FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c
1 /*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_ddb.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48
49 #include <ddb/ddb.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_phys.h>
57
58 struct vm_freelist {
59 struct pglist pl;
60 int lcnt;
61 };
62
63 struct vm_phys_seg {
64 vm_paddr_t start;
65 vm_paddr_t end;
66 vm_page_t first_page;
67 struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
68 };
69
70 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
71
72 static int vm_phys_nsegs;
73
74 static struct vm_freelist
75 vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
76
77 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
78
79 static int cnt_prezero;
80 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
81 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
82
83 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
84 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
85 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
86
87 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
88 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
89 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
90
91 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
92 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
93 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
94 int order);
95
96 /*
97 * Outputs the state of the physical memory allocator, specifically,
98 * the amount of physical memory in each free list.
99 */
100 static int
101 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
102 {
103 struct sbuf sbuf;
104 struct vm_freelist *fl;
105 char *cbuf;
106 const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
107 int error, flind, oind, pind;
108
109 cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
110 sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
111 for (flind = 0; flind < vm_nfreelists; flind++) {
112 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
113 "\n ORDER (SIZE) | NUMBER"
114 "\n ", flind);
115 for (pind = 0; pind < VM_NFREEPOOL; pind++)
116 sbuf_printf(&sbuf, " | POOL %d", pind);
117 sbuf_printf(&sbuf, "\n-- ");
118 for (pind = 0; pind < VM_NFREEPOOL; pind++)
119 sbuf_printf(&sbuf, "-- -- ");
120 sbuf_printf(&sbuf, "--\n");
121 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
122 sbuf_printf(&sbuf, " %2.2d (%6.6dK)", oind,
123 1 << (PAGE_SHIFT - 10 + oind));
124 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
125 fl = vm_phys_free_queues[flind][pind];
126 sbuf_printf(&sbuf, " | %6.6d", fl[oind].lcnt);
127 }
128 sbuf_printf(&sbuf, "\n");
129 }
130 }
131 sbuf_finish(&sbuf);
132 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
133 sbuf_delete(&sbuf);
134 free(cbuf, M_TEMP);
135 return (error);
136 }
137
138 /*
139 * Outputs the set of physical memory segments.
140 */
141 static int
142 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
143 {
144 struct sbuf sbuf;
145 struct vm_phys_seg *seg;
146 char *cbuf;
147 const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
148 int error, segind;
149
150 cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
151 sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
152 for (segind = 0; segind < vm_phys_nsegs; segind++) {
153 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
154 seg = &vm_phys_segs[segind];
155 sbuf_printf(&sbuf, "start: %#jx\n",
156 (uintmax_t)seg->start);
157 sbuf_printf(&sbuf, "end: %#jx\n",
158 (uintmax_t)seg->end);
159 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
160 }
161 sbuf_finish(&sbuf);
162 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
163 sbuf_delete(&sbuf);
164 free(cbuf, M_TEMP);
165 return (error);
166 }
167
168 /*
169 * Create a physical memory segment.
170 */
171 static void
172 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
173 {
174 struct vm_phys_seg *seg;
175 #ifdef VM_PHYSSEG_SPARSE
176 long pages;
177 int segind;
178
179 pages = 0;
180 for (segind = 0; segind < vm_phys_nsegs; segind++) {
181 seg = &vm_phys_segs[segind];
182 pages += atop(seg->end - seg->start);
183 }
184 #endif
185 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
186 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
187 seg = &vm_phys_segs[vm_phys_nsegs++];
188 seg->start = start;
189 seg->end = end;
190 #ifdef VM_PHYSSEG_SPARSE
191 seg->first_page = &vm_page_array[pages];
192 #else
193 seg->first_page = PHYS_TO_VM_PAGE(start);
194 #endif
195 seg->free_queues = &vm_phys_free_queues[flind];
196 }
197
198 /*
199 * Initialize the physical memory allocator.
