FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Physical memory system implementation
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73 "Too many physsegs.");
74
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79
80 int __read_mostly vm_ndomains = 1;
81 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
82
83 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
84 int __read_mostly vm_phys_nsegs;
85 static struct vm_phys_seg vm_phys_early_segs[8];
86 static int vm_phys_early_nsegs;
87
88 struct vm_phys_fictitious_seg;
89 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
90 struct vm_phys_fictitious_seg *);
91
92 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
93 RB_INITIALIZER(&vm_phys_fictitious_tree);
94
95 struct vm_phys_fictitious_seg {
96 RB_ENTRY(vm_phys_fictitious_seg) node;
97 /* Memory region data */
98 vm_paddr_t start;
99 vm_paddr_t end;
100 vm_page_t first_page;
101 };
102
103 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
104 vm_phys_fictitious_cmp);
105
106 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
107 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
108
109 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
110 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
111 [VM_NFREEORDER_MAX];
112
113 static int __read_mostly vm_nfreelists;
114
115 /*
116 * These "avail lists" are globals used to communicate boot-time physical
117 * memory layout to other parts of the kernel. Each physically contiguous
118 * region of memory is defined by a start address at an even index and an
119 * end address at the following odd index. Each list is terminated by a
120 * pair of zero entries.
121 *
122 * dump_avail tells the dump code what regions to include in a crash dump, and
123 * phys_avail is all of the remaining physical memory that is available for
124 * the vm system.
125 *
126 * Initially dump_avail and phys_avail are identical. Boot time memory
127 * allocations remove extents from phys_avail that may still be included
128 * in dumps.
129 */
130 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
131 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
132
133 /*
134 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
135 */
136 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
137
138 CTASSERT(VM_FREELIST_DEFAULT == 0);
139
140 #ifdef VM_FREELIST_DMA32
141 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
142 #endif
143
144 /*
145 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
146 * the ordering of the free list boundaries.
147 */
148 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
149 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
150 #endif
151
152 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
153 SYSCTL_OID(_vm, OID_AUTO, phys_free,
154 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
155 sysctl_vm_phys_free, "A",
156 "Phys Free Info");
157
158 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
159 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
160 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
161 sysctl_vm_phys_segs, "A",
162 "Phys Seg Info");
163
164 #ifdef NUMA
165 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
166 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
167 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
168 sysctl_vm_phys_locality, "A",
169 "Phys Locality Info");
170 #endif
171
172 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
173 &vm_ndomains, 0, "Number of physical memory domains available.");
174
175 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
176 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
177 vm_paddr_t boundary);
178 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
179 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
180 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
181 int order, int tail);
182
183 /*
184 * Red-black tree helpers for vm fictitious range management.
185 */
186 static inline int
187 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
188 struct vm_phys_fictitious_seg *range)
189 {
190
191 KASSERT(range->start != 0 && range->end != 0,
192 ("Invalid range passed on search for vm_fictitious page"));
193 if (p->start >= range->end)
194 return (1);
195 if (p->start < range->start)
196 return (-1);
197
198 return (0);
199 }
200
201 static int
202 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
203 struct vm_phys_fictitious_seg *p2)
204 {
205
206 /* Check if this is a search for a page */
207 if (p1->end == 0)
208 return (vm_phys_fictitious_in_range(p1, p2));
209
210 KASSERT(p2->end != 0,
211 ("Invalid range passed as second parameter to vm fictitious comparison"));
212
213 /* Searching to add a new range */
214 if (p1->end <= p2->start)
215 return (-1);
216 if (p1->start >= p2->end)
217 return (1);
218
219 panic("Trying to add overlapping vm fictitious ranges:\n"
220 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
221 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
222 }
223
224 int
225 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
226 {
227 #ifdef NUMA
228 domainset_t mask;
229 int i;
230
231 if (vm_ndomains == 1 || mem_affinity == NULL)
232 return (0);
233
234 DOMAINSET_ZERO(&mask);
235 /*
236 * Check for any memory that overlaps low, high.
237 */
238 for (i = 0; mem_affinity[i].end != 0; i++)
239 if (mem_affinity[i].start <= high &&
240 mem_affinity[i].end >= low)
241 DOMAINSET_SET(mem_affinity[i].domain, &mask);
242 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
243 return (prefer);
244 if (DOMAINSET_EMPTY(&mask))
245 panic("vm_phys_domain_match: Impossible constraint");
246 return (DOMAINSET_FFS(&mask) - 1);
247 #else
248 return (0);
249 #endif
250 }
251
252 /*
253 * Outputs the state of the physical memory allocator, specifically,
254 * the amount of physical memory in each free list.
255 */
256 static int
257 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
258 {
259 struct sbuf sbuf;
260 struct vm_freelist *fl;
261 int dom, error, flind, oind, pind;
262
263 error = sysctl_wire_old_buffer(req, 0);
264 if (error != 0)
265 return (error);
266 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
267 for (dom = 0; dom < vm_ndomains; dom++) {
268 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
269 for (flind = 0; flind < vm_nfreelists; flind++) {
270 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
271 "\n ORDER (SIZE) | NUMBER"
272 "\n ", flind);
273 for (pind = 0; pind < VM_NFREEPOOL; pind++)
274 sbuf_printf(&sbuf, " | POOL %d", pind);
275 sbuf_printf(&sbuf, "\n-- ");
276 for (pind = 0; pind < VM_NFREEPOOL; pind++)
277 sbuf_printf(&sbuf, "-- -- ");
278 sbuf_printf(&sbuf, "--\n");
279 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
280 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
281 1 << (PAGE_SHIFT - 10 + oind));
282 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
283 fl = vm_phys_free_queues[dom][flind][pind];
284 sbuf_printf(&sbuf, " | %6d",
285 fl[oind].lcnt);
286 }
287 sbuf_printf(&sbuf, "\n");
288 }
289 }
290 }
291 error = sbuf_finish(&sbuf);
292 sbuf_delete(&sbuf);
293 return (error);
294 }
295
296 /*
297 * Outputs the set of physical memory segments.
