSIED;
  918         }
  919 }
  920 
  921 int
  922 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
  923     vm_memattr_t memattr)
  924 {
  925         struct vm_phys_fictitious_seg *seg;
  926         vm_page_t fp;
  927         long page_count;
  928 #ifdef VM_PHYSSEG_DENSE
  929         long pi, pe;
  930         long dpage_count;
  931 #endif
  932 
  933         KASSERT(start < end,
  934             ("Start of segment isn't less than end (start: %jx end: %jx)",
  935             (uintmax_t)start, (uintmax_t)end));
  936 
  937         page_count = (end - start) / PAGE_SIZE;
  938 
  939 #ifdef VM_PHYSSEG_DENSE
  940         pi = atop(start);
  941         pe = atop(end);
  942         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
  943                 fp = &vm_page_array[pi - first_page];
  944                 if ((pe - first_page) > vm_page_array_size) {
  945                         /*
  946                          * We have a segment that starts inside
  947                          * of vm_page_array, but ends outside of it.
  948                          *
  949                          * Use vm_page_array pages for those that are
  950                          * inside of the vm_page_array range, and
  951                          * allocate the remaining ones.
  952                          */
  953                         dpage_count = vm_page_array_size - (pi - first_page);
  954                         vm_phys_fictitious_init_range(fp, start, dpage_count,
  955                             memattr);
  956                         page_count -= dpage_count;
  957                         start += ptoa(dpage_count);
  958                         goto alloc;
  959                 }
  960                 /*
  961                  * We can allocate the full range from vm_page_array,
  962                  * so there's no need to register the range in the tree.
  963                  */
  964                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
  965                 return (0);
  966         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
  967                 /*
  968                  * We have a segment that ends inside of vm_page_array,
  969                  * but starts outside of it.
  970                  */
  971                 fp = &vm_page_array[0];
  972                 dpage_count = pe - first_page;
  973                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
  974                     memattr);
  975                 end -= ptoa(dpage_count);
  976                 page_count -= dpage_count;
  977                 goto alloc;
  978         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
  979                 /*
  980                  * Trying to register a fictitious range that expands before
  981                  * and after vm_page_array.
  982                  */
  983                 return (EINVAL);
  984         } else {
  985 alloc:
  986 #endif
  987                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
  988                     M_WAITOK | M_ZERO);
  989 #ifdef VM_PHYSSEG_DENSE
  990         }
  991 #endif
  992         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
  993 
  994         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
  995         seg->start = start;
  996         seg->end = end;
  997         seg->first_page = fp;
  998 
  999         rw_wlock(&vm_phys_fictitious_reg_lock);
 1000         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
 1001         rw_wunlock(&vm_phys_fictitious_reg_lock);
 1002 
 1003         return (0);
 1004 }
 1005 
 1006 void
 1007 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
 1008 {
 1009         struct vm_phys_fictitious_seg *seg, tmp;
 1010 #ifdef VM_PHYSSEG_DENSE
 1011         long pi, pe;
 1012 #endif
 1013 
 1014         KASSERT(start < end,
 1015             ("Start of segment isn't less than end (start: %jx end: %jx)",
 1016             (uintmax_t)start, (uintmax_t)end));
 1017 
 1018 #ifdef VM_PHYSSEG_DENSE
 1019         pi = atop(start);
 1020         pe = atop(end);
 1021         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
 1022                 if ((pe - first_page) <= vm_page_array_size) {
 1023                         /*
 1024                          * This segment was allocated using vm_page_array
 1025                          * only, there's nothing to do since those pages
 1026                          * were never added to the tree.
 1027                          */
 1028                         return;
 1029                 }
 1030                 /*
 1031                  * We have a segment that starts inside
 1032                  * of vm_page_array, but ends outside of it.
 1033                  *
 1034                  * Calculate how many pages were added to the
 1035                  * tree and free them.
 1036                  */
 1037                 start = ptoa(first_page + vm_page_array_size);
 1038         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
 1039                 /*
 1040                  * We have a segment that ends inside of vm_page_array,
 1041                  * but starts outside of it.