200 */
201 void
202 vm_phys_init(void)
203 {
204 struct vm_freelist *fl;
205 int flind, i, oind, pind;
206
207 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
208 #ifdef VM_FREELIST_ISADMA
209 if (phys_avail[i] < 16777216) {
210 if (phys_avail[i + 1] > 16777216) {
211 vm_phys_create_seg(phys_avail[i], 16777216,
212 VM_FREELIST_ISADMA);
213 vm_phys_create_seg(16777216, phys_avail[i + 1],
214 VM_FREELIST_DEFAULT);
215 } else {
216 vm_phys_create_seg(phys_avail[i],
217 phys_avail[i + 1], VM_FREELIST_ISADMA);
218 }
219 if (VM_FREELIST_ISADMA >= vm_nfreelists)
220 vm_nfreelists = VM_FREELIST_ISADMA + 1;
221 } else
222 #endif
223 #ifdef VM_FREELIST_HIGHMEM
224 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
225 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
226 vm_phys_create_seg(phys_avail[i],
227 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
228 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
229 phys_avail[i + 1], VM_FREELIST_HIGHMEM);
230 } else {
231 vm_phys_create_seg(phys_avail[i],
232 phys_avail[i + 1], VM_FREELIST_HIGHMEM);
233 }
234 if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
235 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
236 } else
237 #endif
238 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
239 VM_FREELIST_DEFAULT);
240 }
241 for (flind = 0; flind < vm_nfreelists; flind++) {
242 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
243 fl = vm_phys_free_queues[flind][pind];
244 for (oind = 0; oind < VM_NFREEORDER; oind++)
245 TAILQ_INIT(&fl[oind].pl);
246 }
247 }
248 }
249
250 /*
251 * Split a contiguous, power of two-sized set of physical pages.
252 */
253 static __inline void
254 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
255 {
256 vm_page_t m_buddy;
257
258 while (oind > order) {
259 oind--;
260 m_buddy = &m[1 << oind];
261 KASSERT(m_buddy->order == VM_NFREEORDER,
262 ("vm_phys_split_pages: page %p has unexpected order %d",
263 m_buddy, m_buddy->order));
264 m_buddy->order = oind;
265 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
266 fl[oind].lcnt++;
267 }
268 }
269
270 /*
271 * Initialize a physical page and add it to the free lists.
272 */
273 void
274 vm_phys_add_page(vm_paddr_t pa)
275 {
276 vm_page_t m;
277
278 cnt.v_page_count++;
279 m = vm_phys_paddr_to_vm_page(pa);
280 m->phys_addr = pa;
281 m->segind = vm_phys_paddr_to_segind(pa);
282 m->flags = PG_FREE;
283 KASSERT(m->order == VM_NFREEORDER,
284 ("vm_phys_add_page: page %p has unexpected order %d",
285 m, m->order));
286 m->pool = VM_FREEPOOL_DEFAULT;
287 pmap_page_init(m);
288 mtx_lock(&vm_page_queue_free_mtx);
289 cnt.v_free_count++;
290 vm_phys_free_pages(m, 0);
291 mtx_unlock(&vm_page_queue_free_mtx);
292 }
293
294 /*
295 * Allocate a contiguous, power of two-sized set of physical pages
296 * from the free lists.
297 *
298 * The free page queues must be locked.
299 */
300 vm_page_t
301 vm_phys_alloc_pages(int pool, int order)
302 {
303 struct vm_freelist *fl;
304 struct vm_freelist *alt;
305 int flind, oind, pind;
306 vm_page_t m;
307
308 KASSERT(pool < VM_NFREEPOOL,
309 ("vm_phys_alloc_pages: pool %d is out of range", pool));
310 KASSERT(order < VM_NFREEORDER,
311 ("vm_phys_alloc_pages: order %d is out of range", order));
312 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
313 for (flind = 0; flind < vm_nfreelists; flind++) {
314 fl = vm_phys_free_queues[flind][pool];
315 for (oind = order; oind < VM_NFREEORDER; oind++) {
316 m = TAILQ_FIRST(&fl[oind].pl);
317 if (m != NULL) {
318 TAILQ_REMOVE(&fl[oind].pl, m, pageq);
319 fl[oind].lcnt--;
320 m->order = VM_NFREEORDER;
321 vm_phys_split_pages(m, oind, fl, order);
322 return (m);
323 }
324 }
325
326 /*
327 * The given pool was empty. Find the largest
328 * contiguous, power-of-two-sized set of pages in any
329 * pool. Transfer these pages to the given pool, and
330 * use them to satisfy the allocation.
331 */
332 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
333 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
334 alt = vm_phys_free_queues[flind][pind];
335 m = TAILQ_FIRST(&alt[oind].pl);
336 if (m != NULL) {
337 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
338 alt[oind].lcnt--;
339 m->order = VM_NFREEORDER;
340 vm_phys_set_pool(pool, m, oind);
341 vm_phys_split_pages(m, oind, fl, order);
342 return (m);
343 }
344 }
345 }
346 }
347 return (NULL);
348 }
349
350 /*
351 * Allocate physical memory from phys_avail[].