298 */
299 static int
300 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
301 {
302 struct sbuf sbuf;
303 struct vm_phys_seg *seg;
304 int error, segind;
305
306 error = sysctl_wire_old_buffer(req, 0);
307 if (error != 0)
308 return (error);
309 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
310 for (segind = 0; segind < vm_phys_nsegs; segind++) {
311 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
312 seg = &vm_phys_segs[segind];
313 sbuf_printf(&sbuf, "start: %#jx\n",
314 (uintmax_t)seg->start);
315 sbuf_printf(&sbuf, "end: %#jx\n",
316 (uintmax_t)seg->end);
317 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
318 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
319 }
320 error = sbuf_finish(&sbuf);
321 sbuf_delete(&sbuf);
322 return (error);
323 }
324
325 /*
326 * Return affinity, or -1 if there's no affinity information.
327 */
328 int
329 vm_phys_mem_affinity(int f, int t)
330 {
331
332 #ifdef NUMA
333 if (mem_locality == NULL)
334 return (-1);
335 if (f >= vm_ndomains || t >= vm_ndomains)
336 return (-1);
337 return (mem_locality[f * vm_ndomains + t]);
338 #else
339 return (-1);
340 #endif
341 }
342
343 #ifdef NUMA
344 /*
345 * Outputs the VM locality table.
346 */
347 static int
348 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
349 {
350 struct sbuf sbuf;
351 int error, i, j;
352
353 error = sysctl_wire_old_buffer(req, 0);
354 if (error != 0)
355 return (error);
356 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
357
358 sbuf_printf(&sbuf, "\n");
359
360 for (i = 0; i < vm_ndomains; i++) {
361 sbuf_printf(&sbuf, "%d: ", i);
362 for (j = 0; j < vm_ndomains; j++) {
363 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
364 }
365 sbuf_printf(&sbuf, "\n");
366 }
367 error = sbuf_finish(&sbuf);
368 sbuf_delete(&sbuf);
369 return (error);
370 }
371 #endif
372
373 static void
374 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
375 {
376
377 m->order = order;
378 if (tail)
379 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
380 else
381 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
382 fl[order].lcnt++;
383 }
384
385 static void
386 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
387 {
388
389 TAILQ_REMOVE(&fl[order].pl, m, listq);
390 fl[order].lcnt--;
391 m->order = VM_NFREEORDER;
392 }
393
394 /*
395 * Create a physical memory segment.
396 */
397 static void
398 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
399 {
400 struct vm_phys_seg *seg;
401
402 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
403 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
404 KASSERT(domain >= 0 && domain < vm_ndomains,
405 ("vm_phys_create_seg: invalid domain provided"));
406 seg = &vm_phys_segs[vm_phys_nsegs++];
407 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
408 *seg = *(seg - 1);
409 seg--;
410 }
411 seg->start = start;
412 seg->end = end;
413 seg->domain = domain;
414 }
415
416 static void
417 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
418 {
419 #ifdef NUMA
420 int i;
421
422 if (mem_affinity == NULL) {
423 _vm_phys_create_seg(start, end, 0);
424 return;
425 }
426
427 for (i = 0;; i++) {
428 if (mem_affinity[i].end == 0)
429 panic("Reached end of affinity info");
430 if (mem_affinity[i].end <= start)
431 continue;
432 if (mem_affinity[i].start > start)
433 panic("No affinity info for start %jx",
434 (uintmax_t)start);
435 if (mem_affinity[i].end >= end) {
436 _vm_phys_create_seg(start, end,
437 mem_affinity[i].domain);
438 break;
439 }
440 _vm_phys_create_seg(start, mem_affinity[i].end,
441 mem_affinity[i].domain);
442 start = mem_affinity[i].end;
443 }
444 #else
445 _vm_phys_create_seg(start, end, 0);
446 #endif
447 }
448
449 /*
450 * Add a physical memory segment.
451 */
452 void
453 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
454 {
455 vm_paddr_t paddr;
456
457 KASSERT((start & PAGE_MASK) == 0,
458 ("vm_phys_define_seg: start is not page aligned"));
459 KASSERT((end & PAGE_MASK) == 0,
460 ("vm_phys_define_seg: end is not page aligned"));
461
462 /*
463 * Split the physical memory segment if it spans two or more free
464 * list boundaries.
465 */
466 paddr = start;
467 #ifdef VM_FREELIST_LOWMEM
468 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
469 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
470 paddr = VM_LOWMEM_BOUNDARY;
471 }
472 #endif
473 #ifdef VM_FREELIST_DMA32
474 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
475 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
476 paddr = VM_DMA32_BOUNDARY;
477 }
478 #endif
479 vm_phys_create_seg(paddr, end);
480 }
481
482 /*
483 * Initialize the physical memory allocator.
484 *
485 * Requires that vm_page_array is initialized!
486 */
487 void
488 vm_phys_init(void)
489 {
490 struct vm_freelist *fl;
491 struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
492 u_long npages;
493 int dom, flind, freelist, oind, pind, segind;
494
495 /*
496 * Compute the number of free lists, and generate the mapping from the
497 * manifest constants VM_FREELIST_* to the free list indices.
498 *
499 * Initially, the entries of vm_freelist_to_flind[] are set to either
500 * 0 or 1 to indicate which free lists should be created.
501 */
502 npages = 0;
503 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
504 seg = &vm_phys_segs[segind];
505 #ifdef VM_FREELIST_LOWMEM
506 if (seg->end <= VM_LOWMEM_BOUNDARY)
507 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
508 else
509 #endif
510 #ifdef VM_FREELIST_DMA32
511 if (
512 #ifdef VM_DMA32_NPAGES_THRESHOLD
513 /*
514 * Create the DMA32 free list only if the amount of
515 * physical memory above physical address 4G exceeds the
516 * given threshold.
517 */
518 npages > VM_DMA32_NPAGES_THRESHOLD &&
519 #endif
520 seg->end <= VM_DMA32_BOUNDARY)
521 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
522 else
523 #endif
524 {
525 npages += atop(seg->end - seg->start);
526 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
527 }
528 }
529 /* Change each entry into a running total of the free lists. */
530 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
531 vm_freelist_to_flind[freelist] +=
532 vm_freelist_to_flind[freelist - 1];
533 }
534 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
535 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
536 /* Change each entry into a free list index. */
537 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
538 vm_freelist_to_flind[freelist]--;
539
540 /*
541 * Initialize the first_page and free_queues fields of each physical
542 * memory segment.
