FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_radix.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 EMC Corp.
5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Path-compressed radix trie implementation.
34 * The following code is not generalized into a general purpose library
35 * because there are way too many parameters embedded that should really
36 * be decided by the library consumers. At the same time, consumers
37 * of this code must achieve highest possible performance.
38 *
39 * The implementation takes into account the following rationale:
40 * - Size of the nodes should be as small as possible but still big enough
41 * to avoid a large maximum depth for the trie. This is a balance
42 * between the necessity to not wire too much physical memory for the nodes
43 * and the necessity to avoid too much cache pollution during the trie
44 * operations.
45 * - There is not a huge bias toward the number of lookup operations over
46 * the number of insert and remove operations. This basically implies
47 * that optimizations supposedly helping one operation but hurting the
48 * other might be carefully evaluated.
49 * - On average not many nodes are expected to be fully populated, hence
50 * level compression may just complicate things.
51 */
52
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD: releng/12.0/sys/vm/vm_radix.c 335600 2018-06-24 13:08:05Z mjg $");
55
56 #include "opt_ddb.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/vmmeter.h>
62
63 #include <vm/uma.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_radix.h>
68
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72
73 /*
74 * These widths should allow the pointers to a node's children to fit within
75 * a single cache line. The extra levels from a narrow width should not be
76 * a problem thanks to path compression.
77 */
78 #ifdef __LP64__
79 #define VM_RADIX_WIDTH 4
80 #else
81 #define VM_RADIX_WIDTH 3
82 #endif
83
84 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
85 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
86 #define VM_RADIX_LIMIT \
87 (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
88
89 /* Flag bits stored in node pointers. */
90 #define VM_RADIX_ISLEAF 0x1
91 #define VM_RADIX_FLAGS 0x1
92 #define VM_RADIX_PAD VM_RADIX_FLAGS
93
94 /* Returns one unit associated with specified level. */
95 #define VM_RADIX_UNITLEVEL(lev) \
96 ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
97
98 struct vm_radix_node {
99 vm_pindex_t rn_owner; /* Owner of record. */
100 uint16_t rn_count; /* Valid children. */
101 uint16_t rn_clev; /* Current level. */
102 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
103 };
104
105 static uma_zone_t vm_radix_node_zone;
106
107 /*
108 * Allocate a radix node.
109 */
110 static __inline struct vm_radix_node *
111 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
112 {
113 struct vm_radix_node *rnode;
114
115 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
116 if (rnode == NULL)
117 return (NULL);
118 rnode->rn_owner = owner;
119 rnode->rn_count = count;
120 rnode->rn_clev = clevel;
121 return (rnode);
122 }
123
124 /*
125 * Free radix node.
126 */
127 static __inline void
128 vm_radix_node_put(struct vm_radix_node *rnode)
129 {
130
131 uma_zfree(vm_radix_node_zone, rnode);
132 }
133
134 /*
135 * Return the position in the array for a given level.
136 */
137 static __inline int
138 vm_radix_slot(vm_pindex_t index, uint16_t level)
139 {
140
141 return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
142 }
143
144 /* Trims the key after the specified level. */
145 static __inline vm_pindex_t
146 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
147 {
148 vm_pindex_t ret;
149
150 ret = index;
151 if (level > 0) {
152 ret >>= level * VM_RADIX_WIDTH;
153 ret <<= level * VM_RADIX_WIDTH;
154 }
155 return (ret);
156 }
157
158 /*
159 * Get the root node for a radix tree.
160 */
161 static __inline struct vm_radix_node *
162 vm_radix_getroot(struct vm_radix *rtree)
163 {
164
165 return ((struct vm_radix_node *)rtree->rt_root);
166 }
167
168 /*
169 * Set the root node for a radix tree.