352 */
353 vm_paddr_t
354 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
355 {
356 vm_paddr_t pa;
357 int i;
358
359 size = round_page(size);
360 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
361 if (phys_avail[i + 1] - phys_avail[i] < size)
362 continue;
363 pa = phys_avail[i];
364 phys_avail[i] += size;
365 return (pa);
366 }
367 panic("vm_phys_bootstrap_alloc");
368 }
369
370 /*
371 * Find the vm_page corresponding to the given physical address.
372 */
373 vm_page_t
374 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
375 {
376 struct vm_phys_seg *seg;
377 int segind;
378
379 for (segind = 0; segind < vm_phys_nsegs; segind++) {
380 seg = &vm_phys_segs[segind];
381 if (pa >= seg->start && pa < seg->end)
382 return (&seg->first_page[atop(pa - seg->start)]);
383 }
384 panic("vm_phys_paddr_to_vm_page: paddr %#jx is not in any segment",
385 (uintmax_t)pa);
386 }
387
388 /*
389 * Find the segment containing the given physical address.
390 */
391 static int
392 vm_phys_paddr_to_segind(vm_paddr_t pa)
393 {
394 struct vm_phys_seg *seg;
395 int segind;
396
397 for (segind = 0; segind < vm_phys_nsegs; segind++) {
398 seg = &vm_phys_segs[segind];
399 if (pa >= seg->start && pa < seg->end)
400 return (segind);
401 }
402 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
403 (uintmax_t)pa);
404 }
405
406 /*
407 * Free a contiguous, power of two-sized set of physical pages.
408 *
409 * The free page queues must be locked.
410 */
411 void
412 vm_phys_free_pages(vm_page_t m, int order)
413 {
414 struct vm_freelist *fl;
415 struct vm_phys_seg *seg;
416 vm_paddr_t pa, pa_buddy;
417 vm_page_t m_buddy;
418
419 KASSERT(m->order == VM_NFREEORDER,
420 ("vm_phys_free_pages: page %p has unexpected order %d",
421 m, m->order));
422 KASSERT(m->pool < VM_NFREEPOOL,
423 ("vm_phys_free_pages: page %p has unexpected pool %d",
424 m, m->pool));
425 KASSERT(order < VM_NFREEORDER,
426 ("vm_phys_free_pages: order %d is out of range", order));
427 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
428 pa = VM_PAGE_TO_PHYS(m);
429 seg = &vm_phys_segs[m->segind];
430 while (order < VM_NFREEORDER - 1) {
431 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
432 if (pa_buddy < seg->start ||
433 pa_buddy >= seg->end)
434 break;
435 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
436 if (m_buddy->order != order)
437 break;
438 fl = (*seg->free_queues)[m_buddy->pool];
439 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
440 fl[m_buddy->order].lcnt--;
441 m_buddy->order = VM_NFREEORDER;
442 if (m_buddy->pool != m->pool)
443 vm_phys_set_pool(m->pool, m_buddy, order);
444 order++;
445 pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
446 m = &seg->first_page[atop(pa - seg->start)];
447 }
448 m->order = order;
449 fl = (*seg->free_queues)[m->pool];
450 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
451 fl[order].lcnt++;
452 }
453
454 /*
455 * Set the pool for a contiguous, power of two-sized set of physical pages.
456 */
457 void
458 vm_phys_set_pool(int pool, vm_page_t m, int order)
459 {
460 vm_page_t m_tmp;
461
462 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
463 m_tmp->pool = pool;
464 }
465
466 /*
467 * Remove the given physical page "m" from the free lists.
468 *
469 * The free page queues must be locked.
470 */
471 void
472 vm_phys_unfree_page(vm_page_t m)
473 {
474 struct vm_freelist *fl;
475 struct vm_phys_seg *seg;
476 vm_paddr_t pa, pa_half;
477 vm_page_t m_set, m_tmp;
478 int order;
479
480 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
481
482 /*
483 * First, find the contiguous, power of two-sized set of free
484 * physical pages containing the given physical page "m" and
485 * assign it to "m_set".