543 */
544 #ifdef VM_PHYSSEG_SPARSE
545 npages = 0;
546 #endif
547 for (segind = 0; segind < vm_phys_nsegs; segind++) {
548 seg = &vm_phys_segs[segind];
549 #ifdef VM_PHYSSEG_SPARSE
550 seg->first_page = &vm_page_array[npages];
551 npages += atop(seg->end - seg->start);
552 #else
553 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
554 #endif
555 #ifdef VM_FREELIST_LOWMEM
556 if (seg->end <= VM_LOWMEM_BOUNDARY) {
557 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
558 KASSERT(flind >= 0,
559 ("vm_phys_init: LOWMEM flind < 0"));
560 } else
561 #endif
562 #ifdef VM_FREELIST_DMA32
563 if (seg->end <= VM_DMA32_BOUNDARY) {
564 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
565 KASSERT(flind >= 0,
566 ("vm_phys_init: DMA32 flind < 0"));
567 } else
568 #endif
569 {
570 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
571 KASSERT(flind >= 0,
572 ("vm_phys_init: DEFAULT flind < 0"));
573 }
574 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
575 }
576
577 /*
578 * Coalesce physical memory segments that are contiguous and share the
579 * same per-domain free queues.
580 */
581 prev_seg = vm_phys_segs;
582 seg = &vm_phys_segs[1];
583 end_seg = &vm_phys_segs[vm_phys_nsegs];
584 while (seg < end_seg) {
585 if (prev_seg->end == seg->start &&
586 prev_seg->free_queues == seg->free_queues) {
587 prev_seg->end = seg->end;
588 KASSERT(prev_seg->domain == seg->domain,
589 ("vm_phys_init: free queues cannot span domains"));
590 vm_phys_nsegs--;
591 end_seg--;
592 for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
593 *tmp_seg = *(tmp_seg + 1);
594 } else {
595 prev_seg = seg;
596 seg++;
597 }
598 }
599
600 /*
601 * Initialize the free queues.
602 */
603 for (dom = 0; dom < vm_ndomains; dom++) {
604 for (flind = 0; flind < vm_nfreelists; flind++) {
605 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
606 fl = vm_phys_free_queues[dom][flind][pind];
607 for (oind = 0; oind < VM_NFREEORDER; oind++)
608 TAILQ_INIT(&fl[oind].pl);
609 }
610 }
611 }
612
613 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
614 }
615
616 /*
617 * Register info about the NUMA topology of the system.
618 *
619 * Invoked by platform-dependent code prior to vm_phys_init().
620 */
621 void
622 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
623 int *locality)
624 {
625 #ifdef NUMA
626 int d, i;
627
628 /*
629 * For now the only override value that we support is 1, which
630 * effectively disables NUMA-awareness in the allocators.
631 */
632 d = 0;
633 TUNABLE_INT_FETCH("vm.numa.disabled", &d);
634 if (d)
635 ndomains = 1;
636
637 if (ndomains > 1) {
638 vm_ndomains = ndomains;
639 mem_affinity = affinity;
640 mem_locality = locality;
641 }
642
643 for (i = 0; i < vm_ndomains; i++)
644 DOMAINSET_SET(i, &all_domains);
645 #else
646 (void)ndomains;
647 (void)affinity;
648 (void)locality;
649 #endif
650 }
651
652 /*
653 * Split a contiguous, power of two-sized set of physical pages.
654 *
655 * When this function is called by a page allocation function, the caller
656 * should request insertion at the head unless the order [order, oind) queues
657 * are known to be empty. The objective being to reduce the likelihood of
658 * long-term fragmentation by promoting contemporaneous allocation and
659 * (hopefully) deallocation.
660 */
661 static __inline void
662 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
663 int tail)
664 {
665 vm_page_t m_buddy;
666
667 while (oind > order) {
668 oind--;
669 m_buddy = &m[1 << oind];
670 KASSERT(m_buddy->order == VM_NFREEORDER,
671 ("vm_phys_split_pages: page %p has unexpected order %d",
672 m_buddy, m_buddy->order));
673 vm_freelist_add(fl, m_buddy, oind, tail);
674 }
675 }
676
677 /*
678 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
679 * and sized set to the specified free list.
680 *
681 * When this function is called by a page allocation function, the caller
682 * should request insertion at the head unless the lower-order queues are
683 * known to be empty. The objective being to reduce the likelihood of long-
684 * term fragmentation by promoting contemporaneous allocation and (hopefully)
685 * deallocation.
686 *
687 * The physical page m's buddy must not be free.
688 */
689 static void
690 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
691 {
692 u_int n;
693 int order;
694
695 KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
696 KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
697 ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
698 ("vm_phys_enq_range: page %p and npages %u are misaligned",
699 m, npages));
700 do {
701 KASSERT(m->order == VM_NFREEORDER,
702 ("vm_phys_enq_range: page %p has unexpected order %d",
703 m, m->order));
704 order = ffs(npages) - 1;
705 KASSERT(order < VM_NFREEORDER,
706 ("vm_phys_enq_range: order %d is out of range", order));
707 vm_freelist_add(fl, m, order, tail);
708 n = 1 << order;
709 m += n;
710 npages -= n;
711 } while (npages > 0);
712 }
713
714 /*
715 * Tries to allocate the specified number of pages from the specified pool
716 * within the specified domain. Returns the actual number of allocated pages
717 * and a pointer to each page through the array ma[].
718 *
719 * The returned pages may not be physically contiguous. However, in contrast
720 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
721 * calling this function once to allocate the desired number of pages will
722 * avoid wasted time in vm_phys_split_pages().
723 *
724 * The free page queues for the specified domain must be locked.
725 */
726 int
727 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
728 {
729 struct vm_freelist *alt, *fl;
730 vm_page_t m;
731 int avail, end, flind, freelist, i, need, oind, pind;
732
733 KASSERT(domain >= 0 && domain < vm_ndomains,
734 ("vm_phys_alloc_npages: domain %d is out of range", domain));
735 KASSERT(pool < VM_NFREEPOOL,
736 ("vm_phys_alloc_npages: pool %d is out of range", pool));
737 KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
738 ("vm_phys_alloc_npages: npages %d is out of range", npages));
739 vm_domain_free_assert_locked(VM_DOMAIN(domain));
740 i = 0;
741 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
742 flind = vm_freelist_to_flind[freelist];
743 if (flind < 0)
744 continue;
745 fl = vm_phys_free_queues[domain][flind][pool];
746 for (oind = 0; oind < VM_NFREEORDER; oind++) {
747 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
748 vm_freelist_rem(fl, m, oind);
749 avail = 1 << oind;
750 need = imin(npages - i, avail);
751 for (end = i + need; i < end;)
752 ma[i++] = m++;
753 if (need < avail) {
754 /*
755 * Return excess pages to fl. Its
756 * order [0, oind) queues are empty.
