FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Physical memory system implementation
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59
60 #include <ddb/ddb.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68
69 #include <vm/vm_domain.h>
70
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72 "Too many physsegs.");
73
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78
79 int vm_ndomains = 1;
80
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86 struct vm_phys_fictitious_seg *);
87
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89 RB_INITIALIZER(_vm_phys_fictitious_tree);
90
91 struct vm_phys_fictitious_seg {
92 RB_ENTRY(vm_phys_fictitious_seg) node;
93 /* Memory region data */
94 vm_paddr_t start;
95 vm_paddr_t end;
96 vm_page_t first_page;
97 };
98
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100 vm_phys_fictitious_cmp);
101
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104
105 static struct vm_freelist
106 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107
108 static int vm_nfreelists;
109
110 /*
111 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112 */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116
117 #ifdef VM_FREELIST_ISADMA
118 #define VM_ISADMA_BOUNDARY 16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
122 #endif
123
124 /*
125 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126 * the ordering of the free list boundaries.
127 */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134
135 static int cnt_prezero;
136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
137 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
138
139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
141 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
142
143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
145 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
146
147 #ifdef VM_NUMA_ALLOC
148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
150 NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
151 #endif
152
153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
154 &vm_ndomains, 0, "Number of physical memory domains available.");
155
156 /*
157 * Default to first-touch + round-robin.
158 */
159 static struct mtx vm_default_policy_mtx;
160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
161 MTX_DEF);
162 #ifdef VM_NUMA_ALLOC
163 static struct vm_domain_policy vm_default_policy =
164 VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
165 #else
166 /* Use round-robin so the domain policy code will only try once per allocation */
167 static struct vm_domain_policy vm_default_policy =
168 VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
169 #endif
170
171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
172 int order);
173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
174 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
175 vm_paddr_t boundary);
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179 int order);
180
181 static int
182 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
183 {
184 char policy_name[32];
185 int error;
186
187 mtx_lock(&vm_default_policy_mtx);
188
189 /* Map policy to output string */
190 switch (vm_default_policy.p.policy) {
191 case VM_POLICY_FIRST_TOUCH:
192 strcpy(policy_name, "first-touch");
193 break;
194 case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
195 strcpy(policy_name, "first-touch-rr");
196 break;
197 case VM_POLICY_ROUND_ROBIN:
198 default:
199 strcpy(policy_name, "rr");
200 break;
201 }
202 mtx_unlock(&vm_default_policy_mtx);
203
204 error = sysctl_handle_string(oidp, &policy_name[0],
205 sizeof(policy_name), req);
206 if (error != 0 || req->newptr == NULL)
207 return (error);
208
209 mtx_lock(&vm_default_policy_mtx);
210 /* Set: match on the subset of policies that make sense as a default */
211 if (strcmp("first-touch-rr", policy_name) == 0) {
212 vm_domain_policy_set(&vm_default_policy,
213 VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
214 } else if (strcmp("first-touch", policy_name) == 0) {
215 vm_domain_policy_set(&vm_default_policy,
216 VM_POLICY_FIRST_TOUCH, 0);
217 } else if (strcmp("rr", policy_name) == 0) {
218 vm_domain_policy_set(&vm_default_policy,
219 VM_POLICY_ROUND_ROBIN, 0);
220 } else {
221 error = EINVAL;
222 goto finish;
223 }
224
225 error = 0;
226 finish:
227 mtx_unlock(&vm_default_policy_mtx);
228 return (error);
229 }
230
231 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
232 0, 0, sysctl_vm_default_policy, "A",
233 "Default policy (rr, first-touch, first-touch-rr");
234
235 /*
236 * Red-black tree helpers for vm fictitious range management.
237 */
238 static inline int
239 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
240 struct vm_phys_fictitious_seg *range)
241 {
242
243 KASSERT(range->start != 0 && range->end != 0,
244 ("Invalid range passed on search for vm_fictitious page"));
245 if (p->start >= range->end)
246 return (1);
247 if (p->start < range->start)
248 return (-1);
249
250 return (0);
251 }
252
253 static int
254 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
255 struct vm_phys_fictitious_seg *p2)
256 {
257
258 /* Check if this is a search for a page */
259 if (p1->end == 0)
260 return (vm_phys_fictitious_in_range(p1, p2));
261
262 KASSERT(p2->end != 0,
263 ("Invalid range passed as second parameter to vm fictitious comparison"));
264
265 /* Searching to add a new range */
266 if (p1->end <= p2->start)
267 return (-1);
268 if (p1->start >= p2->end)
269 return (1);
270
271 panic("Trying to add overlapping vm fictitious ranges:\n"
272 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
273 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
274 }
275
276 static __inline int
277 vm_rr_selectdomain(void)
278 {
279 #ifdef VM_NUMA_ALLOC
280 struct thread *td;
281
282 td = curthread;
283
284 td->td_dom_rr_idx++;
285 td->td_dom_rr_idx %= vm_ndomains;
286 return (td->td_dom_rr_idx);
287 #else
288 return (0);
289 #endif
290 }
291
292 /*
293 * Initialise a VM domain iterator.
294 *
295 * Check the thread policy, then the proc policy,
296 * then default to the system policy.