170 */
171 static __inline void
172 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
173 {
174
175 rtree->rt_root = (uintptr_t)rnode;
176 }
177
178 /*
179 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
180 */
181 static __inline boolean_t
182 vm_radix_isleaf(struct vm_radix_node *rnode)
183 {
184
185 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
186 }
187
188 /*
189 * Returns the associated page extracted from rnode.
190 */
191 static __inline vm_page_t
192 vm_radix_topage(struct vm_radix_node *rnode)
193 {
194
195 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
196 }
197
198 /*
199 * Adds the page as a child of the provided node.
200 */
201 static __inline void
202 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
203 vm_page_t page)
204 {
205 int slot;
206
207 slot = vm_radix_slot(index, clev);
208 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
209 }
210
211 /*
212 * Returns the slot where two keys differ.
213 * It cannot accept 2 equal keys.
214 */
215 static __inline uint16_t
216 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
217 {
218 uint16_t clev;
219
220 KASSERT(index1 != index2, ("%s: passing the same key value %jx",
221 __func__, (uintmax_t)index1));
222
223 index1 ^= index2;
224 for (clev = VM_RADIX_LIMIT;; clev--)
225 if (vm_radix_slot(index1, clev) != 0)
226 return (clev);
227 }
228
229 /*
230 * Returns TRUE if it can be determined that key does not belong to the
231 * specified rnode. Otherwise, returns FALSE.
232 */
233 static __inline boolean_t
234 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
235 {
236
237 if (rnode->rn_clev < VM_RADIX_LIMIT) {
238 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
239 return (idx != rnode->rn_owner);
240 }
241 return (FALSE);
242 }
243
244 /*
245 * Internal helper for vm_radix_reclaim_allnodes().
246 * This function is recursive.
247 */
248 static void
249 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
250 {
251 int slot;
252
253 KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
254 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
255 for (slot = 0; rnode->rn_count != 0; slot++) {
256 if (rnode->rn_child[slot] == NULL)
257 continue;
258 if (!vm_radix_isleaf(rnode->rn_child[slot]))
259 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
260 rnode->rn_child[slot] = NULL;
261 rnode->rn_count--;
262 }
263 vm_radix_node_put(rnode);
264 }
265
266 #ifdef INVARIANTS
267 /*
268 * Radix node zone destructor.
269 */
270 static void
271 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
272 {
273 struct vm_radix_node *rnode;
274 int slot;
275
276 rnode = mem;
277 KASSERT(rnode->rn_count == 0,
278 ("vm_radix_node_put: rnode %p has %d children", rnode,
279 rnode->rn_count));
280 for (slot = 0; slot < VM_RADIX_COUNT; slot++)
281 KASSERT(rnode->rn_child[slot] == NULL,
282 ("vm_radix_node_put: rnode %p has a child", rnode));
283 }
284 #endif
285
286 static int
287 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
288 {
289 struct vm_radix_node *rnode;
290
291 rnode = mem;
292 bzero(rnode, sizeof(*rnode));
293 return (0);
294 }
295
296 #ifndef UMA_MD_SMALL_ALLOC
297 void vm_radix_reserve_kva(void);
298 /*
299 * Reserve the KVA necessary to satisfy the node allocation.
300 * This is mandatory in architectures not supporting direct
301 * mapping as they will need otherwise to carve into the kernel maps for
302 * every node allocation, resulting into deadlocks for consumers already
303 * working with kernel maps.
304 */
305 void
306 vm_radix_reserve_kva(void)
307 {
308
309 /*
310 * Calculate the number of reserved nodes, discounting the pages that
311 * are needed to store them.
312 */
313 if (!uma_zone_reserve_kva(vm_radix_node_zone,
314 ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
315 sizeof(struct vm_radix_node))))
316 panic("%s: unable to reserve KVA", __func__);
317 }
318 #endif
319
320 /*
321 * Initialize the UMA slab zone.
