The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_phys.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Rice University
    3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
    4  * All rights reserved.
    5  *
    6  * This software was developed for the FreeBSD Project by Alan L. Cox,
    7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
   22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
   25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
   28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/8.4/sys/vm/vm_phys.c 226897 2011-10-29 06:28:18Z attilio $");
   34 
   35 #include "opt_ddb.h"
   36 #include "opt_vm.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/lock.h>
   41 #include <sys/kernel.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/queue.h>
   45 #include <sys/sbuf.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/vmmeter.h>
   48 #include <sys/vnode.h>
   49 
   50 #include <ddb/ddb.h>
   51 
   52 #include <vm/vm.h>
   53 #include <vm/vm_param.h>
   54 #include <vm/vm_kern.h>
   55 #include <vm/vm_object.h>
   56 #include <vm/vm_page.h>
   57 #include <vm/vm_phys.h>
   58 #include <vm/vm_reserv.h>
   59 
   60 struct vm_freelist {
   61         struct pglist pl;
   62         int lcnt;
   63 };
   64 
   65 struct vm_phys_seg {
   66         vm_paddr_t      start;
   67         vm_paddr_t      end;
   68         vm_page_t       first_page;
   69         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
   70 };
   71 
   72 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
   73 
   74 static int vm_phys_nsegs;
   75 
   76 static struct vm_freelist
   77     vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
   78 
   79 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
   80 
   81 static int cnt_prezero;
   82 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
   83     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
   84 
   85 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
   86 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
   87     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
   88 
   89 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
   90 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
   91     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
   92 
   93 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
   94 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
   95 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
   96     int order);
   97 
   98 /*
   99  * Outputs the state of the physical memory allocator, specifically,
  100  * the amount of physical memory in each free list.
  101  */
  102 static int
  103 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
  104 {
  105         struct sbuf sbuf;
  106         struct vm_freelist *fl;
  107         char *cbuf;
  108         const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
  109         int error, flind, oind, pind;
  110 
  111         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
  112         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
  113         for (flind = 0; flind < vm_nfreelists; flind++) {
  114                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
  115                     "\n  ORDER (SIZE)  |  NUMBER"
  116                     "\n              ", flind);
  117                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
  118                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
  119                 sbuf_printf(&sbuf, "\n--            ");
  120                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
  121                         sbuf_printf(&sbuf, "-- --      ");
  122                 sbuf_printf(&sbuf, "--\n");
  123                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
  124                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
  125                             1 << (PAGE_SHIFT - 10 + oind));
  126                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  127                                 fl = vm_phys_free_queues[flind][pind];
  128                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
  129                         }
  130                         sbuf_printf(&sbuf, "\n");
  131                 }
  132         }
  133         sbuf_finish(&sbuf);
  134         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  135         sbuf_delete(&sbuf);
  136         free(cbuf, M_TEMP);
  137         return (error);
  138 }
  139 
  140 /*
  141  * Outputs the set of physical memory segments.
  142  */
  143 static int
  144 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
  145 {
  146         struct sbuf sbuf;
  147         struct vm_phys_seg *seg;
  148         char *cbuf;
  149         const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
  150         int error, segind;
  151 
  152         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
  153         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
  154         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  155                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
  156                 seg = &vm_phys_segs[segind];
  157                 sbuf_printf(&sbuf, "start:     %#jx\n",
  158                     (uintmax_t)seg->start);
  159                 sbuf_printf(&sbuf, "end:       %#jx\n",
  160                     (uintmax_t)seg->end);
  161                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
  162         }
  163         sbuf_finish(&sbuf);
  164         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  165         sbuf_delete(&sbuf);
  166         free(cbuf, M_TEMP);
  167         return (error);
  168 }
  169 
  170 /*
  171  * Create a physical memory segment.