297 *
298 * Later on the various layers will have this logic
299 * plumbed into them and the phys code will be explicitly
300 * handed a VM domain policy to use.
301 */
302 static void
303 vm_policy_iterator_init(struct vm_domain_iterator *vi)
304 {
305 #ifdef VM_NUMA_ALLOC
306 struct vm_domain_policy lcl;
307 #endif
308
309 vm_domain_iterator_init(vi);
310
311 #ifdef VM_NUMA_ALLOC
312 /* Copy out the thread policy */
313 vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
314 if (lcl.p.policy != VM_POLICY_NONE) {
315 /* Thread policy is present; use it */
316 vm_domain_iterator_set_policy(vi, &lcl);
317 return;
318 }
319
320 vm_domain_policy_localcopy(&lcl,
321 &curthread->td_proc->p_vm_dom_policy);
322 if (lcl.p.policy != VM_POLICY_NONE) {
323 /* Process policy is present; use it */
324 vm_domain_iterator_set_policy(vi, &lcl);
325 return;
326 }
327 #endif
328 /* Use system default policy */
329 vm_domain_iterator_set_policy(vi, &vm_default_policy);
330 }
331
332 static void
333 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
334 {
335
336 vm_domain_iterator_cleanup(vi);
337 }
338
339 boolean_t
340 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
341 {
342 struct vm_phys_seg *s;
343 int idx;
344
345 while ((idx = ffsl(mask)) != 0) {
346 idx--; /* ffsl counts from 1 */
347 mask &= ~(1UL << idx);
348 s = &vm_phys_segs[idx];
349 if (low < s->end && high > s->start)
350 return (TRUE);
351 }
352 return (FALSE);
353 }
354
355 /*
356 * Outputs the state of the physical memory allocator, specifically,
357 * the amount of physical memory in each free list.
358 */
359 static int
360 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
361 {
362 struct sbuf sbuf;
363 struct vm_freelist *fl;
364 int dom, error, flind, oind, pind;
365
366 error = sysctl_wire_old_buffer(req, 0);
367 if (error != 0)
368 return (error);
369 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
370 for (dom = 0; dom < vm_ndomains; dom++) {
371 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
372 for (flind = 0; flind < vm_nfreelists; flind++) {
373 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
374 "\n ORDER (SIZE) | NUMBER"
375 "\n ", flind);
376 for (pind = 0; pind < VM_NFREEPOOL; pind++)
377 sbuf_printf(&sbuf, " | POOL %d", pind);
378 sbuf_printf(&sbuf, "\n-- ");
379 for (pind = 0; pind < VM_NFREEPOOL; pind++)
380 sbuf_printf(&sbuf, "-- -- ");
381 sbuf_printf(&sbuf, "--\n");
382 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
383 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
384 1 << (PAGE_SHIFT - 10 + oind));
385 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
386 fl = vm_phys_free_queues[dom][flind][pind];
387 sbuf_printf(&sbuf, " | %6d",
388 fl[oind].lcnt);
389 }
390 sbuf_printf(&sbuf, "\n");
391 }
392 }
393 }
394 error = sbuf_finish(&sbuf);
395 sbuf_delete(&sbuf);
396 return (error);
397 }
398
399 /*
400 * Outputs the set of physical memory segments.
401 */
402 static int
403 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
404 {
405 struct sbuf sbuf;
406 struct vm_phys_seg *seg;
407 int error, segind;
408
409 error = sysctl_wire_old_buffer(req, 0);
410 if (error != 0)
411 return (error);
412 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413 for (segind = 0; segind < vm_phys_nsegs; segind++) {
414 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
415 seg = &vm_phys_segs[segind];
416 sbuf_printf(&sbuf, "start: %#jx\n",
417 (uintmax_t)seg->start);
418 sbuf_printf(&sbuf, "end: %#jx\n",
419 (uintmax_t)seg->end);
420 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
421 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
422 }
423 error = sbuf_finish(&sbuf);
424 sbuf_delete(&sbuf);
425 return (error);
426 }
427
428 /*
429 * Return affinity, or -1 if there's no affinity information.
430 */
431 int
432 vm_phys_mem_affinity(int f, int t)
433 {
434
435 #ifdef VM_NUMA_ALLOC
436 if (mem_locality == NULL)
437 return (-1);
438 if (f >= vm_ndomains || t >= vm_ndomains)
439 return (-1);
440 return (mem_locality[f * vm_ndomains + t]);
441 #else
442 return (-1);
443 #endif
444 }
445
446 #ifdef VM_NUMA_ALLOC
447 /*
448 * Outputs the VM locality table.
449 */
450 static int
451 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
452 {
453 struct sbuf sbuf;
454 int error, i, j;
455
456 error = sysctl_wire_old_buffer(req, 0);
457 if (error != 0)
458 return (error);
459 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
460
461 sbuf_printf(&sbuf, "\n");
462
463 for (i = 0; i < vm_ndomains; i++) {
464 sbuf_printf(&sbuf, "%d: ", i);
465 for (j = 0; j < vm_ndomains; j++) {
466 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
467 }
468 sbuf_printf(&sbuf, "\n");
469 }
470 error = sbuf_finish(&sbuf);
471 sbuf_delete(&sbuf);
472 return (error);
473 }
474 #endif
475
476 static void
477 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
478 {
479
480 m->order = order;
481 if (tail)
482 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
483 else
484 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
485 fl[order].lcnt++;
486 }
487
488 static void
489 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
490 {
491
492 TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
493 fl[order].lcnt--;
494 m->order = VM_NFREEORDER;
495 }
496
497 /*
498 * Create a physical memory segment.