322 */
323 void
324 vm_radix_zinit(void)
325 {
326
327 vm_radix_node_zone = uma_zcreate("RADIX NODE",
328 sizeof(struct vm_radix_node), NULL,
329 #ifdef INVARIANTS
330 vm_radix_node_zone_dtor,
331 #else
332 NULL,
333 #endif
334 vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
335 }
336
337 /*
338 * Inserts the key-value pair into the trie.
339 * Panics if the key already exists.
340 */
341 int
342 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
343 {
344 vm_pindex_t index, newind;
345 void **parentp;
346 struct vm_radix_node *rnode, *tmp;
347 vm_page_t m;
348 int slot;
349 uint16_t clev;
350
351 index = page->pindex;
352
353 /*
354 * The owner of record for root is not really important because it
355 * will never be used.
356 */
357 rnode = vm_radix_getroot(rtree);
358 if (rnode == NULL) {
359 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
360 return (0);
361 }
362 parentp = (void **)&rtree->rt_root;
363 for (;;) {
364 if (vm_radix_isleaf(rnode)) {
365 m = vm_radix_topage(rnode);
366 if (m->pindex == index)
367 panic("%s: key %jx is already present",
368 __func__, (uintmax_t)index);
369 clev = vm_radix_keydiff(m->pindex, index);
370 tmp = vm_radix_node_get(vm_radix_trimkey(index,
371 clev + 1), 2, clev);
372 if (tmp == NULL)
373 return (ENOMEM);
374 *parentp = tmp;
375 vm_radix_addpage(tmp, index, clev, page);
376 vm_radix_addpage(tmp, m->pindex, clev, m);
377 return (0);
378 } else if (vm_radix_keybarr(rnode, index))
379 break;
380 slot = vm_radix_slot(index, rnode->rn_clev);
381 if (rnode->rn_child[slot] == NULL) {
382 rnode->rn_count++;
383 vm_radix_addpage(rnode, index, rnode->rn_clev, page);
384 return (0);
385 }
386 parentp = &rnode->rn_child[slot];
387 rnode = rnode->rn_child[slot];
388 }
389
390 /*
391 * A new node is needed because the right insertion level is reached.
392 * Setup the new intermediate node and add the 2 children: the
393 * new object and the older edge.
394 */
395 newind = rnode->rn_owner;
396 clev = vm_radix_keydiff(newind, index);
397 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
398 if (tmp == NULL)
399 return (ENOMEM);
400 *parentp = tmp;
401 vm_radix_addpage(tmp, index, clev, page);
402 slot = vm_radix_slot(newind, clev);
403 tmp->rn_child[slot] = rnode;
404 return (0);
405 }
406
407 /*
408 * Returns TRUE if the specified radix tree contains a single leaf and FALSE
409 * otherwise.
410 */
411 boolean_t
412 vm_radix_is_singleton(struct vm_radix *rtree)
413 {
414 struct vm_radix_node *rnode;
415
416 rnode = vm_radix_getroot(rtree);
417 if (rnode == NULL)
418 return (FALSE);
419 return (vm_radix_isleaf(rnode));
420 }
421
422 /*
423 * Returns the value stored at the index. If the index is not present,
424 * NULL is returned.
425 */
426 vm_page_t
427 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
428 {
429 struct vm_radix_node *rnode;
430 vm_page_t m;
431 int slot;
432
433 rnode = vm_radix_getroot(rtree);
434 while (rnode != NULL) {
435 if (vm_radix_isleaf(rnode)) {
436 m = vm_radix_topage(rnode);
437 if (m->pindex == index)
438 return (m);
439 else
440 break;
441 } else if (vm_radix_keybarr(rnode, index))
442 break;
443 slot = vm_radix_slot(index, rnode->rn_clev);
444 rnode = rnode->rn_child[slot];
445 }
446 return (NULL);
447 }
448
449 /*
450 * Look up the nearest entry at a position bigger than or equal to index.
