FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_radix.c
1 /*
2 * Copyright (c) 2013 EMC Corp.
3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * Path-compressed radix trie implementation.
32 * The following code is not generalized into a general purpose library
33 * because there are way too many parameters embedded that should really
34 * be decided by the library consumers. At the same time, consumers
35 * of this code must achieve highest possible performance.
36 *
37 * The implementation takes into account the following rationale:
38 * - Size of the nodes should be as small as possible but still big enough
39 * to avoid a large maximum depth for the trie. This is a balance
40 * between the necessity to not wire too much physical memory for the nodes
41 * and the necessity to avoid too much cache pollution during the trie
42 * operations.
43 * - There is not a huge bias toward the number of lookup operations over
44 * the number of insert and remove operations. This basically implies
45 * that optimizations supposedly helping one operation but hurting the
46 * other might be carefully evaluated.
47 * - On average not many nodes are expected to be fully populated, hence
48 * level compression may just complicate things.
49 */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72 * These widths should allow the pointers to a node's children to fit within
73 * a single cache line. The extra levels from a narrow width should not be
74 * a problem thanks to path compression.
75 */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH 4
78 #else
79 #define VM_RADIX_WIDTH 3
80 #endif
81
82 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT \
85 (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS 0x1
90 #define VM_RADIX_PAD VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev) \
94 ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97 vm_pindex_t rn_owner; /* Owner of record. */
98 uint16_t rn_count; /* Valid children. */
99 uint16_t rn_clev; /* Current level. */
100 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106 * Allocate a radix node.
107 */
108 static __inline struct vm_radix_node *
109 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110 {
111 struct vm_radix_node *rnode;
112
113 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114 if (rnode == NULL)
115 return (NULL);
116 rnode->rn_owner = owner;
117 rnode->rn_count = count;
118 rnode->rn_clev = clevel;
119 return (rnode);
120 }
121
122 /*
123 * Free radix node.
124 */
125 static __inline void
126 vm_radix_node_put(struct vm_radix_node *rnode)
127 {
128
129 uma_zfree(vm_radix_node_zone, rnode);
130 }
131
132 /*
133 * Return the position in the array for a given level.
134 */
135 static __inline int
136 vm_radix_slot(vm_pindex_t index, uint16_t level)
137 {
138
139 return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140 }
141
142 /* Trims the key after the specified level. */
143 static __inline vm_pindex_t
144 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145 {
146 vm_pindex_t ret;
147
148 ret = index;
149 if (level > 0) {
150 ret >>= level * VM_RADIX_WIDTH;
151 ret <<= level * VM_RADIX_WIDTH;
152 }
153 return (ret);
154 }
155
156 /*
157 * Get the root node for a radix tree.
158 */
159 static __inline struct vm_radix_node *
160 vm_radix_getroot(struct vm_radix *rtree)
161 {
162
163 return ((struct vm_radix_node *)rtree->rt_root);
164 }
165
166 /*
167 * Set the root node for a radix tree.
168 */
169 static __inline void
170 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171 {
172
173 rtree->rt_root = (uintptr_t)rnode;
174 }
175
176 /*
177 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178 */
179 static __inline boolean_t
180 vm_radix_isleaf(struct vm_radix_node *rnode)
181 {
182
183 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184 }
185
186 /*
187 * Returns the associated page extracted from rnode.
188 */
189 static __inline vm_page_t
190 vm_radix_topage(struct vm_radix_node *rnode)
191 {
192
193 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194 }
195
196 /*
197 * Adds the page as a child of the provided node.
198 */
199 static __inline void
200 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201 vm_page_t page)
202 {
203 int slot;
204
205 slot = vm_radix_slot(index, clev);
206 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207 }
208
209 /*
210 * Returns the slot where two keys differ.
211 * It cannot accept 2 equal keys.