499 */
500 static void
501 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
502 {
503 struct vm_phys_seg *seg;
504
505 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
506 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
507 KASSERT(domain < vm_ndomains,
508 ("vm_phys_create_seg: invalid domain provided"));
509 seg = &vm_phys_segs[vm_phys_nsegs++];
510 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
511 *seg = *(seg - 1);
512 seg--;
513 }
514 seg->start = start;
515 seg->end = end;
516 seg->domain = domain;
517 }
518
519 static void
520 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
521 {
522 #ifdef VM_NUMA_ALLOC
523 int i;
524
525 if (mem_affinity == NULL) {
526 _vm_phys_create_seg(start, end, 0);
527 return;
528 }
529
530 for (i = 0;; i++) {
531 if (mem_affinity[i].end == 0)
532 panic("Reached end of affinity info");
533 if (mem_affinity[i].end <= start)
534 continue;
535 if (mem_affinity[i].start > start)
536 panic("No affinity info for start %jx",
537 (uintmax_t)start);
538 if (mem_affinity[i].end >= end) {
539 _vm_phys_create_seg(start, end,
540 mem_affinity[i].domain);
541 break;
542 }
543 _vm_phys_create_seg(start, mem_affinity[i].end,
544 mem_affinity[i].domain);
545 start = mem_affinity[i].end;
546 }
547 #else
548 _vm_phys_create_seg(start, end, 0);
549 #endif
550 }
551
552 /*
553 * Add a physical memory segment.
554 */
555 void
556 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
557 {
558 vm_paddr_t paddr;
559
560 KASSERT((start & PAGE_MASK) == 0,
561 ("vm_phys_define_seg: start is not page aligned"));
562 KASSERT((end & PAGE_MASK) == 0,
563 ("vm_phys_define_seg: end is not page aligned"));
564
565 /*
566 * Split the physical memory segment if it spans two or more free
567 * list boundaries.
568 */
569 paddr = start;
570 #ifdef VM_FREELIST_ISADMA
571 if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
572 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
573 paddr = VM_ISADMA_BOUNDARY;
574 }
575 #endif
576 #ifdef VM_FREELIST_LOWMEM
577 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
578 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
579 paddr = VM_LOWMEM_BOUNDARY;
580 }
581 #endif
582 #ifdef VM_FREELIST_DMA32
583 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
584 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
585 paddr = VM_DMA32_BOUNDARY;
586 }
587 #endif
588 vm_phys_create_seg(paddr, end);
589 }
590
591 /*
592 * Initialize the physical memory allocator.
593 *
594 * Requires that vm_page_array is initialized!
595 */
596 void
597 vm_phys_init(void)
598 {
599 struct vm_freelist *fl;
600 struct vm_phys_seg *seg;
601 u_long npages;
602 int dom, flind, freelist, oind, pind, segind;
603
604 /*
605 * Compute the number of free lists, and generate the mapping from the
606 * manifest constants VM_FREELIST_* to the free list indices.
607 *
608 * Initially, the entries of vm_freelist_to_flind[] are set to either
609 * 0 or 1 to indicate which free lists should be created.
610 */
611 npages = 0;
612 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
613 seg = &vm_phys_segs[segind];
614 #ifdef VM_FREELIST_ISADMA
615 if (seg->end <= VM_ISADMA_BOUNDARY)
616 vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
617 else
618 #endif
619 #ifdef VM_FREELIST_LOWMEM
620 if (seg->end <= VM_LOWMEM_BOUNDARY)
621 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
622 else
623 #endif
624 #ifdef VM_FREELIST_DMA32
625 if (
626 #ifdef VM_DMA32_NPAGES_THRESHOLD
627 /*
628 * Create the DMA32 free list only if the amount of
629 * physical memory above physical address 4G exceeds the
630 * given threshold.
631 */
632 npages > VM_DMA32_NPAGES_THRESHOLD &&
633 #endif
634 seg->end <= VM_DMA32_BOUNDARY)
635 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
636 else
637 #endif
638 {
639 npages += atop(seg->end - seg->start);
640 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
641 }
642 }
643 /* Change each entry into a running total of the free lists. */
644 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
645 vm_freelist_to_flind[freelist] +=
646 vm_freelist_to_flind[freelist - 1];
647 }
648 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
649 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
650 /* Change each entry into a free list index. */
651 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
652 vm_freelist_to_flind[freelist]--;
653
654 /*
655 * Initialize the first_page and free_queues fields of each physical
656 * memory segment.