  172  */
  173 static void
  174 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
  175 {
  176         struct vm_phys_seg *seg;
  177 #ifdef VM_PHYSSEG_SPARSE
  178         long pages;
  179         int segind;
  180 
  181         pages = 0;
  182         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  183                 seg = &vm_phys_segs[segind];
  184                 pages += atop(seg->end - seg->start);
  185         }
  186 #endif
  187         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
  188             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
  189         seg = &vm_phys_segs[vm_phys_nsegs++];
  190         seg->start = start;
  191         seg->end = end;
  192 #ifdef VM_PHYSSEG_SPARSE
  193         seg->first_page = &vm_page_array[pages];
  194 #else
  195         seg->first_page = PHYS_TO_VM_PAGE(start);
  196 #endif
  197         seg->free_queues = &vm_phys_free_queues[flind];
  198 }
  199 
  200 /*
  201  * Initialize the physical memory allocator.
  202  */
  203 void
  204 vm_phys_init(void)
  205 {
  206         struct vm_freelist *fl;
  207         int flind, i, oind, pind;
  208 
  209         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  210 #ifdef  VM_FREELIST_ISADMA
  211                 if (phys_avail[i] < 16777216) {
  212                         if (phys_avail[i + 1] > 16777216) {
  213                                 vm_phys_create_seg(phys_avail[i], 16777216,
  214                                     VM_FREELIST_ISADMA);
  215                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
  216                                     VM_FREELIST_DEFAULT);
  217                         } else {
  218                                 vm_phys_create_seg(phys_avail[i],
  219                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
  220                         }
  221                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
  222                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
  223                 } else
  224 #endif
  225 #ifdef  VM_FREELIST_HIGHMEM
  226                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
  227                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
  228                                 vm_phys_create_seg(phys_avail[i],
  229                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
  230                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
  231                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
  232                         } else {
  233                                 vm_phys_create_seg(phys_avail[i],
  234                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
  235                         }
  236                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
  237                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
  238                 } else
  239 #endif
  240                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
  241                     VM_FREELIST_DEFAULT);
  242         }
  243         for (flind = 0; flind < vm_nfreelists; flind++) {
  244                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  245                         fl = vm_phys_free_queues[flind][pind];
  246                         for (oind = 0; oind < VM_NFREEORDER; oind++)
  247                                 TAILQ_INIT(&fl[oind].pl);
  248                 }
  249         }
  250 }
  251 
  252 /*
  253  * Split a contiguous, power of two-sized set of physical pages.
  254  */
  255 static __inline void
  256 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
  257 {
  258         vm_page_t m_buddy;
  259 
  260         while (oind > order) {
  261                 oind--;
  262                 m_buddy = &m[1 << oind];
  263                 KASSERT(m_buddy->order == VM_NFREEORDER,
  264                     ("vm_phys_split_pages: page %p has unexpected order %d",
  265                     m_buddy, m_buddy->order));
  266                 m_buddy->order = oind;
  267                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
  268                 fl[oind].lcnt++;
  269         }
  270 }
  271 
  272 /*
  273  * Initialize a physical page and add it to the free lists.
  274  */
  275 void
  276 vm_phys_add_page(vm_paddr_t pa)
  277 {
  278         vm_page_t m;
  279 
  280         cnt.v_page_count++;
  281         m = vm_phys_paddr_to_vm_page(pa);
  282         m->phys_addr = pa;
  283         m->segind = vm_phys_paddr_to_segind(pa);
  284         m->flags = PG_FREE;
  285         KASSERT(m->order == VM_NFREEORDER,
  286             ("vm_phys_add_page: page %p has unexpected order %d",
  287             m, m->order));
  288         m->pool = VM_FREEPOOL_DEFAULT;
  289         pmap_page_init(m);
  290         mtx_lock(&vm_page_queue_free_mtx);
  291         cnt.v_free_count++;
  292         vm_phys_free_pages(m, 0);
  293         mtx_unlock(&vm_page_queue_free_mtx);
  294 }
  295 
  296 /*
  297  * Allocate a contiguous, power of two-sized set of physical pages
  298  * from the free lists.
  299  *
  300  * The free page queues must be locked.