451 */
452 vm_page_t
453 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
454 {
455 struct vm_radix_node *stack[VM_RADIX_LIMIT];
456 vm_pindex_t inc;
457 vm_page_t m;
458 struct vm_radix_node *child, *rnode;
459 #ifdef INVARIANTS
460 int loops = 0;
461 #endif
462 int slot, tos;
463
464 rnode = vm_radix_getroot(rtree);
465 if (rnode == NULL)
466 return (NULL);
467 else if (vm_radix_isleaf(rnode)) {
468 m = vm_radix_topage(rnode);
469 if (m->pindex >= index)
470 return (m);
471 else
472 return (NULL);
473 }
474 tos = 0;
475 for (;;) {
476 /*
477 * If the keys differ before the current bisection node,
478 * then the search key might rollback to the earliest
479 * available bisection node or to the smallest key
480 * in the current node (if the owner is bigger than the
481 * search key).
482 */
483 if (vm_radix_keybarr(rnode, index)) {
484 if (index > rnode->rn_owner) {
485 ascend:
486 KASSERT(++loops < 1000,
487 ("vm_radix_lookup_ge: too many loops"));
488
489 /*
490 * Pop nodes from the stack until either the
491 * stack is empty or a node that could have a
492 * matching descendant is found.
493 */
494 do {
495 if (tos == 0)
496 return (NULL);
497 rnode = stack[--tos];
498 } while (vm_radix_slot(index,
499 rnode->rn_clev) == (VM_RADIX_COUNT - 1));
500
501 /*
502 * The following computation cannot overflow
503 * because index's slot at the current level
504 * is less than VM_RADIX_COUNT - 1.
505 */
506 index = vm_radix_trimkey(index,
507 rnode->rn_clev);
508 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
509 } else
510 index = rnode->rn_owner;
511 KASSERT(!vm_radix_keybarr(rnode, index),
512 ("vm_radix_lookup_ge: keybarr failed"));
513 }
514 slot = vm_radix_slot(index, rnode->rn_clev);
515 child = rnode->rn_child[slot];
516 if (vm_radix_isleaf(child)) {
517 m = vm_radix_topage(child);
518 if (m->pindex >= index)
519 return (m);
520 } else if (child != NULL)
521 goto descend;
522
523 /*
524 * Look for an available edge or page within the current
525 * bisection node.
526 */
527 if (slot < (VM_RADIX_COUNT - 1)) {
528 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
529 index = vm_radix_trimkey(index, rnode->rn_clev);
530 do {
531 index += inc;
532 slot++;
533 child = rnode->rn_child[slot];
534 if (vm_radix_isleaf(child)) {
535 m = vm_radix_topage(child);
536 if (m->pindex >= index)
537 return (m);
538 } else if (child != NULL)
539 goto descend;
540 } while (slot < (VM_RADIX_COUNT - 1));
541 }
542 KASSERT(child == NULL || vm_radix_isleaf(child),
543 ("vm_radix_lookup_ge: child is radix node"));
544
545 /*
546 * If a page or edge bigger than the search slot is not found
547 * in the current node, ascend to the next higher-level node.
548 */
549 goto ascend;
550 descend:
551 KASSERT(rnode->rn_clev > 0,
552 ("vm_radix_lookup_ge: pushing leaf's parent"));
553 KASSERT(tos < VM_RADIX_LIMIT,
554 ("vm_radix_lookup_ge: stack overflow"));
555 stack[tos++] = rnode;
556 rnode = child;
557 }
558 }
559
560 /*
561 * Look up the nearest entry at a position less than or equal to index.