657 */
658 #ifdef VM_PHYSSEG_SPARSE
659 npages = 0;
660 #endif
661 for (segind = 0; segind < vm_phys_nsegs; segind++) {
662 seg = &vm_phys_segs[segind];
663 #ifdef VM_PHYSSEG_SPARSE
664 seg->first_page = &vm_page_array[npages];
665 npages += atop(seg->end - seg->start);
666 #else
667 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
668 #endif
669 #ifdef VM_FREELIST_ISADMA
670 if (seg->end <= VM_ISADMA_BOUNDARY) {
671 flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
672 KASSERT(flind >= 0,
673 ("vm_phys_init: ISADMA flind < 0"));
674 } else
675 #endif
676 #ifdef VM_FREELIST_LOWMEM
677 if (seg->end <= VM_LOWMEM_BOUNDARY) {
678 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
679 KASSERT(flind >= 0,
680 ("vm_phys_init: LOWMEM flind < 0"));
681 } else
682 #endif
683 #ifdef VM_FREELIST_DMA32
684 if (seg->end <= VM_DMA32_BOUNDARY) {
685 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
686 KASSERT(flind >= 0,
687 ("vm_phys_init: DMA32 flind < 0"));
688 } else
689 #endif
690 {
691 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
692 KASSERT(flind >= 0,
693 ("vm_phys_init: DEFAULT flind < 0"));
694 }
695 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
696 }
697
698 /*
699 * Initialize the free queues.
700 */
701 for (dom = 0; dom < vm_ndomains; dom++) {
702 for (flind = 0; flind < vm_nfreelists; flind++) {
703 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
704 fl = vm_phys_free_queues[dom][flind][pind];
705 for (oind = 0; oind < VM_NFREEORDER; oind++)
706 TAILQ_INIT(&fl[oind].pl);
707 }
708 }
709 }
710
711 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
712 }
713
714 /*
715 * Split a contiguous, power of two-sized set of physical pages.
716 */
717 static __inline void
718 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
719 {
720 vm_page_t m_buddy;
721
722 while (oind > order) {
723 oind--;
724 m_buddy = &m[1 << oind];
725 KASSERT(m_buddy->order == VM_NFREEORDER,
726 ("vm_phys_split_pages: page %p has unexpected order %d",
727 m_buddy, m_buddy->order));
728 vm_freelist_add(fl, m_buddy, oind, 0);
729 }
730 }
731
732 /*
733 * Allocate a contiguous, power of two-sized set of physical pages
734 * from the free lists.
735 *
736 * The free page queues must be locked.
737 */
738 vm_page_t
739 vm_phys_alloc_pages(int pool, int order)
740 {
741 vm_page_t m;
742 int domain, flind;
743 struct vm_domain_iterator vi;
744
745 KASSERT(pool < VM_NFREEPOOL,
746 ("vm_phys_alloc_pages: pool %d is out of range", pool));
747 KASSERT(order < VM_NFREEORDER,
748 ("vm_phys_alloc_pages: order %d is out of range", order));
749
750 vm_policy_iterator_init(&vi);
751
752 while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
753 for (flind = 0; flind < vm_nfreelists; flind++) {
754 m = vm_phys_alloc_domain_pages(domain, flind, pool,
755 order);
756 if (m != NULL)
757 return (m);
758 }
759 }
760
761 vm_policy_iterator_finish(&vi);
762 return (NULL);
763 }
764
765 /*
766 * Allocate a contiguous, power of two-sized set of physical pages from the
767 * specified free list. The free list must be specified using one of the
768 * manifest constants VM_FREELIST_*.
769 *
770 * The free page queues must be locked.
771 */
772 vm_page_t
773 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
774 {
775 vm_page_t m;
776 struct vm_domain_iterator vi;
777 int domain;
778
779 KASSERT(freelist < VM_NFREELIST,
780 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
781 freelist));
782 KASSERT(pool < VM_NFREEPOOL,
783 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
784 KASSERT(order < VM_NFREEORDER,
785 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
786
787 vm_policy_iterator_init(&vi);
788
789 while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
790 m = vm_phys_alloc_domain_pages(domain,
791 vm_freelist_to_flind[freelist], pool, order);
792 if (m != NULL)
793 return (m);
794 }
795
796 vm_policy_iterator_finish(&vi);
797 return (NULL);
798 }
799
800 static vm_page_t
801 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
802 {
803 struct vm_freelist *fl;
804 struct vm_freelist *alt;
805 int oind, pind;
806 vm_page_t m;
807
808 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
809 fl = &vm_phys_free_queues[domain][flind][pool][0];
810 for (oind = order; oind < VM_NFREEORDER; oind++) {
811 m = TAILQ_FIRST(&fl[oind].pl);
812 if (m != NULL) {
813 vm_freelist_rem(fl, m, oind);
814 vm_phys_split_pages(m, oind, fl, order);
815 return (m);
816 }
817 }
818
819 /*
820 * The given pool was empty. Find the largest
821 * contiguous, power-of-two-sized set of pages in any
822 * pool. Transfer these pages to the given pool, and
823 * use them to satisfy the allocation.
824 */
825 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
826 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
827 alt = &vm_phys_free_queues[domain][flind][pind][0];
828 m = TAILQ_FIRST(&alt[oind].pl);
829 if (m != NULL) {
830 vm_freelist_rem(alt, m, oind);
831 vm_phys_set_pool(pool, m, oind);
832 vm_phys_split_pages(m, oind, fl, order);
833 return (m);
834 }
835 }
836 }
837 return (NULL);
838 }
839
840 /*
841 * Find the vm_page corresponding to the given physical address.