212 */
213 static __inline uint16_t
214 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215 {
216 uint16_t clev;
217
218 KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219 __func__, (uintmax_t)index1));
220
221 index1 ^= index2;
222 for (clev = VM_RADIX_LIMIT;; clev--)
223 if (vm_radix_slot(index1, clev) != 0)
224 return (clev);
225 }
226
227 /*
228 * Returns TRUE if it can be determined that key does not belong to the
229 * specified rnode. Otherwise, returns FALSE.
230 */
231 static __inline boolean_t
232 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233 {
234
235 if (rnode->rn_clev < VM_RADIX_LIMIT) {
236 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237 return (idx != rnode->rn_owner);
238 }
239 return (FALSE);
240 }
241
242 /*
243 * Internal helper for vm_radix_reclaim_allnodes().
244 * This function is recursive.
245 */
246 static void
247 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248 {
249 int slot;
250
251 KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253 for (slot = 0; rnode->rn_count != 0; slot++) {
254 if (rnode->rn_child[slot] == NULL)
255 continue;
256 if (!vm_radix_isleaf(rnode->rn_child[slot]))
257 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258 rnode->rn_child[slot] = NULL;
259 rnode->rn_count--;
260 }
261 vm_radix_node_put(rnode);
262 }
263
264 #ifdef INVARIANTS
265 /*
266 * Radix node zone destructor.
267 */
268 static void
269 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270 {
271 struct vm_radix_node *rnode;
272 int slot;
273
274 rnode = mem;
275 KASSERT(rnode->rn_count == 0,
276 ("vm_radix_node_put: rnode %p has %d children", rnode,
277 rnode->rn_count));
278 for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279 KASSERT(rnode->rn_child[slot] == NULL,
280 ("vm_radix_node_put: rnode %p has a child", rnode));
281 }
282 #endif
283
284 #ifndef UMA_MD_SMALL_ALLOC
285 /*
286 * Reserve the KVA necessary to satisfy the node allocation.
287 * This is mandatory in architectures not supporting direct
288 * mapping as they will need otherwise to carve into the kernel maps for
289 * every node allocation, resulting into deadlocks for consumers already
290 * working with kernel maps.
291 */
292 static void
293 vm_radix_reserve_kva(void *arg __unused)
294 {
295
296 /*
297 * Calculate the number of reserved nodes, discounting the pages that
298 * are needed to store them.
299 */
300 if (!uma_zone_reserve_kva(vm_radix_node_zone,
301 ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302 sizeof(struct vm_radix_node))))
303 panic("%s: unable to reserve KVA", __func__);
304 }
305 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_SECOND,
306 vm_radix_reserve_kva, NULL);
307 #endif
308
309 /*
310 * Initialize the UMA slab zone.
311 * Until vm_radix_prealloc() is called, the zone will be served by the
312 * UMA boot-time pre-allocated pool of pages.
313 */
314 void
315 vm_radix_init(void)
316 {
317
318 vm_radix_node_zone = uma_zcreate("RADIX NODE",
319 sizeof(struct vm_radix_node), NULL,
320 #ifdef INVARIANTS
321 vm_radix_node_zone_dtor,
322 #else
323 NULL,
324 #endif
325 NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326 }
327
328 /*
329 * Inserts the key-value pair into the trie.
330 * Panics if the key already exists.
331 */
332 int
333 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334 {
335 vm_pindex_t index, newind;
336 void **parentp;
337 struct vm_radix_node *rnode, *tmp;
338 vm_page_t m;
339 int slot;
340 uint16_t clev;
341
342 index = page->pindex;
343
344 restart:
345
346 /*
347 * The owner of record for root is not really important because it
348 * will never be used.
349 */
350 rnode = vm_radix_getroot(rtree);
351 if (rnode == NULL) {
352 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
353 return (0);
354 }
355 parentp = (void **)&rtree->rt_root;
356 for (;;) {
357 if (vm_radix_isleaf(rnode)) {
358 m = vm_radix_topage(rnode);
359 if (m->pindex == index)
360 panic("%s: key %jx is already present",
361 __func__, (uintmax_t)index);
362 clev = vm_radix_keydiff(m->pindex, index);
363
364 /*
365 * During node allocation the trie that is being
366 * walked can be modified because of recursing radix
367 * trie operations.