757 */
758 vm_phys_enq_range(m, avail - need, fl,
759 1);
760 return (npages);
761 } else if (i == npages)
762 return (npages);
763 }
764 }
765 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
766 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
767 alt = vm_phys_free_queues[domain][flind][pind];
768 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
769 NULL) {
770 vm_freelist_rem(alt, m, oind);
771 vm_phys_set_pool(pool, m, oind);
772 avail = 1 << oind;
773 need = imin(npages - i, avail);
774 for (end = i + need; i < end;)
775 ma[i++] = m++;
776 if (need < avail) {
777 /*
778 * Return excess pages to fl.
779 * Its order [0, oind) queues
780 * are empty.
781 */
782 vm_phys_enq_range(m, avail -
783 need, fl, 1);
784 return (npages);
785 } else if (i == npages)
786 return (npages);
787 }
788 }
789 }
790 }
791 return (i);
792 }
793
794 /*
795 * Allocate a contiguous, power of two-sized set of physical pages
796 * from the free lists.
797 *
798 * The free page queues must be locked.
799 */
800 vm_page_t
801 vm_phys_alloc_pages(int domain, int pool, int order)
802 {
803 vm_page_t m;
804 int freelist;
805
806 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
807 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
808 if (m != NULL)
809 return (m);
810 }
811 return (NULL);
812 }
813
814 /*
815 * Allocate a contiguous, power of two-sized set of physical pages from the
816 * specified free list. The free list must be specified using one of the
817 * manifest constants VM_FREELIST_*.
818 *
819 * The free page queues must be locked.
820 */
821 vm_page_t
822 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
823 {
824 struct vm_freelist *alt, *fl;
825 vm_page_t m;
826 int oind, pind, flind;
827
828 KASSERT(domain >= 0 && domain < vm_ndomains,
829 ("vm_phys_alloc_freelist_pages: domain %d is out of range",
830 domain));
831 KASSERT(freelist < VM_NFREELIST,
832 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
833 freelist));
834 KASSERT(pool < VM_NFREEPOOL,
835 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
836 KASSERT(order < VM_NFREEORDER,
837 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
838
839 flind = vm_freelist_to_flind[freelist];
840 /* Check if freelist is present */
841 if (flind < 0)
842 return (NULL);
843
844 vm_domain_free_assert_locked(VM_DOMAIN(domain));
845 fl = &vm_phys_free_queues[domain][flind][pool][0];
846 for (oind = order; oind < VM_NFREEORDER; oind++) {
847 m = TAILQ_FIRST(&fl[oind].pl);
848 if (m != NULL) {
849 vm_freelist_rem(fl, m, oind);
850 /* The order [order, oind) queues are empty. */
851 vm_phys_split_pages(m, oind, fl, order, 1);
852 return (m);
853 }
854 }
855
856 /*
857 * The given pool was empty. Find the largest
858 * contiguous, power-of-two-sized set of pages in any
859 * pool. Transfer these pages to the given pool, and
860 * use them to satisfy the allocation.
861 */
862 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
863 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
864 alt = &vm_phys_free_queues[domain][flind][pind][0];
865 m = TAILQ_FIRST(&alt[oind].pl);
866 if (m != NULL) {
867 vm_freelist_rem(alt, m, oind);
868 vm_phys_set_pool(pool, m, oind);
869 /* The order [order, oind) queues are empty. */
870 vm_phys_split_pages(m, oind, fl, order, 1);
871 return (m);
872 }
873 }
874 }
875 return (NULL);
876 }
877
878 /*
879 * Find the vm_page corresponding to the given physical address.
880 */
881 vm_page_t
882 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
883 {
884 struct vm_phys_seg *seg;
885 int segind;
886
887 for (segind = 0; segind < vm_phys_nsegs; segind++) {
888 seg = &vm_phys_segs[segind];
889 if (pa >= seg->start && pa < seg->end)
890 return (&seg->first_page[atop(pa - seg->start)]);
891 }
892 return (NULL);
893 }
894
895 vm_page_t
896 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
897 {
898 struct vm_phys_fictitious_seg tmp, *seg;
899 vm_page_t m;
900
901 m = NULL;
902 tmp.start = pa;
903 tmp.end = 0;
904
905 rw_rlock(&vm_phys_fictitious_reg_lock);
906 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
907 rw_runlock(&vm_phys_fictitious_reg_lock);
908 if (seg == NULL)
909 return (NULL);
910
911 m = &seg->first_page[atop(pa - seg->start)];
912 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
913
914 return (m);
915 }
916
917 static inline void
918 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
919 long page_count, vm_memattr_t memattr)
920 {
921 long i;
922
923 bzero(range, page_count * sizeof(*range));
924 for (i = 0; i < page_count; i++) {
925 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
926 range[i].oflags &= ~VPO_UNMANAGED;
927 range[i].busy_lock = VPB_UNBUSIED;
928 }
929 }
930
931 int
932 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
933 vm_memattr_t memattr)
934 {
935 struct vm_phys_fictitious_seg *seg;
936 vm_page_t fp;
937 long page_count;
938 #ifdef VM_PHYSSEG_DENSE
939 long pi, pe;
940 long dpage_count;
941 #endif
942
943 KASSERT(start < end,
944 ("Start of segment isn't less than end (start: %jx end: %jx)",
945 (uintmax_t)start, (uintmax_t)end));
946
947 page_count = (end - start) / PAGE_SIZE;
948
949 #ifdef VM_PHYSSEG_DENSE
950 pi = atop(start);
951 pe = atop(end);
952 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
953 fp = &vm_page_array[pi - first_page];
954 if ((pe - first_page) > vm_page_array_size) {
955 /*
956 * We have a segment that starts inside
957 * of vm_page_array, but ends outside of it.
958 *
959 * Use vm_page_array pages for those that are
960 * inside of the vm_page_array range, and
961 * allocate the remaining ones.
962 */
963 dpage_count = vm_page_array_size - (pi - first_page);
964 vm_phys_fictitious_init_range(fp, start, dpage_count,
965 memattr);
966 page_count -= dpage_count;
967 start += ptoa(dpage_count);
968 goto alloc;
969 }
970 /*
971 * We can allocate the full range from vm_page_array,
972 * so there's no need to register the range in the tree.
973 */
974 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
975 return (0);
976 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
977 /*
978 * We have a segment that ends inside of vm_page_array,
979 * but starts outside of it.