842 */
843 vm_page_t
844 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
845 {
846 struct vm_phys_seg *seg;
847 int segind;
848
849 for (segind = 0; segind < vm_phys_nsegs; segind++) {
850 seg = &vm_phys_segs[segind];
851 if (pa >= seg->start && pa < seg->end)
852 return (&seg->first_page[atop(pa - seg->start)]);
853 }
854 return (NULL);
855 }
856
857 vm_page_t
858 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
859 {
860 struct vm_phys_fictitious_seg tmp, *seg;
861 vm_page_t m;
862
863 m = NULL;
864 tmp.start = pa;
865 tmp.end = 0;
866
867 rw_rlock(&vm_phys_fictitious_reg_lock);
868 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
869 rw_runlock(&vm_phys_fictitious_reg_lock);
870 if (seg == NULL)
871 return (NULL);
872
873 m = &seg->first_page[atop(pa - seg->start)];
874 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
875
876 return (m);
877 }
878
879 static inline void
880 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
881 long page_count, vm_memattr_t memattr)
882 {
883 long i;
884
885 bzero(range, page_count * sizeof(*range));
886 for (i = 0; i < page_count; i++) {
887 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
888 range[i].oflags &= ~VPO_UNMANAGED;
889 range[i].busy_lock = VPB_UNBUSIED;
890 }
891 }
892
893 int
894 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
895 vm_memattr_t memattr)
896 {
897 struct vm_phys_fictitious_seg *seg;
898 vm_page_t fp;
899 long page_count;
900 #ifdef VM_PHYSSEG_DENSE
901 long pi, pe;
902 long dpage_count;
903 #endif
904
905 KASSERT(start < end,
906 ("Start of segment isn't less than end (start: %jx end: %jx)",
907 (uintmax_t)start, (uintmax_t)end));
908
909 page_count = (end - start) / PAGE_SIZE;
910
911 #ifdef VM_PHYSSEG_DENSE
912 pi = atop(start);
913 pe = atop(end);
914 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
915 fp = &vm_page_array[pi - first_page];
916 if ((pe - first_page) > vm_page_array_size) {
917 /*
918 * We have a segment that starts inside
919 * of vm_page_array, but ends outside of it.
920 *
921 * Use vm_page_array pages for those that are
922 * inside of the vm_page_array range, and
923 * allocate the remaining ones.
924 */
925 dpage_count = vm_page_array_size - (pi - first_page);
926 vm_phys_fictitious_init_range(fp, start, dpage_count,
927 memattr);
928 page_count -= dpage_count;
929 start += ptoa(dpage_count);
930 goto alloc;
931 }
932 /*
933 * We can allocate the full range from vm_page_array,
934 * so there's no need to register the range in the tree.
935 */
936 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
937 return (0);
938 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
939 /*
940 * We have a segment that ends inside of vm_page_array,
941 * but starts outside of it.
942 */
943 fp = &vm_page_array[0];
944 dpage_count = pe - first_page;
945 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
946 memattr);
947 end -= ptoa(dpage_count);
948 page_count -= dpage_count;
949 goto alloc;
950 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
951 /*
952 * Trying to register a fictitious range that expands before
953 * and after vm_page_array.
954 */
955 return (EINVAL);
956 } else {
957 alloc:
958 #endif
959 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
960 M_WAITOK);
961 #ifdef VM_PHYSSEG_DENSE
962 }
963 #endif
964 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
965
966 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
967 seg->start = start;
968 seg->end = end;
969 seg->first_page = fp;
970
971 rw_wlock(&vm_phys_fictitious_reg_lock);
972 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
973 rw_wunlock(&vm_phys_fictitious_reg_lock);
974
975 return (0);
976 }
977
978 void
979 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
980 {
981 struct vm_phys_fictitious_seg *seg, tmp;
982 #ifdef VM_PHYSSEG_DENSE
983 long pi, pe;
984 #endif
985
986 KASSERT(start < end,
987 ("Start of segment isn't less than end (start: %jx end: %jx)",
988 (uintmax_t)start, (uintmax_t)end));
989
990 #ifdef VM_PHYSSEG_DENSE
991 pi = atop(start);
992 pe = atop(end);
993 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
994 if ((pe - first_page) <= vm_page_array_size) {
995 /*
996 * This segment was allocated using vm_page_array
997 * only, there's nothing to do since those pages
998 * were never added to the tree.
999 */
1000 return;
1001 }
1002 /*
1003 * We have a segment that starts inside
1004 * of vm_page_array, but ends outside of it.
1005 *
1006 * Calculate how many pages were added to the
1007 * tree and free them.
1008 */
1009 start = ptoa(first_page + vm_page_array_size);
1010 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1011 /*
1012 * We have a segment that ends inside of vm_page_array,
1013 * but starts outside of it.
