FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_radix.c
1 /*
2 * Copyright (c) 2013 EMC Corp.
3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * Path-compressed radix trie implementation.
32 * The following code is not generalized into a general purpose library
33 * because there are way too many parameters embedded that should really
34 * be decided by the library consumers. At the same time, consumers
35 * of this code must achieve highest possible performance.
36 *
37 * The implementation takes into account the following rationale:
38 * - Size of the nodes should be as small as possible but still big enough
39 * to avoid a large maximum depth for the trie. This is a balance
40 * between the necessity to not wire too much physical memory for the nodes
41 * and the necessity to avoid too much cache pollution during the trie
42 * operations.
43 * - There is not a huge bias toward the number of lookup operations over
44 * the number of insert and remove operations. This basically implies
45 * that optimizations supposedly helping one operation but hurting the
46 * other might be carefully evaluated.
47 * - On average not many nodes are expected to be fully populated, hence
48 * level compression may just complicate things.
49 */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72 * These widths should allow the pointers to a node's children to fit within
73 * a single cache line. The extra levels from a narrow width should not be
74 * a problem thanks to path compression.
75 */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH 4
78 #else
79 #define VM_RADIX_WIDTH 3
80 #endif
81
82 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT \
85 (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS 0x1
90 #define VM_RADIX_PAD VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev) \
94 ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97 vm_pindex_t rn_owner; /* Owner of record. */
98 uint16_t rn_count; /* Valid children. */
99 uint16_t rn_clev; /* Current level. */
100 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106 * Allocate a radix node.
107 */
108 static __inline struct vm_radix_node *
109 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110 {
111 struct vm_radix_node *rnode;
112
113 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114 if (rnode == NULL)
115 return (NULL);
116 rnode->rn_owner = owner;
117 rnode->rn_count = count;
118 rnode->rn_clev = clevel;
119 return (rnode);
120 }
121
122 /*
123 * Free radix node.
124 */
125 static __inline void
126 vm_radix_node_put(struct vm_radix_node *rnode)
127 {
128
129 uma_zfree(vm_radix_node_zone, rnode);
130 }
131
132 /*
133 * Return the position in the array for a given level.
134 */
135 static __inline int
136 vm_radix_slot(vm_pindex_t index, uint16_t level)
137 {
138
139 return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140 }
141
142 /* Trims the key after the specified level. */
143 static __inline vm_pindex_t
144 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145 {
146 vm_pindex_t ret;
147
148 ret = index;
149 if (level > 0) {
150 ret >>= level * VM_RADIX_WIDTH;
151 ret <<= level * VM_RADIX_WIDTH;
152 }
153 return (ret);
154 }
155
156 /*
157 * Get the root node for a radix tree.
158 */
159 static __inline struct vm_radix_node *
160 vm_radix_getroot(struct vm_radix *rtree)
161 {
162
163 return ((struct vm_radix_node *)rtree->rt_root);
164 }
165
166 /*
167 * Set the root node for a radix tree.
168 */
169 static __inline void
170 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171 {
172
173 rtree->rt_root = (uintptr_t)rnode;
174 }
175
176 /*
177 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178 */
179 static __inline boolean_t
180 vm_radix_isleaf(struct vm_radix_node *rnode)
181 {
182
183 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184 }
185
186 /*
187 * Returns the associated page extracted from rnode.
188 */
189 static __inline vm_page_t
190 vm_radix_topage(struct vm_radix_node *rnode)
191 {
192
193 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194 }
195
196 /*
197 * Adds the page as a child of the provided node.
198 */
199 static __inline void
200 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201 vm_page_t page)
202 {
203 int slot;
204
205 slot = vm_radix_slot(index, clev);
206 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207 }
208
209 /*
210 * Returns the slot where two keys differ.
211 * It cannot accept 2 equal keys.
212 */
213 static __inline uint16_t
214 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215 {
216 uint16_t clev;
217
218 KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219 __func__, (uintmax_t)index1));
220
221 index1 ^= index2;
222 for (clev = VM_RADIX_LIMIT;; clev--)
223 if (vm_radix_slot(index1, clev) != 0)
224 return (clev);
225 }
226
227 /*
228 * Returns TRUE if it can be determined that key does not belong to the
229 * specified rnode. Otherwise, returns FALSE.
230 */
231 static __inline boolean_t
232 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233 {
234
235 if (rnode->rn_clev < VM_RADIX_LIMIT) {
236 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237 return (idx != rnode->rn_owner);
238 }
239 return (FALSE);
240 }
241
242 /*
243 * Internal helper for vm_radix_reclaim_allnodes().