 1042                  */
 1043                 end = ptoa(first_page);
 1044         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
 1045                 /* Since it's not possible to register such a range, panic. */
 1046                 panic(
 1047                     "Unregistering not registered fictitious range [%#jx:%#jx]",
 1048                     (uintmax_t)start, (uintmax_t)end);
 1049         }
 1050 #endif
 1051         tmp.start = start;
 1052         tmp.end = 0;
 1053 
 1054         rw_wlock(&vm_phys_fictitious_reg_lock);
 1055         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
 1056         if (seg->start != start || seg->end != end) {
 1057                 rw_wunlock(&vm_phys_fictitious_reg_lock);
 1058                 panic(
 1059                     "Unregistering not registered fictitious range [%#jx:%#jx]",
 1060                     (uintmax_t)start, (uintmax_t)end);
 1061         }
 1062         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
 1063         rw_wunlock(&vm_phys_fictitious_reg_lock);
 1064         free(seg->first_page, M_FICT_PAGES);
 1065         free(seg, M_FICT_PAGES);
 1066 }
 1067 
 1068 /*
 1069  * Find the segment containing the given physical address.
 1070  */
 1071 static int
 1072 vm_phys_paddr_to_segind(vm_paddr_t pa)
 1073 {
 1074         struct vm_phys_seg *seg;
 1075         int segind;
 1076 
 1077         for (segind = 0; segind < vm_phys_nsegs; segind++) {
 1078                 seg = &vm_phys_segs[segind];
 1079                 if (pa >= seg->start && pa < seg->end)
 1080                         return (segind);
 1081         }
 1082         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
 1083             (uintmax_t)pa);
 1084 }
 1085 
 1086 /*
 1087  * Free a contiguous, power of two-sized set of physical pages.
 1088  *
 1089  * The free page queues must be locked.
 1090  */
 1091 void
 1092 vm_phys_free_pages(vm_page_t m, int order)
 1093 {
 1094         struct vm_freelist *fl;
 1095         struct vm_phys_seg *seg;
 1096         vm_paddr_t pa;
 1097         vm_page_t m_buddy;
 1098 
 1099         KASSERT(m->order == VM_NFREEORDER,
 1100             ("vm_phys_free_pages: page %p has unexpected order %d",
 1101             m, m->order));
 1102         KASSERT(m->pool < VM_NFREEPOOL,
 1103             ("vm_phys_free_pages: page %p has unexpected pool %d",
 1104             m, m->pool));
 1105         KASSERT(order < VM_NFREEORDER,
 1106             ("vm_phys_free_pages: order %d is out of range", order));
 1107         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1108         seg = &vm_phys_segs[m->segind];
 1109         if (order < VM_NFREEORDER - 1) {
 1110                 pa = VM_PAGE_TO_PHYS(m);
 1111                 do {
 1112                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
 1113                         if (pa < seg->start || pa >= seg->end)
 1114                                 break;
 1115                         m_buddy = &seg->first_page[atop(pa - seg->start)];
 1116                         if (m_buddy->order != order)
 1117                                 break;
 1118                         fl = (*seg->free_queues)[m_buddy->pool];
 1119                         vm_freelist_rem(fl, m_buddy, order);
 1120                         if (m_buddy->pool != m->pool)
 1121                                 vm_phys_set_pool(m->pool, m_buddy, order);
 1122                         order++;
 1123                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
 1124                         m = &seg->first_page[atop(pa - seg->start)];
 1125                 } while (order < VM_NFREEORDER - 1);
 1126         }
 1127         fl = (*seg->free_queues)[m->pool];
 1128         vm_freelist_add(fl, m, order, 1);
 1129 }
 1130 
 1131 /*
 1132  * Free a contiguous, arbitrarily sized set of physical pages.
 1133  *
 1134  * The free page queues must be locked.
 1135  */
 1136 void
 1137 vm_phys_free_contig(vm_page_t m, u_long npages)
 1138 {
 1139         u_int n;
 1140         int order;
 1141 
 1142         /*
 1143          * Avoid unnecessary coalescing by freeing the pages in the largest
 1144          * possible power-of-two-sized subsets.
 1145          */
 1146         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1147         for (;; npages -= n) {
 1148                 /*
 1149                  * Unsigned "min" is used here so that "order" is assigned
 1150                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
 1151                  * or the low-order bits of its physical address are zero
 1152                  * because the size of a physical address exceeds the size of
 1153                  * a long.
 1154                  */
 1155                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
 1156                     VM_NFREEORDER - 1);
 1157                 n = 1 << order;
 1158                 if (npages < n)
 1159                         break;
 1160                 vm_phys_free_pages(m, order);
 1161                 m += n;
 1162         }
 1163         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
 1164         for (; npages > 0; npages -= n) {
 1165                 order = flsl(npages) - 1;
 1166                 n = 1 << order;
 1167                 vm_phys_free_pages(m, order);
 1168                 m += n;
 1169         }
 1170 }
 1171 
 1172 /*
 1173  * Scan physical memory between the specified addresses "low" and "high" for a
 1174  * run of contiguous physical pages that satisfy the specified conditions, and
 1175  * return the lowest page in the run.  The specified "alignment" determines
 1176  * the alignment of the lowest physical page in the run.  If the specified
 1177  * "boundary" is non-zero, then the run of physical pages cannot span a
 1178  * physical address that is a multiple of "boundary".