980 */
981 fp = &vm_page_array[0];
982 dpage_count = pe - first_page;
983 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
984 memattr);
985 end -= ptoa(dpage_count);
986 page_count -= dpage_count;
987 goto alloc;
988 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
989 /*
990 * Trying to register a fictitious range that expands before
991 * and after vm_page_array.
992 */
993 return (EINVAL);
994 } else {
995 alloc:
996 #endif
997 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
998 M_WAITOK);
999 #ifdef VM_PHYSSEG_DENSE
1000 }
1001 #endif
1002 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1003
1004 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1005 seg->start = start;
1006 seg->end = end;
1007 seg->first_page = fp;
1008
1009 rw_wlock(&vm_phys_fictitious_reg_lock);
1010 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1011 rw_wunlock(&vm_phys_fictitious_reg_lock);
1012
1013 return (0);
1014 }
1015
1016 void
1017 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1018 {
1019 struct vm_phys_fictitious_seg *seg, tmp;
1020 #ifdef VM_PHYSSEG_DENSE
1021 long pi, pe;
1022 #endif
1023
1024 KASSERT(start < end,
1025 ("Start of segment isn't less than end (start: %jx end: %jx)",
1026 (uintmax_t)start, (uintmax_t)end));
1027
1028 #ifdef VM_PHYSSEG_DENSE
1029 pi = atop(start);
1030 pe = atop(end);
1031 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1032 if ((pe - first_page) <= vm_page_array_size) {
1033 /*
1034 * This segment was allocated using vm_page_array
1035 * only, there's nothing to do since those pages
1036 * were never added to the tree.
1037 */
1038 return;
1039 }
1040 /*
1041 * We have a segment that starts inside
1042 * of vm_page_array, but ends outside of it.
1043 *
1044 * Calculate how many pages were added to the
1045 * tree and free them.
1046 */
1047 start = ptoa(first_page + vm_page_array_size);
1048 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1049 /*
1050 * We have a segment that ends inside of vm_page_array,
1051 * but starts outside of it.
1052 */
1053 end = ptoa(first_page);
1054 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1055 /* Since it's not possible to register such a range, panic. */
1056 panic(
1057 "Unregistering not registered fictitious range [%#jx:%#jx]",
1058 (uintmax_t)start, (uintmax_t)end);
1059 }
1060 #endif
1061 tmp.start = start;
1062 tmp.end = 0;
1063
1064 rw_wlock(&vm_phys_fictitious_reg_lock);
1065 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1066 if (seg->start != start || seg->end != end) {
1067 rw_wunlock(&vm_phys_fictitious_reg_lock);
1068 panic(
1069 "Unregistering not registered fictitious range [%#jx:%#jx]",
1070 (uintmax_t)start, (uintmax_t)end);
1071 }
1072 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1073 rw_wunlock(&vm_phys_fictitious_reg_lock);
1074 free(seg->first_page, M_FICT_PAGES);
1075 free(seg, M_FICT_PAGES);
1076 }
1077
1078 /*
1079 * Free a contiguous, power of two-sized set of physical pages.
1080 *
1081 * The free page queues must be locked.
1082 */
1083 void
1084 vm_phys_free_pages(vm_page_t m, int order)
1085 {
1086 struct vm_freelist *fl;
1087 struct vm_phys_seg *seg;
1088 vm_paddr_t pa;
1089 vm_page_t m_buddy;
1090
1091 KASSERT(m->order == VM_NFREEORDER,
1092 ("vm_phys_free_pages: page %p has unexpected order %d",
1093 m, m->order));
1094 KASSERT(m->pool < VM_NFREEPOOL,
1095 ("vm_phys_free_pages: page %p has unexpected pool %d",
1096 m, m->pool));
1097 KASSERT(order < VM_NFREEORDER,
1098 ("vm_phys_free_pages: order %d is out of range", order));
1099 seg = &vm_phys_segs[m->segind];
1100 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1101 if (order < VM_NFREEORDER - 1) {
1102 pa = VM_PAGE_TO_PHYS(m);
1103 do {
1104 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1105 if (pa < seg->start || pa >= seg->end)
1106 break;
1107 m_buddy = &seg->first_page[atop(pa - seg->start)];
1108 if (m_buddy->order != order)
1109 break;
1110 fl = (*seg->free_queues)[m_buddy->pool];
1111 vm_freelist_rem(fl, m_buddy, order);
1112 if (m_buddy->pool != m->pool)
1113 vm_phys_set_pool(m->pool, m_buddy, order);
1114 order++;
1115 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1116 m = &seg->first_page[atop(pa - seg->start)];
1117 } while (order < VM_NFREEORDER - 1);
1118 }
1119 fl = (*seg->free_queues)[m->pool];
1120 vm_freelist_add(fl, m, order, 1);
1121 }
1122
1123 /*
1124 * Return the largest possible order of a set of pages starting at m.
1125 */
1126 static int
1127 max_order(vm_page_t m)
1128 {
1129
1130 /*
1131 * Unsigned "min" is used here so that "order" is assigned
1132 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1133 * or the low-order bits of its physical address are zero
1134 * because the size of a physical address exceeds the size of
1135 * a long.
1136 */
1137 return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1138 VM_NFREEORDER - 1));
1139 }
1140
1141 /*
1142 * Free a contiguous, arbitrarily sized set of physical pages, without
1143 * merging across set boundaries.
1144 *
1145 * The free page queues must be locked.
1146 */
1147 void
1148 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1149 {
1150 struct vm_freelist *fl;
1151 struct vm_phys_seg *seg;
1152 vm_page_t m_end;
1153 int order;
1154
1155 /*
1156 * Avoid unnecessary coalescing by freeing the pages in the largest
1157 * possible power-of-two-sized subsets.