1014 */
1015 end = ptoa(first_page);
1016 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1017 /* Since it's not possible to register such a range, panic. */
1018 panic(
1019 "Unregistering not registered fictitious range [%#jx:%#jx]",
1020 (uintmax_t)start, (uintmax_t)end);
1021 }
1022 #endif
1023 tmp.start = start;
1024 tmp.end = 0;
1025
1026 rw_wlock(&vm_phys_fictitious_reg_lock);
1027 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1028 if (seg->start != start || seg->end != end) {
1029 rw_wunlock(&vm_phys_fictitious_reg_lock);
1030 panic(
1031 "Unregistering not registered fictitious range [%#jx:%#jx]",
1032 (uintmax_t)start, (uintmax_t)end);
1033 }
1034 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1035 rw_wunlock(&vm_phys_fictitious_reg_lock);
1036 free(seg->first_page, M_FICT_PAGES);
1037 free(seg, M_FICT_PAGES);
1038 }
1039
1040 /*
1041 * Free a contiguous, power of two-sized set of physical pages.
1042 *
1043 * The free page queues must be locked.
1044 */
1045 void
1046 vm_phys_free_pages(vm_page_t m, int order)
1047 {
1048 struct vm_freelist *fl;
1049 struct vm_phys_seg *seg;
1050 vm_paddr_t pa;
1051 vm_page_t m_buddy;
1052
1053 KASSERT(m->order == VM_NFREEORDER,
1054 ("vm_phys_free_pages: page %p has unexpected order %d",
1055 m, m->order));
1056 KASSERT(m->pool < VM_NFREEPOOL,
1057 ("vm_phys_free_pages: page %p has unexpected pool %d",
1058 m, m->pool));
1059 KASSERT(order < VM_NFREEORDER,
1060 ("vm_phys_free_pages: order %d is out of range", order));
1061 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1062 seg = &vm_phys_segs[m->segind];
1063 if (order < VM_NFREEORDER - 1) {
1064 pa = VM_PAGE_TO_PHYS(m);
1065 do {
1066 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1067 if (pa < seg->start || pa >= seg->end)
1068 break;
1069 m_buddy = &seg->first_page[atop(pa - seg->start)];
1070 if (m_buddy->order != order)
1071 break;
1072 fl = (*seg->free_queues)[m_buddy->pool];
1073 vm_freelist_rem(fl, m_buddy, order);
1074 if (m_buddy->pool != m->pool)
1075 vm_phys_set_pool(m->pool, m_buddy, order);
1076 order++;
1077 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1078 m = &seg->first_page[atop(pa - seg->start)];
1079 } while (order < VM_NFREEORDER - 1);
1080 }
1081 fl = (*seg->free_queues)[m->pool];
1082 vm_freelist_add(fl, m, order, 1);
1083 }
1084
1085 /*
1086 * Free a contiguous, arbitrarily sized set of physical pages.
1087 *
1088 * The free page queues must be locked.
1089 */
1090 void
1091 vm_phys_free_contig(vm_page_t m, u_long npages)
1092 {
1093 u_int n;
1094 int order;
1095
1096 /*
1097 * Avoid unnecessary coalescing by freeing the pages in the largest
1098 * possible power-of-two-sized subsets.
1099 */
1100 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1101 for (;; npages -= n) {
1102 /*
1103 * Unsigned "min" is used here so that "order" is assigned
1104 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1105 * or the low-order bits of its physical address are zero
1106 * because the size of a physical address exceeds the size of
1107 * a long.
1108 */
1109 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1110 VM_NFREEORDER - 1);
1111 n = 1 << order;
1112 if (npages < n)
1113 break;
1114 vm_phys_free_pages(m, order);
1115 m += n;
1116 }
1117 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1118 for (; npages > 0; npages -= n) {
1119 order = flsl(npages) - 1;
1120 n = 1 << order;
1121 vm_phys_free_pages(m, order);
1122 m += n;
1123 }
1124 }
1125
1126 /*
1127 * Scan physical memory between the specified addresses "low" and "high" for a
1128 * run of contiguous physical pages that satisfy the specified conditions, and
1129 * return the lowest page in the run. The specified "alignment" determines
1130 * the alignment of the lowest physical page in the run. If the specified
1131 * "boundary" is non-zero, then the run of physical pages cannot span a
1132 * physical address that is a multiple of "boundary".
1133 *
1134 * "npages" must be greater than zero. Both "alignment" and "boundary" must
1135 * be a power of two.
1136 */
1137 vm_page_t
1138 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1139 u_long alignment, vm_paddr_t boundary, int options)
1140 {
1141 vm_paddr_t pa_end;
1142 vm_page_t m_end, m_run, m_start;
1143 struct vm_phys_seg *seg;
1144 int segind;
1145
1146 KASSERT(npages > 0, ("npages is 0"));
1147 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1148 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1149 if (low >= high)
1150 return (NULL);
1151 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1152 seg = &vm_phys_segs[segind];
1153 if (seg->start >= high)
1154 break;
1155 if (low >= seg->end)
1156 continue;
1157 if (low <= seg->start)
1158 m_start = seg->first_page;
1159 else
1160 m_start = &seg->first_page[atop(low - seg->start)];
1161 if (high < seg->end)
1162 pa_end = high;
1163 else
1164 pa_end = seg->end;
1165 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1166 continue;
1167 m_end = &seg->first_page[atop(pa_end - seg->start)];
1168 m_run = vm_page_scan_contig(npages, m_start, m_end,
1169 alignment, boundary, options);
1170 if (m_run != NULL)
1171 return (m_run);
1172 }
1173 return (NULL);
1174 }
1175
1176 /*
1177 * Set the pool for a contiguous, power of two-sized set of physical pages.