 1179  *
 1180  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
 1181  * be a power of two.
 1182  */
 1183 vm_page_t
 1184 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
 1185     u_long alignment, vm_paddr_t boundary, int options)
 1186 {
 1187         vm_paddr_t pa_end;
 1188         vm_page_t m_end, m_run, m_start;
 1189         struct vm_phys_seg *seg;
 1190         int segind;
 1191 
 1192         KASSERT(npages > 0, ("npages is 0"));
 1193         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
 1194         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
 1195         if (low >= high)
 1196                 return (NULL);
 1197         for (segind = 0; segind < vm_phys_nsegs; segind++) {
 1198                 seg = &vm_phys_segs[segind];
 1199                 if (seg->start >= high)
 1200                         break;
 1201                 if (low >= seg->end)
 1202                         continue;
 1203                 if (low <= seg->start)
 1204                         m_start = seg->first_page;
 1205                 else
 1206                         m_start = &seg->first_page[atop(low - seg->start)];
 1207                 if (high < seg->end)
 1208                         pa_end = high;
 1209                 else
 1210                         pa_end = seg->end;
 1211                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
 1212                         continue;
 1213                 m_end = &seg->first_page[atop(pa_end - seg->start)];
 1214                 m_run = vm_page_scan_contig(npages, m_start, m_end,
 1215                     alignment, boundary, options);
 1216                 if (m_run != NULL)
 1217                         return (m_run);
 1218         }
 1219         return (NULL);
 1220 }
 1221 
 1222 /*
 1223  * Set the pool for a contiguous, power of two-sized set of physical pages. 
 1224  */
 1225 void
 1226 vm_phys_set_pool(int pool, vm_page_t m, int order)
 1227 {
 1228         vm_page_t m_tmp;
 1229 
 1230         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
 1231                 m_tmp->pool = pool;
 1232 }
 1233 
 1234 /*
 1235  * Search for the given physical page "m" in the free lists.  If the search
 1236  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
 1237  * FALSE, indicating that "m" is not in the free lists.
 1238  *
 1239  * The free page queues must be locked.
 1240  */
 1241 boolean_t
 1242 vm_phys_unfree_page(vm_page_t m)
 1243 {
 1244         struct vm_freelist *fl;
 1245         struct vm_phys_seg *seg;
 1246         vm_paddr_t pa, pa_half;
 1247         vm_page_t m_set, m_tmp;
 1248         int order;
 1249 
 1250         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1251 
 1252         /*
 1253          * First, find the contiguous, power of two-sized set of free
 1254          * physical pages containing the given physical page "m" and
 1255          * assign it to "m_set".
 1256          */
 1257         seg = &vm_phys_segs[m->segind];
 1258         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
 1259             order < VM_NFREEORDER - 1; ) {
 1260                 order++;
 1261                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
 1262                 if (pa >= seg->start)
 1263                         m_set = &seg->first_page[atop(pa - seg->start)];
 1264                 else
 1265                         return (FALSE);
 1266         }
 1267         if (m_set->order < order)
 1268                 return (FALSE);
 1269         if (m_set->order == VM_NFREEORDER)
 1270                 return (FALSE);
 1271         KASSERT(m_set->order < VM_NFREEORDER,
 1272             ("vm_phys_unfree_page: page %p has unexpected order %d",
 1273             m_set, m_set->order));
 1274 
 1275         /*
 1276          * Next, remove "m_set" from the free lists.  Finally, extract
 1277          * "m" from "m_set" using an iterative algorithm: While "m_set"
 1278          * is larger than a page, shrink "m_set" by returning the half
 1279          * of "m_set" that does not contain "m" to the free lists.
 1280          */
 1281         fl = (*seg->free_queues)[m_set->pool];
 1282         order = m_set->order;
 1283         vm_freelist_rem(fl, m_set, order);
 1284         while (order > 0) {
 1285                 order--;
 1286                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
 1287                 if (m->phys_addr < pa_half)
 1288                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
 1289                 else {
 1290                         m_tmp = m_set;
 1291                         m_set = &seg->first_page[atop(pa_half - seg->start)];
 1292                 }
 1293                 vm_freelist_add(fl, m_tmp, order, 0);
 1294         }
 1295         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
 1296         return (TRUE);
 1297 }
 1298 
 1299 /*
 1300  * Try to zero one physical page.  Used by an idle priority thread.