1158 */
1159 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1160 seg = &vm_phys_segs[m->segind];
1161 fl = (*seg->free_queues)[m->pool];
1162 m_end = m + npages;
1163 /* Free blocks of increasing size. */
1164 while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1165 m + (1 << order) <= m_end) {
1166 KASSERT(seg == &vm_phys_segs[m->segind],
1167 ("%s: page range [%p,%p) spans multiple segments",
1168 __func__, m_end - npages, m));
1169 vm_freelist_add(fl, m, order, 1);
1170 m += 1 << order;
1171 }
1172 /* Free blocks of maximum size. */
1173 while (m + (1 << order) <= m_end) {
1174 KASSERT(seg == &vm_phys_segs[m->segind],
1175 ("%s: page range [%p,%p) spans multiple segments",
1176 __func__, m_end - npages, m));
1177 vm_freelist_add(fl, m, order, 1);
1178 m += 1 << order;
1179 }
1180 /* Free blocks of diminishing size. */
1181 while (m < m_end) {
1182 KASSERT(seg == &vm_phys_segs[m->segind],
1183 ("%s: page range [%p,%p) spans multiple segments",
1184 __func__, m_end - npages, m));
1185 order = flsl(m_end - m) - 1;
1186 vm_freelist_add(fl, m, order, 1);
1187 m += 1 << order;
1188 }
1189 }
1190
1191 /*
1192 * Free a contiguous, arbitrarily sized set of physical pages.
1193 *
1194 * The free page queues must be locked.
1195 */
1196 void
1197 vm_phys_free_contig(vm_page_t m, u_long npages)
1198 {
1199 int order_start, order_end;
1200 vm_page_t m_start, m_end;
1201
1202 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1203
1204 m_start = m;
1205 order_start = max_order(m_start);
1206 if (order_start < VM_NFREEORDER - 1)
1207 m_start += 1 << order_start;
1208 m_end = m + npages;
1209 order_end = max_order(m_end);
1210 if (order_end < VM_NFREEORDER - 1)
1211 m_end -= 1 << order_end;
1212 /*
1213 * Avoid unnecessary coalescing by freeing the pages at the start and
1214 * end of the range last.
1215 */
1216 if (m_start < m_end)
1217 vm_phys_enqueue_contig(m_start, m_end - m_start);
1218 if (order_start < VM_NFREEORDER - 1)
1219 vm_phys_free_pages(m, order_start);
1220 if (order_end < VM_NFREEORDER - 1)
1221 vm_phys_free_pages(m_end, order_end);
1222 }
1223
1224 /*
1225 * Scan physical memory between the specified addresses "low" and "high" for a
1226 * run of contiguous physical pages that satisfy the specified conditions, and
1227 * return the lowest page in the run. The specified "alignment" determines
1228 * the alignment of the lowest physical page in the run. If the specified
1229 * "boundary" is non-zero, then the run of physical pages cannot span a
1230 * physical address that is a multiple of "boundary".
1231 *
1232 * "npages" must be greater than zero. Both "alignment" and "boundary" must
1233 * be a power of two.
1234 */
1235 vm_page_t
1236 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1237 u_long alignment, vm_paddr_t boundary, int options)
1238 {
1239 vm_paddr_t pa_end;
1240 vm_page_t m_end, m_run, m_start;
1241 struct vm_phys_seg *seg;
1242 int segind;
1243
1244 KASSERT(npages > 0, ("npages is 0"));
1245 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1246 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1247 if (low >= high)
1248 return (NULL);
1249 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1250 seg = &vm_phys_segs[segind];
1251 if (seg->domain != domain)
1252 continue;
1253 if (seg->start >= high)
1254 break;
1255 if (low >= seg->end)
1256 continue;
1257 if (low <= seg->start)
1258 m_start = seg->first_page;
1259 else
1260 m_start = &seg->first_page[atop(low - seg->start)];
1261 if (high < seg->end)
1262 pa_end = high;
1263 else
1264 pa_end = seg->end;
1265 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1266 continue;
1267 m_end = &seg->first_page[atop(pa_end - seg->start)];
1268 m_run = vm_page_scan_contig(npages, m_start, m_end,
1269 alignment, boundary, options);
1270 if (m_run != NULL)
1271 return (m_run);
1272 }
1273 return (NULL);
1274 }
1275
1276 /*
1277 * Set the pool for a contiguous, power of two-sized set of physical pages.
1278 */
1279 void
1280 vm_phys_set_pool(int pool, vm_page_t m, int order)
1281 {
1282 vm_page_t m_tmp;
1283
1284 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1285 m_tmp->pool = pool;
1286 }
1287
1288 /*
1289 * Search for the given physical page "m" in the free lists. If the search
1290 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
1291 * FALSE, indicating that "m" is not in the free lists.
1292 *
1293 * The free page queues must be locked.
1294 */
1295 boolean_t
1296 vm_phys_unfree_page(vm_page_t m)
1297 {
1298 struct vm_freelist *fl;
1299 struct vm_phys_seg *seg;
1300 vm_paddr_t pa, pa_half;
1301 vm_page_t m_set, m_tmp;
1302 int order;
1303
1304 /*
1305 * First, find the contiguous, power of two-sized set of free
1306 * physical pages containing the given physical page "m" and
1307 * assign it to "m_set".
1308 */
1309 seg = &vm_phys_segs[m->segind];
1310 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1311 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1312 order < VM_NFREEORDER - 1; ) {
1313 order++;
1314 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1315 if (pa >= seg->start)
1316 m_set = &seg->first_page[atop(pa - seg->start)];
1317 else
1318 return (FALSE);
1319 }
1320 if (m_set->order < order)
1321 return (FALSE);
1322 if (m_set->order == VM_NFREEORDER)
1323 return (FALSE);
1324 KASSERT(m_set->order < VM_NFREEORDER,
1325 ("vm_phys_unfree_page: page %p has unexpected order %d",
1326 m_set, m_set->order));
1327
1328 /*
1329 * Next, remove "m_set" from the free lists. Finally, extract
1330 * "m" from "m_set" using an iterative algorithm: While "m_set"
1331 * is larger than a page, shrink "m_set" by returning the half
1332 * of "m_set" that does not contain "m" to the free lists.
1333 */
1334 fl = (*seg->free_queues)[m_set->pool];
1335 order = m_set->order;
1336 vm_freelist_rem(fl, m_set, order);
1337 while (order > 0) {
1338 order--;
1339 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1340 if (m->phys_addr < pa_half)
1341 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1342 else {
1343 m_tmp = m_set;
1344 m_set = &seg->first_page[atop(pa_half - seg->start)];
1345 }
1346 vm_freelist_add(fl, m_tmp, order, 0);
1347 }
1348 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1349 return (TRUE);
1350 }
1351
1352 /*
1353 * Allocate a contiguous set of physical pages of the given size
1354 * "npages" from the free lists. All of the physical pages must be at
1355 * or above the given physical address "low" and below the given
1356 * physical address "high". The given value "alignment" determines the
1357 * alignment of the first physical page in the set. If the given value
1358 * "boundary" is non-zero, then the set of physical pages cannot cross
1359 * any physical address boundary that is a multiple of that value. Both
1360 * "alignment" and "boundary" must be a power of two.