562 */
563 vm_page_t
564 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
565 {
566 struct vm_radix_node *stack[VM_RADIX_LIMIT];
567 vm_pindex_t inc;
568 vm_page_t m;
569 struct vm_radix_node *child, *rnode;
570 #ifdef INVARIANTS
571 int loops = 0;
572 #endif
573 int slot, tos;
574
575 rnode = vm_radix_getroot(rtree);
576 if (rnode == NULL)
577 return (NULL);
578 else if (vm_radix_isleaf(rnode)) {
579 m = vm_radix_topage(rnode);
580 if (m->pindex <= index)
581 return (m);
582 else
583 return (NULL);
584 }
585 tos = 0;
586 for (;;) {
587 /*
588 * If the keys differ before the current bisection node,
589 * then the search key might rollback to the earliest
590 * available bisection node or to the largest key
591 * in the current node (if the owner is smaller than the
592 * search key).
593 */
594 if (vm_radix_keybarr(rnode, index)) {
595 if (index > rnode->rn_owner) {
596 index = rnode->rn_owner + VM_RADIX_COUNT *
597 VM_RADIX_UNITLEVEL(rnode->rn_clev);
598 } else {
599 ascend:
600 KASSERT(++loops < 1000,
601 ("vm_radix_lookup_le: too many loops"));
602
603 /*
604 * Pop nodes from the stack until either the
605 * stack is empty or a node that could have a
606 * matching descendant is found.
607 */
608 do {
609 if (tos == 0)
610 return (NULL);
611 rnode = stack[--tos];
612 } while (vm_radix_slot(index,
613 rnode->rn_clev) == 0);
614
615 /*
616 * The following computation cannot overflow
617 * because index's slot at the current level
618 * is greater than 0.
619 */
620 index = vm_radix_trimkey(index,
621 rnode->rn_clev);
622 }
623 index--;
624 KASSERT(!vm_radix_keybarr(rnode, index),
625 ("vm_radix_lookup_le: keybarr failed"));
626 }
627 slot = vm_radix_slot(index, rnode->rn_clev);
628 child = rnode->rn_child[slot];
629 if (vm_radix_isleaf(child)) {
630 m = vm_radix_topage(child);
631 if (m->pindex <= index)
632 return (m);
633 } else if (child != NULL)
634 goto descend;
635
636 /*
637 * Look for an available edge or page within the current
638 * bisection node.
639 */
640 if (slot > 0) {
641 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
642 index |= inc - 1;
643 do {
644 index -= inc;
645 slot--;
646 child = rnode->rn_child[slot];
647 if (vm_radix_isleaf(child)) {
648 m = vm_radix_topage(child);
649 if (m->pindex <= index)
650 return (m);
651 } else if (child != NULL)
652 goto descend;
653 } while (slot > 0);
654 }
655 KASSERT(child == NULL || vm_radix_isleaf(child),
656 ("vm_radix_lookup_le: child is radix node"));
657
658 /*
659 * If a page or edge smaller than the search slot is not found
660 * in the current node, ascend to the next higher-level node.
661 */
662 goto ascend;
663 descend:
664 KASSERT(rnode->rn_clev > 0,
665 ("vm_radix_lookup_le: pushing leaf's parent"));
666 KASSERT(tos < VM_RADIX_LIMIT,
667 ("vm_radix_lookup_le: stack overflow"));
668 stack[tos++] = rnode;
669 rnode = child;
670 }
671 }
672
673 /*
674 * Remove the specified index from the trie, and return the value stored at
675 * that index. If the index is not present, return NULL.