244 * This function is recursive.
245 */
246 static void
247 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248 {
249 int slot;
250
251 KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253 for (slot = 0; rnode->rn_count != 0; slot++) {
254 if (rnode->rn_child[slot] == NULL)
255 continue;
256 if (!vm_radix_isleaf(rnode->rn_child[slot]))
257 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258 rnode->rn_child[slot] = NULL;
259 rnode->rn_count--;
260 }
261 vm_radix_node_put(rnode);
262 }
263
264 #ifdef INVARIANTS
265 /*
266 * Radix node zone destructor.
267 */
268 static void
269 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270 {
271 struct vm_radix_node *rnode;
272 int slot;
273
274 rnode = mem;
275 KASSERT(rnode->rn_count == 0,
276 ("vm_radix_node_put: rnode %p has %d children", rnode,
277 rnode->rn_count));
278 for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279 KASSERT(rnode->rn_child[slot] == NULL,
280 ("vm_radix_node_put: rnode %p has a child", rnode));
281 }
282 #endif
283
284 #ifndef UMA_MD_SMALL_ALLOC
285 /*
286 * Reserve the KVA necessary to satisfy the node allocation.
287 * This is mandatory in architectures not supporting direct
288 * mapping as they will need otherwise to carve into the kernel maps for
289 * every node allocation, resulting into deadlocks for consumers already
290 * working with kernel maps.
291 */
292 static void
293 vm_radix_reserve_kva(void *arg __unused)
294 {
295
296 /*
297 * Calculate the number of reserved nodes, discounting the pages that
298 * are needed to store them.
299 */
300 if (!uma_zone_reserve_kva(vm_radix_node_zone,
301 ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302 sizeof(struct vm_radix_node))))
303 panic("%s: unable to reserve KVA", __func__);
304 }
305 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
306 vm_radix_reserve_kva, NULL);
307 #endif
308
309 /*
310 * Initialize the UMA slab zone.
311 */
312 void
313 vm_radix_zinit(void)
314 {
315
316 vm_radix_node_zone = uma_zcreate("RADIX NODE",
317 sizeof(struct vm_radix_node), NULL,
318 #ifdef INVARIANTS
319 vm_radix_node_zone_dtor,
320 #else
321 NULL,
322 #endif
323 NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
324 }
325
326 /*
327 * Inserts the key-value pair into the trie.
328 * Panics if the key already exists.
329 */
330 int
331 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
332 {
333 vm_pindex_t index, newind;
334 void **parentp;
335 struct vm_radix_node *rnode, *tmp;
336 vm_page_t m;
337 int slot;
338 uint16_t clev;
339
340 index = page->pindex;
341
342 /*
343 * The owner of record for root is not really important because it
344 * will never be used.
345 */
346 rnode = vm_radix_getroot(rtree);
347 if (rnode == NULL) {
348 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
349 return (0);
350 }
351 parentp = (void **)&rtree->rt_root;
352 for (;;) {
353 if (vm_radix_isleaf(rnode)) {
354 m = vm_radix_topage(rnode);
355 if (m->pindex == index)
356 panic("%s: key %jx is already present",
357 __func__, (uintmax_t)index);
358 clev = vm_radix_keydiff(m->pindex, index);
359 tmp = vm_radix_node_get(vm_radix_trimkey(index,
360 clev + 1), 2, clev);
361 if (tmp == NULL)
362 return (ENOMEM);
363 *parentp = tmp;
364 vm_radix_addpage(tmp, index, clev, page);
365 vm_radix_addpage(tmp, m->pindex, clev, m);
366 return (0);
367 } else if (vm_radix_keybarr(rnode, index))
368 break;
369 slot = vm_radix_slot(index, rnode->rn_clev);
370 if (rnode->rn_child[slot] == NULL) {
371 rnode->rn_count++;
372 vm_radix_addpage(rnode, index, rnode->rn_clev, page);
373 return (0);
374 }
375 parentp = &rnode->rn_child[slot];
376 rnode = rnode->rn_child[slot];
377 }
378
379 /*
380 * A new node is needed because the right insertion level is reached.
381 * Setup the new intermediate node and add the 2 children: the
382 * new object and the older edge.