1361 */
1362 vm_page_t
1363 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1364 u_long alignment, vm_paddr_t boundary)
1365 {
1366 vm_paddr_t pa_end, pa_start;
1367 vm_page_t m_run;
1368 struct vm_phys_seg *seg;
1369 int segind;
1370
1371 KASSERT(npages > 0, ("npages is 0"));
1372 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1373 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1374 vm_domain_free_assert_locked(VM_DOMAIN(domain));
1375 if (low >= high)
1376 return (NULL);
1377 m_run = NULL;
1378 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1379 seg = &vm_phys_segs[segind];
1380 if (seg->start >= high || seg->domain != domain)
1381 continue;
1382 if (low >= seg->end)
1383 break;
1384 if (low <= seg->start)
1385 pa_start = seg->start;
1386 else
1387 pa_start = low;
1388 if (high < seg->end)
1389 pa_end = high;
1390 else
1391 pa_end = seg->end;
1392 if (pa_end - pa_start < ptoa(npages))
1393 continue;
1394 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1395 alignment, boundary);
1396 if (m_run != NULL)
1397 break;
1398 }
1399 return (m_run);
1400 }
1401
1402 /*
1403 * Allocate a run of contiguous physical pages from the free list for the
1404 * specified segment.
1405 */
1406 static vm_page_t
1407 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1408 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1409 {
1410 struct vm_freelist *fl;
1411 vm_paddr_t pa, pa_end, size;
1412 vm_page_t m, m_ret;
1413 u_long npages_end;
1414 int oind, order, pind;
1415
1416 KASSERT(npages > 0, ("npages is 0"));
1417 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1418 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1419 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1420 /* Compute the queue that is the best fit for npages. */
1421 order = flsl(npages - 1);
1422 /* Search for a run satisfying the specified conditions. */
1423 size = npages << PAGE_SHIFT;
1424 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1425 oind++) {
1426 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1427 fl = (*seg->free_queues)[pind];
1428 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1429 /*
1430 * Is the size of this allocation request
1431 * larger than the largest block size?
1432 */
1433 if (order >= VM_NFREEORDER) {
1434 /*
1435 * Determine if a sufficient number of
1436 * subsequent blocks to satisfy the
1437 * allocation request are free.
1438 */
1439 pa = VM_PAGE_TO_PHYS(m_ret);
1440 pa_end = pa + size;
1441 if (pa_end < pa)
1442 continue;
1443 for (;;) {
1444 pa += 1 << (PAGE_SHIFT +
1445 VM_NFREEORDER - 1);
1446 if (pa >= pa_end ||
1447 pa < seg->start ||
1448 pa >= seg->end)
1449 break;
1450 m = &seg->first_page[atop(pa -
1451 seg->start)];
1452 if (m->order != VM_NFREEORDER -
1453 1)
1454 break;
1455 }
1456 /* If not, go to the next block. */
1457 if (pa < pa_end)
1458 continue;
1459 }
1460
1461 /*
1462 * Determine if the blocks are within the
1463 * given range, satisfy the given alignment,
1464 * and do not cross the given boundary.
1465 */
1466 pa = VM_PAGE_TO_PHYS(m_ret);
1467 pa_end = pa + size;
1468 if (pa >= low && pa_end <= high &&
1469 (pa & (alignment - 1)) == 0 &&
1470 rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1471 goto done;
1472 }
1473 }
1474 }
1475 return (NULL);
1476 done:
1477 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1478 fl = (*seg->free_queues)[m->pool];
1479 vm_freelist_rem(fl, m, oind);
1480 if (m->pool != VM_FREEPOOL_DEFAULT)
1481 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1482 }
1483 /* Return excess pages to the free lists. */
1484 npages_end = roundup2(npages, 1 << oind);
1485 if (npages < npages_end) {
1486 fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1487 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1488 }
1489 return (m_ret);
1490 }
1491
1492 /*
1493 * Return the index of the first unused slot which may be the terminating
1494 * entry.
1495 */
1496 static int
1497 vm_phys_avail_count(void)
1498 {
1499 int i;
1500
1501 for (i = 0; phys_avail[i + 1]; i += 2)
1502 continue;
1503 if (i > PHYS_AVAIL_ENTRIES)
1504 panic("Improperly terminated phys_avail %d entries", i);
1505
1506 return (i);
1507 }
1508
1509 /*
1510 * Assert that a phys_avail entry is valid.
1511 */
1512 static void
1513 vm_phys_avail_check(int i)
1514 {
1515 if (phys_avail[i] & PAGE_MASK)
1516 panic("Unaligned phys_avail[%d]: %#jx", i,
1517 (intmax_t)phys_avail[i]);
1518 if (phys_avail[i+1] & PAGE_MASK)
1519 panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1520 (intmax_t)phys_avail[i]);
1521 if (phys_avail[i + 1] < phys_avail[i])
1522 panic("phys_avail[%d] start %#jx < end %#jx", i,
1523 (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1524 }
1525
1526 /*
1527 * Return the index of an overlapping phys_avail entry or -1.
1528 */
1529 #ifdef NUMA
1530 static int
1531 vm_phys_avail_find(vm_paddr_t pa)
1532 {
1533 int i;
1534
1535 for (i = 0; phys_avail[i + 1]; i += 2)
1536 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1537 return (i);
1538 return (-1);
1539 }
1540 #endif
1541
1542 /*
1543 * Return the index of the largest entry.
1544 */
1545 int
1546 vm_phys_avail_largest(void)
1547 {
1548 vm_paddr_t sz, largesz;
1549 int largest;
1550 int i;
1551
1552 largest = 0;
1553 largesz = 0;
1554 for (i = 0; phys_avail[i + 1]; i += 2) {
1555 sz = vm_phys_avail_size(i);
1556 if (sz > largesz) {
1557 largesz = sz;
1558 largest = i;
1559 }
1560 }
1561
1562 return (largest);
1563 }
1564
1565 vm_paddr_t
1566 vm_phys_avail_size(int i)
1567 {
1568
1569 return (phys_avail[i + 1] - phys_avail[i]);
1570 }
1571
1572 /*
1573 * Split an entry at the address 'pa'. Return zero on success or errno.