1178 */
1179 void
1180 vm_phys_set_pool(int pool, vm_page_t m, int order)
1181 {
1182 vm_page_t m_tmp;
1183
1184 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1185 m_tmp->pool = pool;
1186 }
1187
1188 /*
1189 * Search for the given physical page "m" in the free lists. If the search
1190 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
1191 * FALSE, indicating that "m" is not in the free lists.
1192 *
1193 * The free page queues must be locked.
1194 */
1195 boolean_t
1196 vm_phys_unfree_page(vm_page_t m)
1197 {
1198 struct vm_freelist *fl;
1199 struct vm_phys_seg *seg;
1200 vm_paddr_t pa, pa_half;
1201 vm_page_t m_set, m_tmp;
1202 int order;
1203
1204 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1205
1206 /*
1207 * First, find the contiguous, power of two-sized set of free
1208 * physical pages containing the given physical page "m" and
1209 * assign it to "m_set".
1210 */
1211 seg = &vm_phys_segs[m->segind];
1212 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1213 order < VM_NFREEORDER - 1; ) {
1214 order++;
1215 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1216 if (pa >= seg->start)
1217 m_set = &seg->first_page[atop(pa - seg->start)];
1218 else
1219 return (FALSE);
1220 }
1221 if (m_set->order < order)
1222 return (FALSE);
1223 if (m_set->order == VM_NFREEORDER)
1224 return (FALSE);
1225 KASSERT(m_set->order < VM_NFREEORDER,
1226 ("vm_phys_unfree_page: page %p has unexpected order %d",
1227 m_set, m_set->order));
1228
1229 /*
1230 * Next, remove "m_set" from the free lists. Finally, extract
1231 * "m" from "m_set" using an iterative algorithm: While "m_set"
1232 * is larger than a page, shrink "m_set" by returning the half
1233 * of "m_set" that does not contain "m" to the free lists.
1234 */
1235 fl = (*seg->free_queues)[m_set->pool];
1236 order = m_set->order;
1237 vm_freelist_rem(fl, m_set, order);
1238 while (order > 0) {
1239 order--;
1240 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1241 if (m->phys_addr < pa_half)
1242 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1243 else {
1244 m_tmp = m_set;
1245 m_set = &seg->first_page[atop(pa_half - seg->start)];
1246 }
1247 vm_freelist_add(fl, m_tmp, order, 0);
1248 }
1249 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1250 return (TRUE);
1251 }
1252
1253 /*
1254 * Try to zero one physical page. Used by an idle priority thread.
1255 */
1256 boolean_t
1257 vm_phys_zero_pages_idle(void)
1258 {
1259 static struct vm_freelist *fl;
1260 static int flind, oind, pind;
1261 vm_page_t m, m_tmp;
1262 int domain;
1263
1264 domain = vm_rr_selectdomain();
1265 fl = vm_phys_free_queues[domain][0][0];
1266 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1267 for (;;) {
1268 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1269 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1270 if ((m_tmp->flags & PG_ZERO) == 0) {
1271 vm_phys_unfree_page(m_tmp);
1272 vm_phys_freecnt_adj(m, -1);
1273 mtx_unlock(&vm_page_queue_free_mtx);
1274 pmap_zero_page_idle(m_tmp);
1275 m_tmp->flags |= PG_ZERO;
1276 mtx_lock(&vm_page_queue_free_mtx);
1277 vm_phys_freecnt_adj(m, 1);
1278 vm_phys_free_pages(m_tmp, 0);
1279 vm_page_zero_count++;
1280 cnt_prezero++;
1281 return (TRUE);
1282 }
1283 }
1284 }
1285 oind++;
1286 if (oind == VM_NFREEORDER) {
1287 oind = 0;
1288 pind++;
1289 if (pind == VM_NFREEPOOL) {
1290 pind = 0;
1291 flind++;
1292 if (flind == vm_nfreelists)
1293 flind = 0;
1294 }
1295 fl = vm_phys_free_queues[domain][flind][pind];
1296 }
1297 }
1298 }
1299
1300 /*
1301 * Allocate a contiguous set of physical pages of the given size
1302 * "npages" from the free lists. All of the physical pages must be at
1303 * or above the given physical address "low" and below the given
1304 * physical address "high". The given value "alignment" determines the
1305 * alignment of the first physical page in the set. If the given value
1306 * "boundary" is non-zero, then the set of physical pages cannot cross
1307 * any physical address boundary that is a multiple of that value. Both
1308 * "alignment" and "boundary" must be a power of two.