383 */
384 newind = rnode->rn_owner;
385 clev = vm_radix_keydiff(newind, index);
386 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
387 if (tmp == NULL)
388 return (ENOMEM);
389 *parentp = tmp;
390 vm_radix_addpage(tmp, index, clev, page);
391 slot = vm_radix_slot(newind, clev);
392 tmp->rn_child[slot] = rnode;
393 return (0);
394 }
395
396 /*
397 * Returns TRUE if the specified radix tree contains a single leaf and FALSE
398 * otherwise.
399 */
400 boolean_t
401 vm_radix_is_singleton(struct vm_radix *rtree)
402 {
403 struct vm_radix_node *rnode;
404
405 rnode = vm_radix_getroot(rtree);
406 if (rnode == NULL)
407 return (FALSE);
408 return (vm_radix_isleaf(rnode));
409 }
410
411 /*
412 * Returns the value stored at the index. If the index is not present,
413 * NULL is returned.
414 */
415 vm_page_t
416 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
417 {
418 struct vm_radix_node *rnode;
419 vm_page_t m;
420 int slot;
421
422 rnode = vm_radix_getroot(rtree);
423 while (rnode != NULL) {
424 if (vm_radix_isleaf(rnode)) {
425 m = vm_radix_topage(rnode);
426 if (m->pindex == index)
427 return (m);
428 else
429 break;
430 } else if (vm_radix_keybarr(rnode, index))
431 break;
432 slot = vm_radix_slot(index, rnode->rn_clev);
433 rnode = rnode->rn_child[slot];
434 }
435 return (NULL);
436 }
437
438 /*
439 * Look up the nearest entry at a position bigger than or equal to index.
440 */
441 vm_page_t
442 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
443 {
444 struct vm_radix_node *stack[VM_RADIX_LIMIT];
445 vm_pindex_t inc;
446 vm_page_t m;
447 struct vm_radix_node *child, *rnode;
448 #ifdef INVARIANTS
449 int loops = 0;
450 #endif
451 int slot, tos;
452
453 rnode = vm_radix_getroot(rtree);
454 if (rnode == NULL)
455 return (NULL);
456 else if (vm_radix_isleaf(rnode)) {
457 m = vm_radix_topage(rnode);
458 if (m->pindex >= index)
459 return (m);
460 else
461 return (NULL);
462 }
463 tos = 0;
464 for (;;) {
465 /*
466 * If the keys differ before the current bisection node,
467 * then the search key might rollback to the earliest
468 * available bisection node or to the smallest key
469 * in the current node (if the owner is bigger than the
470 * search key).
471 */
472 if (vm_radix_keybarr(rnode, index)) {
473 if (index > rnode->rn_owner) {
474 ascend:
475 KASSERT(++loops < 1000,
476 ("vm_radix_lookup_ge: too many loops"));
477
478 /*
479 * Pop nodes from the stack until either the
480 * stack is empty or a node that could have a
481 * matching descendant is found.
482 */
483 do {
484 if (tos == 0)
485 return (NULL);
486 rnode = stack[--tos];
487 } while (vm_radix_slot(index,
488 rnode->rn_clev) == (VM_RADIX_COUNT - 1));
489
490 /*
491 * The following computation cannot overflow
492 * because index's slot at the current level
493 * is less than VM_RADIX_COUNT - 1.
494 */
495 index = vm_radix_trimkey(index,
496 rnode->rn_clev);
497 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
498 } else
499 index = rnode->rn_owner;
500 KASSERT(!vm_radix_keybarr(rnode, index),
501 ("vm_radix_lookup_ge: keybarr failed"));
502 }
503 slot = vm_radix_slot(index, rnode->rn_clev);
504 child = rnode->rn_child[slot];
505 if (vm_radix_isleaf(child)) {
506 m = vm_radix_topage(child);
507 if (m->pindex >= index)
508 return (m);
509 } else if (child != NULL)
510 goto descend;
511
512 /*
513 * Look for an available edge or page within the current
514 * bisection node.
515 */
516 if (slot < (VM_RADIX_COUNT - 1)) {
517 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
518 index = vm_radix_trimkey(index, rnode->rn_clev);
519 do {
520 index += inc;
521 slot++;
522 child = rnode->rn_child[slot];
523 if (vm_radix_isleaf(child)) {
524 m = vm_radix_topage(child);
525 if (m->pindex >= index)
526 return (m);
527 } else if (child != NULL)
528 goto descend;
529 } while (slot < (VM_RADIX_COUNT - 1));
530 }
531 KASSERT(child == NULL || vm_radix_isleaf(child),
532 ("vm_radix_lookup_ge: child is radix node"));
533
534 /*
535 * If a page or edge bigger than the search slot is not found
536 * in the current node, ascend to the next higher-level node.