368 * If this is the case, the recursing functions signal
369 * such situation and the insert operation must
370 * start from scratch again.
371 * The freed radix node will then be in the UMA
372 * caches very likely to avoid the same situation
373 * to happen.
374 */
375 rtree->rt_flags |= RT_INSERT_INPROG;
376 tmp = vm_radix_node_get(vm_radix_trimkey(index,
377 clev + 1), 2, clev);
378 rtree->rt_flags &= ~RT_INSERT_INPROG;
379 if (tmp == NULL) {
380 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
381 return (ENOMEM);
382 }
383 if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
384 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
385 tmp->rn_count = 0;
386 vm_radix_node_put(tmp);
387 goto restart;
388 }
389 *parentp = tmp;
390 vm_radix_addpage(tmp, index, clev, page);
391 vm_radix_addpage(tmp, m->pindex, clev, m);
392 return (0);
393 } else if (vm_radix_keybarr(rnode, index))
394 break;
395 slot = vm_radix_slot(index, rnode->rn_clev);
396 if (rnode->rn_child[slot] == NULL) {
397 rnode->rn_count++;
398 vm_radix_addpage(rnode, index, rnode->rn_clev, page);
399 return (0);
400 }
401 parentp = &rnode->rn_child[slot];
402 rnode = rnode->rn_child[slot];
403 }
404
405 /*
406 * A new node is needed because the right insertion level is reached.
407 * Setup the new intermediate node and add the 2 children: the
408 * new object and the older edge.
409 */
410 newind = rnode->rn_owner;
411 clev = vm_radix_keydiff(newind, index);
412
413 /* See the comments above. */
414 rtree->rt_flags |= RT_INSERT_INPROG;
415 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
416 rtree->rt_flags &= ~RT_INSERT_INPROG;
417 if (tmp == NULL) {
418 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
419 return (ENOMEM);
420 }
421 if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
422 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
423 tmp->rn_count = 0;
424 vm_radix_node_put(tmp);
425 goto restart;
426 }
427 *parentp = tmp;
428 vm_radix_addpage(tmp, index, clev, page);
429 slot = vm_radix_slot(newind, clev);
430 tmp->rn_child[slot] = rnode;
431 return (0);
432 }
433
434 /*
435 * Returns TRUE if the specified radix tree contains a single leaf and FALSE
436 * otherwise.
437 */
438 boolean_t
439 vm_radix_is_singleton(struct vm_radix *rtree)
440 {
441 struct vm_radix_node *rnode;
442
443 rnode = vm_radix_getroot(rtree);
444 if (rnode == NULL)
445 return (FALSE);
446 return (vm_radix_isleaf(rnode));
447 }
448
449 /*
450 * Returns the value stored at the index. If the index is not present,
451 * NULL is returned.
452 */
453 vm_page_t
454 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
455 {
456 struct vm_radix_node *rnode;
457 vm_page_t m;
458 int slot;
459
460 rnode = vm_radix_getroot(rtree);
461 while (rnode != NULL) {
462 if (vm_radix_isleaf(rnode)) {
463 m = vm_radix_topage(rnode);
464 if (m->pindex == index)
465 return (m);
466 else
467 break;
468 } else if (vm_radix_keybarr(rnode, index))
469 break;
470 slot = vm_radix_slot(index, rnode->rn_clev);
471 rnode = rnode->rn_child[slot];
472 }
473 return (NULL);
474 }
475
476 /*
477 * Look up the nearest entry at a position bigger than or equal to index.
478 */
479 vm_page_t
480 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
481 {
482 struct vm_radix_node *stack[VM_RADIX_LIMIT];
483 vm_pindex_t inc;
484 vm_page_t m;
485 struct vm_radix_node *child, *rnode;
486 #ifdef INVARIANTS
487 int loops = 0;
488 #endif
489 int slot, tos;
490
491 rnode = vm_radix_getroot(rtree);
492 if (rnode == NULL)
493 return (NULL);
494 else if (vm_radix_isleaf(rnode)) {
495 m = vm_radix_topage(rnode);
496 if (m->pindex >= index)
497 return (m);
498 else
499 return (NULL);
500 }
501 tos = 0;
502 for (;;) {
503 /*
504 * If the keys differ before the current bisection node,
505 * then the search key might rollback to the earliest
506 * available bisection node or to the smallest key
507 * in the current node (if the owner is bigger than the
508 * search key).