486 */
487 seg = &vm_phys_segs[m->segind];
488 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
489 order < VM_NFREEORDER; ) {
490 order++;
491 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
492 KASSERT(pa >= seg->start && pa < seg->end,
493 ("vm_phys_unfree_page: paddr %#jx is not within segment %p",
494 (uintmax_t)pa, seg));
495 m_set = &seg->first_page[atop(pa - seg->start)];
496 }
497 KASSERT(m_set->order >= order, ("vm_phys_unfree_page: page %p's order"
498 " (%d) is less than expected (%d)", m_set, m_set->order, order));
499 KASSERT(m_set->order < VM_NFREEORDER,
500 ("vm_phys_unfree_page: page %p has unexpected order %d",
501 m_set, m_set->order));
502 KASSERT(order < VM_NFREEORDER,
503 ("vm_phys_unfree_page: order %d is out of range", order));
504
505 /*
506 * Next, remove "m_set" from the free lists. Finally, extract
507 * "m" from "m_set" using an iterative algorithm: While "m_set"
508 * is larger than a page, shrink "m_set" by returning the half
509 * of "m_set" that does not contain "m" to the free lists.
510 */
511 fl = (*seg->free_queues)[m_set->pool];
512 order = m_set->order;
513 TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
514 fl[order].lcnt--;
515 m_set->order = VM_NFREEORDER;
516 while (order > 0) {
517 order--;
518 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
519 if (m->phys_addr < pa_half)
520 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
521 else {
522 m_tmp = m_set;
523 m_set = &seg->first_page[atop(pa_half - seg->start)];
524 }
525 m_tmp->order = order;
526 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
527 fl[order].lcnt++;
528 }
529 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
530 }
531
532 /*
533 * Try to zero one physical page. Used by an idle priority thread.
534 */
535 boolean_t
536 vm_phys_zero_pages_idle(void)
537 {
538 static struct vm_freelist *fl = vm_phys_free_queues[0][0];
539 static int flind, oind, pind;
540 vm_page_t m, m_tmp;
541
542 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
543 for (;;) {
544 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
545 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
546 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
547 vm_phys_unfree_page(m_tmp);
548 cnt.v_free_count--;
549 mtx_unlock(&vm_page_queue_free_mtx);
550 pmap_zero_page_idle(m_tmp);
551 m_tmp->flags |= PG_ZERO;
552 mtx_lock(&vm_page_queue_free_mtx);
553 cnt.v_free_count++;
554 vm_phys_free_pages(m_tmp, 0);
555 vm_page_zero_count++;
556 cnt_prezero++;
557 return (TRUE);
558 }
559 }
560 }
561 oind++;
562 if (oind == VM_NFREEORDER) {
563 oind = 0;
564 pind++;
565 if (pind == VM_NFREEPOOL) {
566 pind = 0;
567 flind++;
568 if (flind == vm_nfreelists)
569 flind = 0;
570 }
571 fl = vm_phys_free_queues[flind][pind];
572 }
573 }
574 }
575
576 /*
577 * Allocate a contiguous set of physical pages of the given size
578 * "npages" from the free lists. All of the physical pages must be at
579 * or above the given physical address "low" and below the given
580 * physical address "high". The given value "alignment" determines the
581 * alignment of the first physical page in the set. If the given value
582 * "boundary" is non-zero, then the set of physical pages cannot cross
583 * any physical address boundary that is a multiple of that value. Both
584 * "alignment" and "boundary" must be a power of two.
585 */
586 vm_page_t
587 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
588 unsigned long alignment, unsigned long boundary)
589 {
590 struct vm_freelist *fl;
591 struct vm_phys_seg *seg;
592 vm_object_t m_object;
593 vm_paddr_t pa, pa_last, size;
594 vm_page_t m, m_ret;
595 int flind, i, oind, order, pind;
596
597 size = npages << PAGE_SHIFT;
598 KASSERT(size != 0,
599 ("vm_phys_alloc_contig: size must not be 0"));
600 KASSERT((alignment & (alignment - 1)) == 0,
601 ("vm_phys_alloc_contig: alignment must be a power of 2"));
602 KASSERT((boundary & (boundary - 1)) == 0,
603 ("vm_phys_alloc_contig: boundary must be a power of 2"));
604 /* Compute the queue that is the best fit for npages. */
605 for (order = 0; (1 << order) < npages; order++);
606 mtx_lock(&vm_page_queue_free_mtx);
607 for (flind = 0; flind < vm_nfreelists; flind++) {
608 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
609 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
610 fl = vm_phys_free_queues[flind][pind];
611 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
612 /*
613 * A free list may contain physical pages
614 * from one or more segments.
615 */
616 seg = &vm_phys_segs[m_ret->segind];
617 if (seg->start > high ||
618 low >= seg->end)
619 continue;
620
621 /*
622 * Is the size of this allocation request
623 * larger than the largest block size?