537 */
538 goto ascend;
539 descend:
540 KASSERT(rnode->rn_clev > 0,
541 ("vm_radix_lookup_ge: pushing leaf's parent"));
542 KASSERT(tos < VM_RADIX_LIMIT,
543 ("vm_radix_lookup_ge: stack overflow"));
544 stack[tos++] = rnode;
545 rnode = child;
546 }
547 }
548
549 /*
550 * Look up the nearest entry at a position less than or equal to index.
551 */
552 vm_page_t
553 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
554 {
555 struct vm_radix_node *stack[VM_RADIX_LIMIT];
556 vm_pindex_t inc;
557 vm_page_t m;
558 struct vm_radix_node *child, *rnode;
559 #ifdef INVARIANTS
560 int loops = 0;
561 #endif
562 int slot, tos;
563
564 rnode = vm_radix_getroot(rtree);
565 if (rnode == NULL)
566 return (NULL);
567 else if (vm_radix_isleaf(rnode)) {
568 m = vm_radix_topage(rnode);
569 if (m->pindex <= index)
570 return (m);
571 else
572 return (NULL);
573 }
574 tos = 0;
575 for (;;) {
576 /*
577 * If the keys differ before the current bisection node,
578 * then the search key might rollback to the earliest
579 * available bisection node or to the largest key
580 * in the current node (if the owner is smaller than the
581 * search key).
582 */
583 if (vm_radix_keybarr(rnode, index)) {
584 if (index > rnode->rn_owner) {
585 index = rnode->rn_owner + VM_RADIX_COUNT *
586 VM_RADIX_UNITLEVEL(rnode->rn_clev);
587 } else {
588 ascend:
589 KASSERT(++loops < 1000,
590 ("vm_radix_lookup_le: too many loops"));
591
592 /*
593 * Pop nodes from the stack until either the
594 * stack is empty or a node that could have a
595 * matching descendant is found.
596 */
597 do {
598 if (tos == 0)
599 return (NULL);
600 rnode = stack[--tos];
601 } while (vm_radix_slot(index,
602 rnode->rn_clev) == 0);
603
604 /*
605 * The following computation cannot overflow
606 * because index's slot at the current level
607 * is greater than 0.
608 */
609 index = vm_radix_trimkey(index,
610 rnode->rn_clev);
611 }
612 index--;
613 KASSERT(!vm_radix_keybarr(rnode, index),
614 ("vm_radix_lookup_le: keybarr failed"));
615 }
616 slot = vm_radix_slot(index, rnode->rn_clev);
617 child = rnode->rn_child[slot];
618 if (vm_radix_isleaf(child)) {
619 m = vm_radix_topage(child);
620 if (m->pindex <= index)
621 return (m);
622 } else if (child != NULL)
623 goto descend;
624
625 /*
626 * Look for an available edge or page within the current
627 * bisection node.
628 */
629 if (slot > 0) {
630 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
631 index |= inc - 1;
632 do {
633 index -= inc;
634 slot--;
635 child = rnode->rn_child[slot];
636 if (vm_radix_isleaf(child)) {
637 m = vm_radix_topage(child);
638 if (m->pindex <= index)
639 return (m);
640 } else if (child != NULL)
641 goto descend;
642 } while (slot > 0);
643 }
644 KASSERT(child == NULL || vm_radix_isleaf(child),
645 ("vm_radix_lookup_le: child is radix node"));
646
647 /*
648 * If a page or edge smaller than the search slot is not found
649 * in the current node, ascend to the next higher-level node.
650 */
651 goto ascend;
652 descend:
653 KASSERT(rnode->rn_clev > 0,
654 ("vm_radix_lookup_le: pushing leaf's parent"));
655 KASSERT(tos < VM_RADIX_LIMIT,
656 ("vm_radix_lookup_le: stack overflow"));
657 stack[tos++] = rnode;
658 rnode = child;
659 }
660 }
661
662 /*
663 * Remove the specified index from the trie, and return the value stored at
664 * that index. If the index is not present, return NULL.