509 */
510 if (vm_radix_keybarr(rnode, index)) {
511 if (index > rnode->rn_owner) {
512 ascend:
513 KASSERT(++loops < 1000,
514 ("vm_radix_lookup_ge: too many loops"));
515
516 /*
517 * Pop nodes from the stack until either the
518 * stack is empty or a node that could have a
519 * matching descendant is found.
520 */
521 do {
522 if (tos == 0)
523 return (NULL);
524 rnode = stack[--tos];
525 } while (vm_radix_slot(index,
526 rnode->rn_clev) == (VM_RADIX_COUNT - 1));
527
528 /*
529 * The following computation cannot overflow
530 * because index's slot at the current level
531 * is less than VM_RADIX_COUNT - 1.
532 */
533 index = vm_radix_trimkey(index,
534 rnode->rn_clev);
535 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
536 } else
537 index = rnode->rn_owner;
538 KASSERT(!vm_radix_keybarr(rnode, index),
539 ("vm_radix_lookup_ge: keybarr failed"));
540 }
541 slot = vm_radix_slot(index, rnode->rn_clev);
542 child = rnode->rn_child[slot];
543 if (vm_radix_isleaf(child)) {
544 m = vm_radix_topage(child);
545 if (m->pindex >= index)
546 return (m);
547 } else if (child != NULL)
548 goto descend;
549
550 /*
551 * Look for an available edge or page within the current
552 * bisection node.
553 */
554 if (slot < (VM_RADIX_COUNT - 1)) {
555 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
556 index = vm_radix_trimkey(index, rnode->rn_clev);
557 do {
558 index += inc;
559 slot++;
560 child = rnode->rn_child[slot];
561 if (vm_radix_isleaf(child)) {
562 m = vm_radix_topage(child);
563 if (m->pindex >= index)
564 return (m);
565 } else if (child != NULL)
566 goto descend;
567 } while (slot < (VM_RADIX_COUNT - 1));
568 }
569 KASSERT(child == NULL || vm_radix_isleaf(child),
570 ("vm_radix_lookup_ge: child is radix node"));
571
572 /*
573 * If a page or edge bigger than the search slot is not found
574 * in the current node, ascend to the next higher-level node.
575 */
576 goto ascend;
577 descend:
578 KASSERT(rnode->rn_clev > 0,
579 ("vm_radix_lookup_ge: pushing leaf's parent"));
580 KASSERT(tos < VM_RADIX_LIMIT,
581 ("vm_radix_lookup_ge: stack overflow"));
582 stack[tos++] = rnode;
583 rnode = child;
584 }
585 }
586
587 /*
588 * Look up the nearest entry at a position less than or equal to index.
589 */
590 vm_page_t
591 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
592 {
593 struct vm_radix_node *stack[VM_RADIX_LIMIT];
594 vm_pindex_t inc;
595 vm_page_t m;
596 struct vm_radix_node *child, *rnode;
597 #ifdef INVARIANTS
598 int loops = 0;
599 #endif
600 int slot, tos;
601
602 rnode = vm_radix_getroot(rtree);
603 if (rnode == NULL)
604 return (NULL);
605 else if (vm_radix_isleaf(rnode)) {
606 m = vm_radix_topage(rnode);
607 if (m->pindex <= index)
608 return (m);
609 else
610 return (NULL);
611 }
612 tos = 0;
613 for (;;) {
614 /*
615 * If the keys differ before the current bisection node,
616 * then the search key might rollback to the earliest
617 * available bisection node or to the largest key
618 * in the current node (if the owner is smaller than the
619 * search key).
