The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_reserv.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Rice University
    3  * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
    4  * All rights reserved.
    5  *
    6  * This software was developed for the FreeBSD Project by Alan L. Cox,
    7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
   22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
   25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
   28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  *      Superpage reservation management module
   34  *
   35  * Any external functions defined by this module are only to be used by the
   36  * virtual memory system.
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/10.1/sys/vm/vm_reserv.c 273007 2014-10-12 18:53:45Z alc $");
   41 
   42 #include "opt_vm.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/kernel.h>
   46 #include <sys/lock.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mutex.h>
   49 #include <sys/queue.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sbuf.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/systm.h>
   54 
   55 #include <vm/vm.h>
   56 #include <vm/vm_param.h>
   57 #include <vm/vm_object.h>
   58 #include <vm/vm_page.h>
   59 #include <vm/vm_phys.h>
   60 #include <vm/vm_radix.h>
   61 #include <vm/vm_reserv.h>
   62 
   63 /*
   64  * The reservation system supports the speculative allocation of large physical
   65  * pages ("superpages").  Speculative allocation enables the fully-automatic
   66  * utilization of superpages by the virtual memory system.  In other words, no
   67  * programmatic directives are required to use superpages.
   68  */
   69 
   70 #if VM_NRESERVLEVEL > 0
   71 
   72 /*
   73  * The number of small pages that are contained in a level 0 reservation
   74  */
   75 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
   76 
   77 /*
   78  * The number of bits by which a physical address is shifted to obtain the
   79  * reservation number
   80  */
   81 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
   82 
   83 /*
   84  * The size of a level 0 reservation in bytes
   85  */
   86 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
   87 
   88 /*
   89  * Computes the index of the small page underlying the given (object, pindex)
   90  * within the reservation's array of small pages.
   91  */
   92 #define VM_RESERV_INDEX(object, pindex) \
   93     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
   94 
   95 /*
   96  * The reservation structure
   97  *
   98  * A reservation structure is constructed whenever a large physical page is
   99  * speculatively allocated to an object.  The reservation provides the small
  100  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
  101  * within that object.  The reservation's "popcnt" tracks the number of these
  102  * small physical pages that are in use at any given time.  When and if the
  103  * reservation is not fully utilized, it appears in the queue of partially-
  104  * populated reservations.  The reservation always appears on the containing
  105  * object's list of reservations.
  106  *
  107  * A partially-populated reservation can be broken and reclaimed at any time.
  108  */
  109 struct vm_reserv {
  110         TAILQ_ENTRY(vm_reserv) partpopq;
  111         LIST_ENTRY(vm_reserv) objq;
  112         vm_object_t     object;                 /* containing object */
  113         vm_pindex_t     pindex;                 /* offset within object */
  114         vm_page_t       pages;                  /* first page of a superpage */
  115         int             popcnt;                 /* # of pages in use */
  116         char            inpartpopq;
  117 };
  118 
  119 /*
  120  * The reservation array
  121  *
  122  * This array is analoguous in function to vm_page_array.  It differs in the
  123  * respect that it may contain a greater number of useful reservation
  124  * structures than there are (physical) superpages.  These "invalid"
  125  * reservation structures exist to trade-off space for time in the
  126  * implementation of vm_reserv_from_page().  Invalid reservation structures are
  127  * distinguishable from "valid" reservation structures by inspecting the
  128  * reservation's "pages" field.  Invalid reservation structures have a NULL
  129  * "pages" field.
  130  *
  131  * vm_reserv_from_page() maps a small (physical) page to an element of this
  132  * array by computing a physical reservation number from the page's physical
  133  * address.  The physical reservation number is used as the array index.
  134  *
  135  * An "active" reservation is a valid reservation structure that has a non-NULL
  136  * "object" field and a non-zero "popcnt" field.  In other words, every active
  137  * reservation belongs to a particular object.  Moreover, every active
  138  * reservation has an entry in the containing object's list of reservations.  