665 */
666 vm_page_t
667 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
668 {
669 struct vm_radix_node *rnode, *parent;
670 vm_page_t m;
671 int i, slot;
672
673 rnode = vm_radix_getroot(rtree);
674 if (vm_radix_isleaf(rnode)) {
675 m = vm_radix_topage(rnode);
676 if (m->pindex != index)
677 return (NULL);
678 vm_radix_setroot(rtree, NULL);
679 return (m);
680 }
681 parent = NULL;
682 for (;;) {
683 if (rnode == NULL)
684 return (NULL);
685 slot = vm_radix_slot(index, rnode->rn_clev);
686 if (vm_radix_isleaf(rnode->rn_child[slot])) {
687 m = vm_radix_topage(rnode->rn_child[slot]);
688 if (m->pindex != index)
689 return (NULL);
690 rnode->rn_child[slot] = NULL;
691 rnode->rn_count--;
692 if (rnode->rn_count > 1)
693 return (m);
694 for (i = 0; i < VM_RADIX_COUNT; i++)
695 if (rnode->rn_child[i] != NULL)
696 break;
697 KASSERT(i != VM_RADIX_COUNT,
698 ("%s: invalid node configuration", __func__));
699 if (parent == NULL)
700 vm_radix_setroot(rtree, rnode->rn_child[i]);
701 else {
702 slot = vm_radix_slot(index, parent->rn_clev);
703 KASSERT(parent->rn_child[slot] == rnode,
704 ("%s: invalid child value", __func__));
705 parent->rn_child[slot] = rnode->rn_child[i];
706 }
707 rnode->rn_count--;
708 rnode->rn_child[i] = NULL;
709 vm_radix_node_put(rnode);
710 return (m);
711 }
712 parent = rnode;
713 rnode = rnode->rn_child[slot];
714 }
715 }
716
717 /*
718 * Remove and free all the nodes from the radix tree.
719 * This function is recursive but there is a tight control on it as the
720 * maximum depth of the tree is fixed.
721 */
722 void
723 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
724 {
725 struct vm_radix_node *root;
726
727 root = vm_radix_getroot(rtree);
728 if (root == NULL)
729 return;
730 vm_radix_setroot(rtree, NULL);
731 if (!vm_radix_isleaf(root))
732 vm_radix_reclaim_allnodes_int(root);
733 }
734
735 /*
736 * Replace an existing page in the trie with another one.
737 * Panics if there is not an old page in the trie at the new page's index.
738 */
739 vm_page_t
740 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
741 {
742 struct vm_radix_node *rnode;
743 vm_page_t m;
744 vm_pindex_t index;
745 int slot;
746
747 index = newpage->pindex;
748 rnode = vm_radix_getroot(rtree);
749 if (rnode == NULL)
750 panic("%s: replacing page on an empty trie", __func__);
751 if (vm_radix_isleaf(rnode)) {
752 m = vm_radix_topage(rnode);
753 if (m->pindex != index)
754 panic("%s: original replacing root key not found",
755 __func__);
756 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
757 return (m);
758 }
759 for (;;) {
760 slot = vm_radix_slot(index, rnode->rn_clev);
761 if (vm_radix_isleaf(rnode->rn_child[slot])) {
762 m = vm_radix_topage(rnode->rn_child[slot]);
763 if (m->pindex == index) {
764 rnode->rn_child[slot] =
765 (void *)((uintptr_t)newpage |
766 VM_RADIX_ISLEAF);
767 return (m);
768 } else
769 break;
770 } else if (rnode->rn_child[slot] == NULL ||
771 vm_radix_keybarr(rnode->rn_child[slot], index))
772 break;
773 rnode = rnode->rn_child[slot];
774 }
775 panic("%s: original replacing page not found", __func__);
776 }
777
778 void
779 vm_radix_wait(void)
780 {
781 uma_zwait(vm_radix_node_zone);
782 }
783
784 #ifdef DDB
785 /*
786 * Show details about the given radix node.
787 */
788 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
789 {
790 struct vm_radix_node *rnode;
791 int i;
792
793 if (!have_addr)
794 return;
795 rnode = (struct vm_radix_node *)addr;
796 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
797 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
798 rnode->rn_clev);
799 for (i = 0; i < VM_RADIX_COUNT; i++)
800 if (rnode->rn_child[i] != NULL)
801 db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
802 i, (void *)rnode->rn_child[i],
803 vm_radix_isleaf(rnode->rn_child[i]) ?
804 vm_radix_topage(rnode->rn_child[i]) : NULL,
805 rnode->rn_clev);
806 }
807 #endif /* DDB */
Cache object: 402acd21149bb0828f3071775378f4aa
|