1309 */
1310 vm_page_t
1311 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1312 u_long alignment, vm_paddr_t boundary)
1313 {
1314 vm_paddr_t pa_end, pa_start;
1315 vm_page_t m_run;
1316 struct vm_domain_iterator vi;
1317 struct vm_phys_seg *seg;
1318 int domain, segind;
1319
1320 KASSERT(npages > 0, ("npages is 0"));
1321 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1322 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1323 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1324 if (low >= high)
1325 return (NULL);
1326 vm_policy_iterator_init(&vi);
1327 restartdom:
1328 if (vm_domain_iterator_run(&vi, &domain) != 0) {
1329 vm_policy_iterator_finish(&vi);
1330 return (NULL);
1331 }
1332 m_run = NULL;
1333 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1334 seg = &vm_phys_segs[segind];
1335 if (seg->start >= high || seg->domain != domain)
1336 continue;
1337 if (low >= seg->end)
1338 break;
1339 if (low <= seg->start)
1340 pa_start = seg->start;
1341 else
1342 pa_start = low;
1343 if (high < seg->end)
1344 pa_end = high;
1345 else
1346 pa_end = seg->end;
1347 if (pa_end - pa_start < ptoa(npages))
1348 continue;
1349 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1350 alignment, boundary);
1351 if (m_run != NULL)
1352 break;
1353 }
1354 if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1355 goto restartdom;
1356 vm_policy_iterator_finish(&vi);
1357 return (m_run);
1358 }
1359
1360 /*
1361 * Allocate a run of contiguous physical pages from the free list for the
1362 * specified segment.
1363 */
1364 static vm_page_t
1365 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1366 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1367 {
1368 struct vm_freelist *fl;
1369 vm_paddr_t pa, pa_end, size;
1370 vm_page_t m, m_ret;
1371 u_long npages_end;
1372 int oind, order, pind;
1373
1374 KASSERT(npages > 0, ("npages is 0"));
1375 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1376 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1377 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1378 /* Compute the queue that is the best fit for npages. */
1379 for (order = 0; (1 << order) < npages; order++);
1380 /* Search for a run satisfying the specified conditions. */
1381 size = npages << PAGE_SHIFT;
1382 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1383 oind++) {
1384 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1385 fl = (*seg->free_queues)[pind];
1386 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1387 /*
1388 * Is the size of this allocation request
1389 * larger than the largest block size?
1390 */
1391 if (order >= VM_NFREEORDER) {
1392 /*
1393 * Determine if a sufficient number of
1394 * subsequent blocks to satisfy the
1395 * allocation request are free.
1396 */
1397 pa = VM_PAGE_TO_PHYS(m_ret);
1398 pa_end = pa + size;
1399 if (pa_end < pa)
1400 continue;
1401 for (;;) {
1402 pa += 1 << (PAGE_SHIFT +
1403 VM_NFREEORDER - 1);
1404 if (pa >= pa_end ||
1405 pa < seg->start ||
1406 pa >= seg->end)
1407 break;
1408 m = &seg->first_page[atop(pa -
1409 seg->start)];
1410 if (m->order != VM_NFREEORDER -
1411 1)
1412 break;
1413 }
1414 /* If not, go to the next block. */
1415 if (pa < pa_end)
1416 continue;
1417 }
1418
1419 /*
1420 * Determine if the blocks are within the
1421 * given range, satisfy the given alignment,
1422 * and do not cross the given boundary.
1423 */
1424 pa = VM_PAGE_TO_PHYS(m_ret);
1425 pa_end = pa + size;
1426 if (pa >= low && pa_end <= high &&
1427 (pa & (alignment - 1)) == 0 &&
1428 rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1429 goto done;
1430 }
1431 }
1432 }
1433 return (NULL);
1434 done:
1435 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1436 fl = (*seg->free_queues)[m->pool];
1437 vm_freelist_rem(fl, m, m->order);
1438 }
1439 if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1440 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1441 fl = (*seg->free_queues)[m_ret->pool];
1442 vm_phys_split_pages(m_ret, oind, fl, order);
1443 /* Return excess pages to the free lists. */
1444 npages_end = roundup2(npages, 1 << imin(oind, order));
1445 if (npages < npages_end)
1446 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1447 return (m_ret);
1448 }
1449
1450 #ifdef DDB
1451 /*
1452 * Show the number of physical pages in each of the free lists.
1453 */
1454 DB_SHOW_COMMAND(freepages, db_show_freepages)
1455 {
1456 struct vm_freelist *fl;
1457 int flind, oind, pind, dom;
1458
1459 for (dom = 0; dom < vm_ndomains; dom++) {
1460 db_printf("DOMAIN: %d\n", dom);
1461 for (flind = 0; flind < vm_nfreelists; flind++) {
1462 db_printf("FREE LIST %d:\n"
1463 "\n ORDER (SIZE) | NUMBER"
1464 "\n ", flind);
1465 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1466 db_printf(" | POOL %d", pind);
1467 db_printf("\n-- ");
1468 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1469 db_printf("-- -- ");
1470 db_printf("--\n");
1471 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1472 db_printf(" %2.2d (%6.6dK)", oind,
1473 1 << (PAGE_SHIFT - 10 + oind));
1474 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1475 fl = vm_phys_free_queues[dom][flind][pind];
1476 db_printf(" | %6.6d", fl[oind].lcnt);
1477 }
1478 db_printf("\n");
1479 }
1480 db_printf("\n");
1481 }
1482 db_printf("\n");
1483 }
1484 }
1485 #endif
Cache object: edfa0f08b55c3a23142d3089223cbe3e
|