  301  */
  302 vm_page_t
  303 vm_phys_alloc_pages(int pool, int order)
  304 {
  305         vm_page_t m;
  306         int flind;
  307 
  308         for (flind = 0; flind < vm_nfreelists; flind++) {
  309                 m = vm_phys_alloc_freelist_pages(flind, pool, order);
  310                 if (m != NULL)
  311                         return (m);
  312         }
  313         return (NULL);
  314 }
  315 
  316 /*
  317  * Find and dequeue a free page on the given free list, with the 
  318  * specified pool and order
  319  */
  320 vm_page_t
  321 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
  322 {       
  323         struct vm_freelist *fl;
  324         struct vm_freelist *alt;
  325         int oind, pind;
  326         vm_page_t m;
  327 
  328         KASSERT(flind < VM_NFREELIST,
  329             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
  330         KASSERT(pool < VM_NFREEPOOL,
  331             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
  332         KASSERT(order < VM_NFREEORDER,
  333             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
  334         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  335         fl = vm_phys_free_queues[flind][pool];
  336         for (oind = order; oind < VM_NFREEORDER; oind++) {
  337                 m = TAILQ_FIRST(&fl[oind].pl);
  338                 if (m != NULL) {
  339                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
  340                         fl[oind].lcnt--;
  341                         m->order = VM_NFREEORDER;
  342                         vm_phys_split_pages(m, oind, fl, order);
  343                         return (m);
  344                 }
  345         }
  346 
  347         /*
  348          * The given pool was empty.  Find the largest
  349          * contiguous, power-of-two-sized set of pages in any
  350          * pool.  Transfer these pages to the given pool, and
  351          * use them to satisfy the allocation.
  352          */
  353         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
  354                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  355                         alt = vm_phys_free_queues[flind][pind];
  356                         m = TAILQ_FIRST(&alt[oind].pl);
  357                         if (m != NULL) {
  358                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
  359                                 alt[oind].lcnt--;
  360                                 m->order = VM_NFREEORDER;
  361                                 vm_phys_set_pool(pool, m, oind);
  362                                 vm_phys_split_pages(m, oind, fl, order);
  363                                 return (m);
  364                         }
  365                 }
  366         }
  367         return (NULL);
  368 }
  369 
  370 /*
  371  * Allocate physical memory from phys_avail[].
  372  */
  373 vm_paddr_t
  374 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
  375 {
  376         vm_paddr_t pa;
  377         int i;
  378 
  379         size = round_page(size);
  380         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  381                 if (phys_avail[i + 1] - phys_avail[i] < size)
  382                         continue;
  383                 pa = phys_avail[i];
  384                 phys_avail[i] += size;
  385                 return (pa);
  386         }
  387         panic("vm_phys_bootstrap_alloc");
  388 }
  389 
  390 /*
  391  * Find the vm_page corresponding to the given physical address.
  392  */
  393 vm_page_t
  394 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
  395 {
  396         struct vm_phys_seg *seg;
  397         int segind;
  398 
  399         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  400                 seg = &vm_phys_segs[segind];
  401                 if (pa >= seg->start && pa < seg->end)
  402                         return (&seg->first_page[atop(pa - seg->start)]);
  403         }
  404         return (NULL);
  405 }
  406 
  407 /*
  408  * Find the segment containing the given physical address.
  409  */
  410 static int
  411 vm_phys_paddr_to_segind(vm_paddr_t pa)
  412 {
  413         struct vm_phys_seg *seg;
  414         int segind;
  415 
  416         for (segind = 0; segind < vm_phys_nsegs; segind++) {
  417                 seg = &vm_phys_segs[segind];
  418                 if (pa >= seg->start && pa < seg->end)
  419                         return (segind);
  420         }
  421         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
  422             (uintmax_t)pa);
  423 }
  424 
  425 /*
  426  * Free a contiguous, power of two-sized set of physical pages.
  427  *
  428  * The free page queues must be locked.