676 */
677 vm_page_t
678 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
679 {
680 struct vm_radix_node *rnode, *parent;
681 vm_page_t m;
682 int i, slot;
683
684 rnode = vm_radix_getroot(rtree);
685 if (vm_radix_isleaf(rnode)) {
686 m = vm_radix_topage(rnode);
687 if (m->pindex != index)
688 return (NULL);
689 vm_radix_setroot(rtree, NULL);
690 return (m);
691 }
692 parent = NULL;
693 for (;;) {
694 if (rnode == NULL)
695 return (NULL);
696 slot = vm_radix_slot(index, rnode->rn_clev);
697 if (vm_radix_isleaf(rnode->rn_child[slot])) {
698 m = vm_radix_topage(rnode->rn_child[slot]);
699 if (m->pindex != index)
700 return (NULL);
701 rnode->rn_child[slot] = NULL;
702 rnode->rn_count--;
703 if (rnode->rn_count > 1)
704 return (m);
705 for (i = 0; i < VM_RADIX_COUNT; i++)
706 if (rnode->rn_child[i] != NULL)
707 break;
708 KASSERT(i != VM_RADIX_COUNT,
709 ("%s: invalid node configuration", __func__));
710 if (parent == NULL)
711 vm_radix_setroot(rtree, rnode->rn_child[i]);
712 else {
713 slot = vm_radix_slot(index, parent->rn_clev);
714 KASSERT(parent->rn_child[slot] == rnode,
715 ("%s: invalid child value", __func__));
716 parent->rn_child[slot] = rnode->rn_child[i];
717 }
718 rnode->rn_count--;
719 rnode->rn_child[i] = NULL;
720 vm_radix_node_put(rnode);
721 return (m);
722 }
723 parent = rnode;
724 rnode = rnode->rn_child[slot];
725 }
726 }
727
728 /*
729 * Remove and free all the nodes from the radix tree.
730 * This function is recursive but there is a tight control on it as the
731 * maximum depth of the tree is fixed.
732 */
733 void
734 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
735 {
736 struct vm_radix_node *root;
737
738 root = vm_radix_getroot(rtree);
739 if (root == NULL)
740 return;
741 vm_radix_setroot(rtree, NULL);
742 if (!vm_radix_isleaf(root))
743 vm_radix_reclaim_allnodes_int(root);
744 }
745
746 /*
747 * Replace an existing page in the trie with another one.
748 * Panics if there is not an old page in the trie at the new page's index.
749 */
750 vm_page_t
751 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
752 {
753 struct vm_radix_node *rnode;
754 vm_page_t m;
755 vm_pindex_t index;
756 int slot;
757
758 index = newpage->pindex;
759 rnode = vm_radix_getroot(rtree);
760 if (rnode == NULL)
761 panic("%s: replacing page on an empty trie", __func__);
762 if (vm_radix_isleaf(rnode)) {
763 m = vm_radix_topage(rnode);
764 if (m->pindex != index)
765 panic("%s: original replacing root key not found",
766 __func__);
767 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
768 return (m);
769 }
770 for (;;) {
771 slot = vm_radix_slot(index, rnode->rn_clev);
772 if (vm_radix_isleaf(rnode->rn_child[slot])) {
773 m = vm_radix_topage(rnode->rn_child[slot]);
774 if (m->pindex == index) {
775 rnode->rn_child[slot] =
776 (void *)((uintptr_t)newpage |
777 VM_RADIX_ISLEAF);
778 return (m);
779 } else
780 break;
781 } else if (rnode->rn_child[slot] == NULL ||
782 vm_radix_keybarr(rnode->rn_child[slot], index))
783 break;
784 rnode = rnode->rn_child[slot];
785 }
786 panic("%s: original replacing page not found", __func__);
787 }
788
789 void
790 vm_radix_wait(void)
791 {
792 uma_zwait(vm_radix_node_zone);
793 }
794
795 #ifdef DDB
796 /*
797 * Show details about the given radix node.
798 */
799 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
800 {
801 struct vm_radix_node *rnode;
802 int i;
803
804 if (!have_addr)
805 return;
806 rnode = (struct vm_radix_node *)addr;
807 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
808 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
809 rnode->rn_clev);
810 for (i = 0; i < VM_RADIX_COUNT; i++)
811 if (rnode->rn_child[i] != NULL)
812 db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
813 i, (void *)rnode->rn_child[i],
814 vm_radix_isleaf(rnode->rn_child[i]) ?
815 vm_radix_topage(rnode->rn_child[i]) : NULL,
816 rnode->rn_clev);
817 }
818 #endif /* DDB */
Cache object: 983350ca59225efabc7e647c16c83ceb
|