620 */
621 if (vm_radix_keybarr(rnode, index)) {
622 if (index > rnode->rn_owner) {
623 index = rnode->rn_owner + VM_RADIX_COUNT *
624 VM_RADIX_UNITLEVEL(rnode->rn_clev);
625 } else {
626 ascend:
627 KASSERT(++loops < 1000,
628 ("vm_radix_lookup_le: too many loops"));
629
630 /*
631 * Pop nodes from the stack until either the
632 * stack is empty or a node that could have a
633 * matching descendant is found.
634 */
635 do {
636 if (tos == 0)
637 return (NULL);
638 rnode = stack[--tos];
639 } while (vm_radix_slot(index,
640 rnode->rn_clev) == 0);
641
642 /*
643 * The following computation cannot overflow
644 * because index's slot at the current level
645 * is greater than 0.
646 */
647 index = vm_radix_trimkey(index,
648 rnode->rn_clev);
649 }
650 index--;
651 KASSERT(!vm_radix_keybarr(rnode, index),
652 ("vm_radix_lookup_le: keybarr failed"));
653 }
654 slot = vm_radix_slot(index, rnode->rn_clev);
655 child = rnode->rn_child[slot];
656 if (vm_radix_isleaf(child)) {
657 m = vm_radix_topage(child);
658 if (m->pindex <= index)
659 return (m);
660 } else if (child != NULL)
661 goto descend;
662
663 /*
664 * Look for an available edge or page within the current
665 * bisection node.
666 */
667 if (slot > 0) {
668 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
669 index |= inc - 1;
670 do {
671 index -= inc;
672 slot--;
673 child = rnode->rn_child[slot];
674 if (vm_radix_isleaf(child)) {
675 m = vm_radix_topage(child);
676 if (m->pindex <= index)
677 return (m);
678 } else if (child != NULL)
679 goto descend;
680 } while (slot > 0);
681 }
682 KASSERT(child == NULL || vm_radix_isleaf(child),
683 ("vm_radix_lookup_le: child is radix node"));
684
685 /*
686 * If a page or edge smaller than the search slot is not found
687 * in the current node, ascend to the next higher-level node.
688 */
689 goto ascend;
690 descend:
691 KASSERT(rnode->rn_clev > 0,
692 ("vm_radix_lookup_le: pushing leaf's parent"));
693 KASSERT(tos < VM_RADIX_LIMIT,
694 ("vm_radix_lookup_le: stack overflow"));
695 stack[tos++] = rnode;
696 rnode = child;
697 }
698 }
699
700 /*
701 * Remove the specified index from the tree.
702 * Panics if the key is not present.
703 */
704 void
705 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
706 {
707 struct vm_radix_node *rnode, *parent;
708 vm_page_t m;
709 int i, slot;
710
711 /*
712 * Detect if a page is going to be removed from a trie which is
713 * already undergoing another trie operation.
714 * Right now this is only possible for vm_radix_remove() recursing
715 * into vm_radix_insert().
716 * If this is the case, the caller must be notified about this
717 * situation. It will also takecare to update the RT_TRIE_MODIFIED
718 * accordingly.
719 * The RT_TRIE_MODIFIED bit is set here because the remove operation
720 * will always succeed.