  429  */
  430 void
  431 vm_phys_free_pages(vm_page_t m, int order)
  432 {
  433         struct vm_freelist *fl;
  434         struct vm_phys_seg *seg;
  435         vm_paddr_t pa, pa_buddy;
  436         vm_page_t m_buddy;
  437 
  438         KASSERT(m->order == VM_NFREEORDER,
  439             ("vm_phys_free_pages: page %p has unexpected order %d",
  440             m, m->order));
  441         KASSERT(m->pool < VM_NFREEPOOL,
  442             ("vm_phys_free_pages: page %p has unexpected pool %d",
  443             m, m->pool));
  444         KASSERT(order < VM_NFREEORDER,
  445             ("vm_phys_free_pages: order %d is out of range", order));
  446         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  447         pa = VM_PAGE_TO_PHYS(m);
  448         seg = &vm_phys_segs[m->segind];
  449         while (order < VM_NFREEORDER - 1) {
  450                 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
  451                 if (pa_buddy < seg->start ||
  452                     pa_buddy >= seg->end)
  453                         break;
  454                 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
  455                 if (m_buddy->order != order)
  456                         break;
  457                 fl = (*seg->free_queues)[m_buddy->pool];
  458                 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
  459                 fl[m_buddy->order].lcnt--;
  460                 m_buddy->order = VM_NFREEORDER;
  461                 if (m_buddy->pool != m->pool)
  462                         vm_phys_set_pool(m->pool, m_buddy, order);
  463                 order++;
  464                 pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
  465                 m = &seg->first_page[atop(pa - seg->start)];
  466         }
  467         m->order = order;
  468         fl = (*seg->free_queues)[m->pool];
  469         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
  470         fl[order].lcnt++;
  471 }
  472 
  473 /*
  474  * Set the pool for a contiguous, power of two-sized set of physical pages. 
  475  */
  476 void
  477 vm_phys_set_pool(int pool, vm_page_t m, int order)
  478 {
  479         vm_page_t m_tmp;
  480 
  481         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
  482                 m_tmp->pool = pool;
  483 }
  484 
  485 /*
  486  * Search for the given physical page "m" in the free lists.  If the search
  487  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
  488  * FALSE, indicating that "m" is not in the free lists.
  489  *
  490  * The free page queues must be locked.
  491  */
  492 boolean_t
  493 vm_phys_unfree_page(vm_page_t m)
  494 {
  495         struct vm_freelist *fl;
  496         struct vm_phys_seg *seg;
  497         vm_paddr_t pa, pa_half;
  498         vm_page_t m_set, m_tmp;
  499         int order;
  500 
  501         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  502 
  503         /*
  504          * First, find the contiguous, power of two-sized set of free
  505          * physical pages containing the given physical page "m" and
  506          * assign it to "m_set".
  507          */
  508         seg = &vm_phys_segs[m->segind];
  509         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
  510             order < VM_NFREEORDER - 1; ) {
  511                 order++;
  512                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
  513                 if (pa >= seg->start)
  514                         m_set = &seg->first_page[atop(pa - seg->start)];
  515                 else
  516                         return (FALSE);
  517         }
  518         if (m_set->order < order)
  519                 return (FALSE);
  520         if (m_set->order == VM_NFREEORDER)
  521                 return (FALSE);
  522         KASSERT(m_set->order < VM_NFREEORDER,
  523             ("vm_phys_unfree_page: page %p has unexpected order %d",
  524             m_set, m_set->order));
  525 
  526         /*
  527          * Next, remove "m_set" from the free lists.  Finally, extract
  528          * "m" from "m_set" using an iterative algorithm: While "m_set"
  529          * is larger than a page, shrink "m_set" by returning the half
  530          * of "m_set" that does not contain "m" to the free lists.
  531          */
  532         fl = (*seg->free_queues)[m_set->pool];
  533         order = m_set->order;
  534         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
  535         fl[order].lcnt--;
  536         m_set->order = VM_NFREEORDER;
  537         while (order > 0) {
  538                 order--;
  539                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
  540                 if (m->phys_addr < pa_half)
  541                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
  542                 else {
  543                         m_tmp = m_set;
  544                         m_set = &seg->first_page[atop(pa_half - seg->start)];
  545                 }
  546                 m_tmp->order = order;
  547                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
  548                 fl[order].lcnt++;
  549         }
  550         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
  551         return (TRUE);
  552 }
  553 
  554 /*
  555  * Try to zero one physical page.  Used by an idle priority thread.