1574 */
1575 static int
1576 vm_phys_avail_split(vm_paddr_t pa, int i)
1577 {
1578 int cnt;
1579
1580 vm_phys_avail_check(i);
1581 if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1582 panic("vm_phys_avail_split: invalid address");
1583 cnt = vm_phys_avail_count();
1584 if (cnt >= PHYS_AVAIL_ENTRIES)
1585 return (ENOSPC);
1586 memmove(&phys_avail[i + 2], &phys_avail[i],
1587 (cnt - i) * sizeof(phys_avail[0]));
1588 phys_avail[i + 1] = pa;
1589 phys_avail[i + 2] = pa;
1590 vm_phys_avail_check(i);
1591 vm_phys_avail_check(i+2);
1592
1593 return (0);
1594 }
1595
1596 void
1597 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1598 {
1599 struct vm_phys_seg *seg;
1600
1601 if (vm_phys_early_nsegs == -1)
1602 panic("%s: called after initialization", __func__);
1603 if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1604 panic("%s: ran out of early segments", __func__);
1605
1606 seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1607 seg->start = start;
1608 seg->end = end;
1609 }
1610
1611 /*
1612 * This routine allocates NUMA node specific memory before the page
1613 * allocator is bootstrapped.
1614 */
1615 vm_paddr_t
1616 vm_phys_early_alloc(int domain, size_t alloc_size)
1617 {
1618 int i, mem_index, biggestone;
1619 vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1620
1621 KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1622 ("%s: invalid domain index %d", __func__, domain));
1623
1624 /*
1625 * Search the mem_affinity array for the biggest address
1626 * range in the desired domain. This is used to constrain
1627 * the phys_avail selection below.
1628 */
1629 biggestsize = 0;
1630 mem_index = 0;
1631 mem_start = 0;
1632 mem_end = -1;
1633 #ifdef NUMA
1634 if (mem_affinity != NULL) {
1635 for (i = 0;; i++) {
1636 size = mem_affinity[i].end - mem_affinity[i].start;
1637 if (size == 0)
1638 break;
1639 if (domain != -1 && mem_affinity[i].domain != domain)
1640 continue;
1641 if (size > biggestsize) {
1642 mem_index = i;
1643 biggestsize = size;
1644 }
1645 }
1646 mem_start = mem_affinity[mem_index].start;
1647 mem_end = mem_affinity[mem_index].end;
1648 }
1649 #endif
1650
1651 /*
1652 * Now find biggest physical segment in within the desired
1653 * numa domain.
1654 */
1655 biggestsize = 0;
1656 biggestone = 0;
1657 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1658 /* skip regions that are out of range */
1659 if (phys_avail[i+1] - alloc_size < mem_start ||
1660 phys_avail[i+1] > mem_end)
1661 continue;
1662 size = vm_phys_avail_size(i);
1663 if (size > biggestsize) {
1664 biggestone = i;
1665 biggestsize = size;
1666 }
1667 }
1668 alloc_size = round_page(alloc_size);
1669
1670 /*
1671 * Grab single pages from the front to reduce fragmentation.
1672 */
1673 if (alloc_size == PAGE_SIZE) {
1674 pa = phys_avail[biggestone];
1675 phys_avail[biggestone] += PAGE_SIZE;
1676 vm_phys_avail_check(biggestone);
1677 return (pa);
1678 }
1679
1680 /*
1681 * Naturally align large allocations.
1682 */
1683 align = phys_avail[biggestone + 1] & (alloc_size - 1);
1684 if (alloc_size + align > biggestsize)
1685 panic("cannot find a large enough size\n");
1686 if (align != 0 &&
1687 vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1688 biggestone) != 0)
1689 /* Wasting memory. */
1690 phys_avail[biggestone + 1] -= align;
1691
1692 phys_avail[biggestone + 1] -= alloc_size;
1693 vm_phys_avail_check(biggestone);
1694 pa = phys_avail[biggestone + 1];
1695 return (pa);
1696 }
1697
1698 void
1699 vm_phys_early_startup(void)
1700 {
1701 struct vm_phys_seg *seg;
1702 int i;
1703
1704 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1705 phys_avail[i] = round_page(phys_avail[i]);
1706 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1707 }
1708
1709 for (i = 0; i < vm_phys_early_nsegs; i++) {
1710 seg = &vm_phys_early_segs[i];
1711 vm_phys_add_seg(seg->start, seg->end);
1712 }
1713 vm_phys_early_nsegs = -1;
1714
1715 #ifdef NUMA
1716 /* Force phys_avail to be split by domain. */
1717 if (mem_affinity != NULL) {
1718 int idx;
1719
1720 for (i = 0; mem_affinity[i].end != 0; i++) {
1721 idx = vm_phys_avail_find(mem_affinity[i].start);
1722 if (idx != -1 &&
1723 phys_avail[idx] != mem_affinity[i].start)
1724 vm_phys_avail_split(mem_affinity[i].start, idx);
1725 idx = vm_phys_avail_find(mem_affinity[i].end);
1726 if (idx != -1 &&
1727 phys_avail[idx] != mem_affinity[i].end)
1728 vm_phys_avail_split(mem_affinity[i].end, idx);
1729 }
1730 }
1731 #endif
1732 }
1733
1734 #ifdef DDB
1735 /*
1736 * Show the number of physical pages in each of the free lists.
1737 */
1738 DB_SHOW_COMMAND(freepages, db_show_freepages)
1739 {
1740 struct vm_freelist *fl;
1741 int flind, oind, pind, dom;
1742
1743 for (dom = 0; dom < vm_ndomains; dom++) {
1744 db_printf("DOMAIN: %d\n", dom);
1745 for (flind = 0; flind < vm_nfreelists; flind++) {
1746 db_printf("FREE LIST %d:\n"
1747 "\n ORDER (SIZE) | NUMBER"
1748 "\n ", flind);
1749 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1750 db_printf(" | POOL %d", pind);
1751 db_printf("\n-- ");
1752 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1753 db_printf("-- -- ");
1754 db_printf("--\n");
1755 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1756 db_printf(" %2.2d (%6.6dK)", oind,
1757 1 << (PAGE_SHIFT - 10 + oind));
1758 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1759 fl = vm_phys_free_queues[dom][flind][pind];
1760 db_printf(" | %6.6d", fl[oind].lcnt);
1761 }
1762 db_printf("\n");
1763 }
1764 db_printf("\n");
1765 }
1766 db_printf("\n");
1767 }
1768 }
1769 #endif
Cache object: fc0815da09d435a0a37c5894954938a1
|