624 */
625 if (order >= VM_NFREEORDER) {
626 /*
627 * Determine if a sufficient number
628 * of subsequent blocks to satisfy
629 * the allocation request are free.
630 */
631 pa = VM_PAGE_TO_PHYS(m_ret);
632 pa_last = pa + size;
633 for (;;) {
634 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
635 if (pa >= pa_last)
636 break;
637 if (pa < seg->start ||
638 pa >= seg->end)
639 break;
640 m = &seg->first_page[atop(pa - seg->start)];
641 if (m->order != VM_NFREEORDER - 1)
642 break;
643 }
644 /* If not, continue to the next block. */
645 if (pa < pa_last)
646 continue;
647 }
648
649 /*
650 * Determine if the blocks are within the given range,
651 * satisfy the given alignment, and do not cross the
652 * given boundary.
653 */
654 pa = VM_PAGE_TO_PHYS(m_ret);
655 if (pa >= low &&
656 pa + size <= high &&
657 (pa & (alignment - 1)) == 0 &&
658 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
659 goto done;
660 }
661 }
662 }
663 }
664 mtx_unlock(&vm_page_queue_free_mtx);
665 return (NULL);
666 done:
667 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
668 fl = (*seg->free_queues)[m->pool];
669 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
670 fl[m->order].lcnt--;
671 m->order = VM_NFREEORDER;
672 }
673 if (m_ret->pool != VM_FREEPOOL_DEFAULT)
674 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
675 fl = (*seg->free_queues)[m_ret->pool];
676 vm_phys_split_pages(m_ret, oind, fl, order);
677 for (i = 0; i < npages; i++) {
678 m = &m_ret[i];
679 KASSERT(m->queue == PQ_NONE,
680 ("vm_phys_alloc_contig: page %p has unexpected queue %d",
681 m, m->queue));
682 m_object = m->object;
683 if ((m->flags & PG_CACHED) != 0)
684 vm_page_cache_remove(m);
685 else {
686 KASSERT(VM_PAGE_IS_FREE(m),
687 ("vm_phys_alloc_contig: page %p is not free", m));
688 cnt.v_free_count--;
689 }
690 m->valid = VM_PAGE_BITS_ALL;
691 if (m->flags & PG_ZERO)
692 vm_page_zero_count--;
693 /* Don't clear the PG_ZERO flag; we'll need it later. */
694 m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
695 m->oflags = 0;
696 KASSERT(m->dirty == 0,
697 ("vm_phys_alloc_contig: page %p was dirty", m));
698 m->wire_count = 0;
699 m->busy = 0;
700 if (m_object != NULL &&
701 m_object->type == OBJT_VNODE &&
702 m_object->cache == NULL) {
703 mtx_unlock(&vm_page_queue_free_mtx);
704 vdrop(m_object->handle);
705 mtx_lock(&vm_page_queue_free_mtx);
706 }
707 }
708 for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
709 m = &m_ret[i];
710 KASSERT(m->order == VM_NFREEORDER,
711 ("vm_phys_alloc_contig: page %p has unexpected order %d",
712 m, m->order));
713 vm_phys_free_pages(m, 0);
714 }
715 mtx_unlock(&vm_page_queue_free_mtx);
716 return (m_ret);
717 }
718
719 #ifdef DDB
720 /*
721 * Show the number of physical pages in each of the free lists.
722 */
723 DB_SHOW_COMMAND(freepages, db_show_freepages)
724 {
725 struct vm_freelist *fl;
726 int flind, oind, pind;
727
728 for (flind = 0; flind < vm_nfreelists; flind++) {
729 db_printf("FREE LIST %d:\n"
730 "\n ORDER (SIZE) | NUMBER"
731 "\n ", flind);
732 for (pind = 0; pind < VM_NFREEPOOL; pind++)
733 db_printf(" | POOL %d", pind);
734 db_printf("\n-- ");
735 for (pind = 0; pind < VM_NFREEPOOL; pind++)
736 db_printf("-- -- ");
737 db_printf("--\n");
738 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
739 db_printf(" %2.2d (%6.6dK)", oind,
740 1 << (PAGE_SHIFT - 10 + oind));
741 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
742 fl = vm_phys_free_queues[flind][pind];
743 db_printf(" | %6.6d", fl[oind].lcnt);
744 }
745 db_printf("\n");
746 }
747 db_printf("\n");
748 }
749 }
750 #endif
Cache object: c992260b027e969e79c1d0e33edd4270
|