  556  */
  557 boolean_t
  558 vm_phys_zero_pages_idle(void)
  559 {
  560         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
  561         static int flind, oind, pind;
  562         vm_page_t m, m_tmp;
  563 
  564         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  565         for (;;) {
  566                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
  567                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
  568                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
  569                                         vm_phys_unfree_page(m_tmp);
  570                                         cnt.v_free_count--;
  571                                         mtx_unlock(&vm_page_queue_free_mtx);
  572                                         pmap_zero_page_idle(m_tmp);
  573                                         m_tmp->flags |= PG_ZERO;
  574                                         mtx_lock(&vm_page_queue_free_mtx);
  575                                         cnt.v_free_count++;
  576                                         vm_phys_free_pages(m_tmp, 0);
  577                                         vm_page_zero_count++;
  578                                         cnt_prezero++;
  579                                         return (TRUE);
  580                                 }
  581                         }
  582                 }
  583                 oind++;
  584                 if (oind == VM_NFREEORDER) {
  585                         oind = 0;
  586                         pind++;
  587                         if (pind == VM_NFREEPOOL) {
  588                                 pind = 0;
  589                                 flind++;
  590                                 if (flind == vm_nfreelists)
  591                                         flind = 0;
  592                         }
  593                         fl = vm_phys_free_queues[flind][pind];
  594                 }
  595         }
  596 }
  597 
  598 /*
  599  * Allocate a contiguous set of physical pages of the given size
  600  * "npages" from the free lists.  All of the physical pages must be at
  601  * or above the given physical address "low" and below the given
  602  * physical address "high".  The given value "alignment" determines the
  603  * alignment of the first physical page in the set.  If the given value
  604  * "boundary" is non-zero, then the set of physical pages cannot cross
  605  * any physical address boundary that is a multiple of that value.  Both
  606  * "alignment" and "boundary" must be a power of two.
  607  */
  608 vm_page_t
  609 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
  610     unsigned long alignment, unsigned long boundary)
  611 {
  612         struct vm_freelist *fl;
  613         struct vm_phys_seg *seg;
  614         struct vnode *vp;
  615         vm_paddr_t pa, pa_last, size;
  616         vm_page_t deferred_vdrop_list, m, m_ret;
  617         int flind, i, oind, order, pind;
  618 
  619         size = npages << PAGE_SHIFT;
  620         KASSERT(size != 0,
  621             ("vm_phys_alloc_contig: size must not be 0"));
  622         KASSERT((alignment & (alignment - 1)) == 0,
  623             ("vm_phys_alloc_contig: alignment must be a power of 2"));
  624         KASSERT((boundary & (boundary - 1)) == 0,
  625             ("vm_phys_alloc_contig: boundary must be a power of 2"));
  626         deferred_vdrop_list = NULL;
  627         /* Compute the queue that is the best fit for npages. */
  628         for (order = 0; (1 << order) < npages; order++);
  629         mtx_lock(&vm_page_queue_free_mtx);
  630 #if VM_NRESERVLEVEL > 0
  631 retry:
  632 #endif
  633         for (flind = 0; flind < vm_nfreelists; flind++) {
  634                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
  635                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  636                                 fl = vm_phys_free_queues[flind][pind];
  637                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
  638                                         /*
  639                                          * A free list may contain physical pages
  640                                          * from one or more segments.
  641                                          */
  642                                         seg = &vm_phys_segs[m_ret->segind];
  643                                         if (seg->start > high ||
  644                                             low >= seg->end)
  645                                                 continue;
  646 
  647                                         /*
  648                                          * Is the size of this allocation request
  649                                          * larger than the largest block size?
  650                                          */
  651                                         if (order >= VM_NFREEORDER) {
  652                                                 /*
  653                                                  * Determine if a sufficient number
  654                                                  * of subsequent blocks to satisfy
  655                                                  * the allocation request are free.