 1301  */
 1302 boolean_t
 1303 vm_phys_zero_pages_idle(void)
 1304 {
 1305         static struct vm_freelist *fl;
 1306         static int flind, oind, pind;
 1307         vm_page_t m, m_tmp;
 1308         int domain;
 1309 
 1310         domain = vm_rr_selectdomain();
 1311         fl = vm_phys_free_queues[domain][0][0];
 1312         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1313         for (;;) {
 1314                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
 1315                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
 1316                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
 1317                                         vm_phys_unfree_page(m_tmp);
 1318                                         vm_phys_freecnt_adj(m, -1);
 1319                                         mtx_unlock(&vm_page_queue_free_mtx);
 1320                                         pmap_zero_page_idle(m_tmp);
 1321                                         m_tmp->flags |= PG_ZERO;
 1322                                         mtx_lock(&vm_page_queue_free_mtx);
 1323                                         vm_phys_freecnt_adj(m, 1);
 1324                                         vm_phys_free_pages(m_tmp, 0);
 1325                                         vm_page_zero_count++;
 1326                                         cnt_prezero++;
 1327                                         return (TRUE);
 1328                                 }
 1329                         }
 1330                 }
 1331                 oind++;
 1332                 if (oind == VM_NFREEORDER) {
 1333                         oind = 0;
 1334                         pind++;
 1335                         if (pind == VM_NFREEPOOL) {
 1336                                 pind = 0;
 1337                                 flind++;
 1338                                 if (flind == vm_nfreelists)
 1339                                         flind = 0;
 1340                         }
 1341                         fl = vm_phys_free_queues[domain][flind][pind];
 1342                 }
 1343         }
 1344 }
 1345 
 1346 /*
 1347  * Allocate a contiguous set of physical pages of the given size
 1348  * "npages" from the free lists.  All of the physical pages must be at
 1349  * or above the given physical address "low" and below the given
 1350  * physical address "high".  The given value "alignment" determines the
 1351  * alignment of the first physical page in the set.  If the given value
 1352  * "boundary" is non-zero, then the set of physical pages cannot cross
 1353  * any physical address boundary that is a multiple of that value.  Both
 1354  * "alignment" and "boundary" must be a power of two.
 1355  */
 1356 vm_page_t
 1357 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
 1358     u_long alignment, vm_paddr_t boundary)
 1359 {
 1360         vm_paddr_t pa_end, pa_start;
 1361         vm_page_t m_run;
 1362         struct vm_domain_iterator vi;
 1363         struct vm_phys_seg *seg;
 1364         int domain, segind;
 1365 
 1366         KASSERT(npages > 0, ("npages is 0"));
 1367         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
 1368         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
 1369         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1370         if (low >= high)
 1371                 return (NULL);
 1372         vm_policy_iterator_init(&vi);
 1373 restartdom:
 1374         if (vm_domain_iterator_run(&vi, &domain) != 0) {
 1375                 vm_policy_iterator_finish(&vi);
 1376                 return (NULL);
 1377         }
 1378         m_run = NULL;
 1379         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
 1380                 seg = &vm_phys_segs[segind];
 1381                 if (seg->start >= high || seg->domain != domain)
 1382                         continue;
 1383                 if (low >= seg->end)
 1384                         break;
 1385                 if (low <= seg->start)
 1386                         pa_start = seg->start;
 1387                 else
 1388                         pa_start = low;
 1389                 if (high < seg->end)
 1390                         pa_end = high;
 1391                 else
 1392                         pa_end = seg->end;
 1393                 if (pa_end - pa_start < ptoa(npages))
 1394                         continue;
 1395                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
 1396                     alignment, boundary);
 1397                 if (m_run != NULL)
 1398                         break;
 1399         }
 1400         if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
 1401                 goto restartdom;
 1402         vm_policy_iterator_finish(&vi);
 1403         return (m_run);
 1404 }
 1405 
 1406 /*
 1407  * Allocate a run of contiguous physical pages from the free list for the
 1408  * specified segment.