721 */
722 if ((rtree->rt_flags & RT_INSERT_INPROG) != 0)
723 rtree->rt_flags |= RT_TRIE_MODIFIED;
724
725 rnode = vm_radix_getroot(rtree);
726 if (vm_radix_isleaf(rnode)) {
727 m = vm_radix_topage(rnode);
728 if (m->pindex != index)
729 panic("%s: invalid key found", __func__);
730 vm_radix_setroot(rtree, NULL);
731 return;
732 }
733 parent = NULL;
734 for (;;) {
735 if (rnode == NULL)
736 panic("vm_radix_remove: impossible to locate the key");
737 slot = vm_radix_slot(index, rnode->rn_clev);
738 if (vm_radix_isleaf(rnode->rn_child[slot])) {
739 m = vm_radix_topage(rnode->rn_child[slot]);
740 if (m->pindex != index)
741 panic("%s: invalid key found", __func__);
742 rnode->rn_child[slot] = NULL;
743 rnode->rn_count--;
744 if (rnode->rn_count > 1)
745 break;
746 for (i = 0; i < VM_RADIX_COUNT; i++)
747 if (rnode->rn_child[i] != NULL)
748 break;
749 KASSERT(i != VM_RADIX_COUNT,
750 ("%s: invalid node configuration", __func__));
751 if (parent == NULL)
752 vm_radix_setroot(rtree, rnode->rn_child[i]);
753 else {
754 slot = vm_radix_slot(index, parent->rn_clev);
755 KASSERT(parent->rn_child[slot] == rnode,
756 ("%s: invalid child value", __func__));
757 parent->rn_child[slot] = rnode->rn_child[i];
758 }
759 rnode->rn_count--;
760 rnode->rn_child[i] = NULL;
761 vm_radix_node_put(rnode);
762 break;
763 }
764 parent = rnode;
765 rnode = rnode->rn_child[slot];
766 }
767 }
768
769 /*
770 * Remove and free all the nodes from the radix tree.
771 * This function is recursive but there is a tight control on it as the
772 * maximum depth of the tree is fixed.
773 */
774 void
775 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
776 {
777 struct vm_radix_node *root;
778
779 KASSERT((rtree->rt_flags & RT_INSERT_INPROG) == 0,
780 ("vm_radix_reclaim_allnodes: unexpected trie recursion"));
781
782 root = vm_radix_getroot(rtree);
783 if (root == NULL)
784 return;
785 vm_radix_setroot(rtree, NULL);
786 if (!vm_radix_isleaf(root))
787 vm_radix_reclaim_allnodes_int(root);
788 }
789
790 /*
791 * Replace an existing page in the trie with another one.
792 * Panics if there is not an old page in the trie at the new page's index.
793 */
794 vm_page_t
795 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
796 {
797 struct vm_radix_node *rnode;
798 vm_page_t m;
799 vm_pindex_t index;
800 int slot;
801
802 index = newpage->pindex;
803 rnode = vm_radix_getroot(rtree);
804 if (rnode == NULL)
805 panic("%s: replacing page on an empty trie", __func__);
806 if (vm_radix_isleaf(rnode)) {
807 m = vm_radix_topage(rnode);
808 if (m->pindex != index)
809 panic("%s: original replacing root key not found",
810 __func__);
811 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
812 return (m);
813 }
814 for (;;) {
815 slot = vm_radix_slot(index, rnode->rn_clev);
816 if (vm_radix_isleaf(rnode->rn_child[slot])) {
817 m = vm_radix_topage(rnode->rn_child[slot]);
818 if (m->pindex == index) {
819 rnode->rn_child[slot] =
820 (void *)((uintptr_t)newpage |
821 VM_RADIX_ISLEAF);
822 return (m);
823 } else
824 break;
825 } else if (rnode->rn_child[slot] == NULL ||
826 vm_radix_keybarr(rnode->rn_child[slot], index))
827 break;
828 rnode = rnode->rn_child[slot];
829 }
830 panic("%s: original replacing page not found", __func__);
831 }
832
833 #ifdef DDB
834 /*
835 * Show details about the given radix node.
836 */
837 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
838 {
839 struct vm_radix_node *rnode;
840 int i;
841
842 if (!have_addr)
843 return;
844 rnode = (struct vm_radix_node *)addr;
845 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
846 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
847 rnode->rn_clev);
848 for (i = 0; i < VM_RADIX_COUNT; i++)
849 if (rnode->rn_child[i] != NULL)
850 db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
851 i, (void *)rnode->rn_child[i],
852 vm_radix_isleaf(rnode->rn_child[i]) ?
853 vm_radix_topage(rnode->rn_child[i]) : NULL,
854 rnode->rn_clev);
855 }
856 #endif /* DDB */
Cache object: e6201eb7664615e9a580672bdd29077a
|