  656                                                  */
  657                                                 pa = VM_PAGE_TO_PHYS(m_ret);
  658                                                 pa_last = pa + size;
  659                                                 for (;;) {
  660                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
  661                                                         if (pa >= pa_last)
  662                                                                 break;
  663                                                         if (pa < seg->start ||
  664                                                             pa >= seg->end)
  665                                                                 break;
  666                                                         m = &seg->first_page[atop(pa - seg->start)];
  667                                                         if (m->order != VM_NFREEORDER - 1)
  668                                                                 break;
  669                                                 }
  670                                                 /* If not, continue to the next block. */
  671                                                 if (pa < pa_last)
  672                                                         continue;
  673                                         }
  674 
  675                                         /*
  676                                          * Determine if the blocks are within the given range,
  677                                          * satisfy the given alignment, and do not cross the
  678                                          * given boundary.
  679                                          */
  680                                         pa = VM_PAGE_TO_PHYS(m_ret);
  681                                         if (pa >= low &&
  682                                             pa + size <= high &&
  683                                             (pa & (alignment - 1)) == 0 &&
  684                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
  685                                                 goto done;
  686                                 }
  687                         }
  688                 }
  689         }
  690 #if VM_NRESERVLEVEL > 0
  691         if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
  692                 goto retry;
  693 #endif
  694         mtx_unlock(&vm_page_queue_free_mtx);
  695         return (NULL);
  696 done:
  697         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
  698                 fl = (*seg->free_queues)[m->pool];
  699                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
  700                 fl[m->order].lcnt--;
  701                 m->order = VM_NFREEORDER;
  702         }
  703         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
  704                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
  705         fl = (*seg->free_queues)[m_ret->pool];
  706         vm_phys_split_pages(m_ret, oind, fl, order);
  707         for (i = 0; i < npages; i++) {
  708                 m = &m_ret[i];
  709                 vp = vm_page_alloc_init(m);
  710                 if (vp != NULL) {
  711                         /*
  712                          * Enqueue the vnode for deferred vdrop().
  713                          *
  714                          * Unmanaged pages don't use "pageq", so it
  715                          * can be safely abused to construct a short-
  716                          * lived queue of vnodes.
  717                          */
  718                         m->pageq.tqe_prev = (void *)vp;
  719                         m->pageq.tqe_next = deferred_vdrop_list;
  720                         deferred_vdrop_list = m;
  721                 }
  722         }
  723         for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
  724                 m = &m_ret[i];
  725                 KASSERT(m->order == VM_NFREEORDER,
  726                     ("vm_phys_alloc_contig: page %p has unexpected order %d",
  727                     m, m->order));
  728                 vm_phys_free_pages(m, 0);
  729         }
  730         mtx_unlock(&vm_page_queue_free_mtx);
  731         while (deferred_vdrop_list != NULL) {
  732                 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
  733                 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
  734         }
  735         return (m_ret);
  736 }
  737 
  738 #ifdef DDB
  739 /*
  740  * Show the number of physical pages in each of the free lists.
  741  */
  742 DB_SHOW_COMMAND(freepages, db_show_freepages)
  743 {
  744         struct vm_freelist *fl;
  745         int flind, oind, pind;
  746 
  747         for (flind = 0; flind < vm_nfreelists; flind++) {
  748                 db_printf("FREE LIST %d:\n"
  749                     "\n  ORDER (SIZE)  |  NUMBER"
  750                     "\n              ", flind);
  751                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
  752                         db_printf("  |  POOL %d", pind);
  753                 db_printf("\n--            ");
  754                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
  755                         db_printf("-- --      ");
  756                 db_printf("--\n");
  757                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
  758                         db_printf("  %2.2d (%6.6dK)", oind,
  759                             1 << (PAGE_SHIFT - 10 + oind));
  760                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
  761                                 fl = vm_phys_free_queues[flind][pind];
  762                                 db_printf("  |  %6.6d", fl[oind].lcnt);
  763                         }
  764                         db_printf("\n");
  765                 }
  766                 db_printf("\n");
  767         }
  768 }
  769 #endif

Cache object: 3c182e9feed8d3a528c15b82edde85dc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.