 1409  */
 1410 static vm_page_t
 1411 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
 1412     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
 1413 {
 1414         struct vm_freelist *fl;
 1415         vm_paddr_t pa, pa_end, size;
 1416         vm_page_t m, m_ret;
 1417         u_long npages_end;
 1418         int oind, order, pind;
 1419 
 1420         KASSERT(npages > 0, ("npages is 0"));
 1421         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
 1422         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
 1423         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
 1424         /* Compute the queue that is the best fit for npages. */
 1425         for (order = 0; (1 << order) < npages; order++);
 1426         /* Search for a run satisfying the specified conditions. */
 1427         size = npages << PAGE_SHIFT;
 1428         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
 1429             oind++) {
 1430                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
 1431                         fl = (*seg->free_queues)[pind];
 1432                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
 1433                                 /*
 1434                                  * Is the size of this allocation request
 1435                                  * larger than the largest block size?
 1436                                  */
 1437                                 if (order >= VM_NFREEORDER) {
 1438                                         /*
 1439                                          * Determine if a sufficient number of
 1440                                          * subsequent blocks to satisfy the
 1441                                          * allocation request are free.
 1442                                          */
 1443                                         pa = VM_PAGE_TO_PHYS(m_ret);
 1444                                         pa_end = pa + size;
 1445                                         for (;;) {
 1446                                                 pa += 1 << (PAGE_SHIFT +
 1447                                                     VM_NFREEORDER - 1);
 1448                                                 if (pa >= pa_end ||
 1449                                                     pa < seg->start ||
 1450                                                     pa >= seg->end)
 1451                                                         break;
 1452                                                 m = &seg->first_page[atop(pa -
 1453                                                     seg->start)];
 1454                                                 if (m->order != VM_NFREEORDER -
 1455                                                     1)
 1456                                                         break;
 1457                                         }
 1458                                         /* If not, go to the next block. */
 1459                                         if (pa < pa_end)
 1460                                                 continue;
 1461                                 }
 1462 
 1463                                 /*
 1464                                  * Determine if the blocks are within the
 1465                                  * given range, satisfy the given alignment,
 1466                                  * and do not cross the given boundary.
 1467                                  */
 1468                                 pa = VM_PAGE_TO_PHYS(m_ret);
 1469                                 pa_end = pa + size;
 1470                                 if (pa >= low && pa_end <= high &&
 1471                                     (pa & (alignment - 1)) == 0 &&
 1472                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
 1473                                         goto done;
 1474                         }
 1475                 }
 1476         }
 1477         return (NULL);
 1478 done:
 1479         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
 1480                 fl = (*seg->free_queues)[m->pool];
 1481                 vm_freelist_rem(fl, m, m->order);
 1482         }
 1483         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
 1484                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
 1485         fl = (*seg->free_queues)[m_ret->pool];
 1486         vm_phys_split_pages(m_ret, oind, fl, order);
 1487         /* Return excess pages to the free lists. */
 1488         npages_end = roundup2(npages, 1 << imin(oind, order));
 1489         if (npages < npages_end)
 1490                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
 1491         return (m_ret);
 1492 }
 1493 
 1494 #ifdef DDB
 1495 /*
 1496  * Show the number of physical pages in each of the free lists.
 1497  */
 1498 DB_SHOW_COMMAND(freepages, db_show_freepages)
 1499 {
 1500         struct vm_freelist *fl;
 1501         int flind, oind, pind, dom;
 1502 
 1503         for (dom = 0; dom < vm_ndomains; dom++) {
 1504                 db_printf("DOMAIN: %d\n", dom);
 1505                 for (flind = 0; flind < vm_nfreelists; flind++) {
 1506                         db_printf("FREE LIST %d:\n"
 1507                             "\n  ORDER (SIZE)  |  NUMBER"
 1508                             "\n              ", flind);
 1509                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
 1510                                 db_printf("  |  POOL %d", pind);
 1511                         db_printf("\n--            ");
 1512                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
 1513                                 db_printf("-- --      ");
 1514                         db_printf("--\n");
 1515                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
 1516                                 db_printf("  %2.2d (%6.6dK)", oind,
 1517                                     1 << (PAGE_SHIFT - 10 + oind));
 1518                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
 1519                                 fl = vm_phys_free_queues[dom][flind][pind];
 1520                                         db_printf("  |  %6.6d", fl[oind].lcnt);
 1521                                 }
 1522                                 db_printf("\n");
 1523                         }
 1524                         db_printf("\n");
 1525                 }
 1526                 db_printf("\n");
 1527         }
 1528 }
 1529 #endif

Cache object: fd2c03f5a5e224b6030af4cd9891b7ca


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.