  139  */
  140 static vm_reserv_t vm_reserv_array;
  141 
  142 /*
  143  * The partially-populated reservation queue
  144  *
  145  * This queue enables the fast recovery of an unused cached or free small page
  146  * from a partially-populated reservation.  The reservation at the head of
  147  * this queue is the least-recently-changed, partially-populated reservation.
  148  *
  149  * Access to this queue is synchronized by the free page queue lock.
  150  */
  151 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
  152                             TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
  153 
  154 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
  155 
  156 static long vm_reserv_broken;
  157 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
  158     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
  159 
  160 static long vm_reserv_freed;
  161 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
  162     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
  163 
  164 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
  165 
  166 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
  167     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
  168 
  169 static long vm_reserv_reclaimed;
  170 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
  171     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
  172 
  173 static void             vm_reserv_depopulate(vm_reserv_t rv);
  174 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
  175 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
  176                             vm_pindex_t pindex);
  177 static void             vm_reserv_populate(vm_reserv_t rv);
  178 static void             vm_reserv_reclaim(vm_reserv_t rv);
  179 
  180 /*
  181  * Describes the current state of the partially-populated reservation queue.
  182  */
  183 static int
  184 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
  185 {
  186         struct sbuf sbuf;
  187         vm_reserv_t rv;
  188         int counter, error, level, unused_pages;
  189 
  190         error = sysctl_wire_old_buffer(req, 0);
  191         if (error != 0)
  192                 return (error);
  193         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  194         sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
  195         for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
  196                 counter = 0;
  197                 unused_pages = 0;
  198                 mtx_lock(&vm_page_queue_free_mtx);
  199                 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
  200                         counter++;
  201                         unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
  202                 }
  203                 mtx_unlock(&vm_page_queue_free_mtx);
  204                 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
  205                     unused_pages * ((int)PAGE_SIZE / 1024), counter);
  206         }
  207         error = sbuf_finish(&sbuf);
  208         sbuf_delete(&sbuf);
  209         return (error);
  210 }
  211 
  212 /*
  213  * Reduces the given reservation's population count.  If the population count
  214  * becomes zero, the reservation is destroyed.  Additionally, moves the
  215  * reservation to the tail of the partially-populated reservations queue if the
  216  * population count is non-zero.
  217  *
  218  * The free page queue lock must be held.
  219  */
  220 static void
  221 vm_reserv_depopulate(vm_reserv_t rv)
  222 {
  223 
  224         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  225         KASSERT(rv->object != NULL,
  226             ("vm_reserv_depopulate: reserv %p is free", rv));
  227         KASSERT(rv->popcnt > 0,
  228             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
  229         if (rv->inpartpopq) {
  230                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
  231                 rv->inpartpopq = FALSE;
  232         } else {
  233                 KASSERT(rv->pages->psind == 1,
  234                     ("vm_reserv_depopulate: reserv %p is already demoted",
  235                     rv));
  236                 rv->pages->psind = 0;
  237         }
  238         rv->popcnt--;
  239         if (rv->popcnt == 0) {
  240                 LIST_REMOVE(rv, objq);
  241                 rv->object = NULL;
  242                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
  243                 vm_reserv_freed++;
  244         } else {
  245                 rv->inpartpopq = TRUE;
  246                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
  247         }
  248 }
  249 
  250 /*
  251  * Returns the reservation to which the given page might belong.
  252  */
  253 static __inline vm_reserv_t
  254 vm_reserv_from_page(vm_page_t m)
  255 {
  256 
  257         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
  258 }
  259 
  260 /*
  261  * Returns TRUE if the given reservation contains the given page index and
  262  * FALSE otherwise.
  263  */
  264 static __inline boolean_t
  265 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
  266 {
  267 
  268         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
  269 }
  270 
  271 /*
  272  * Increases the given reservation's population count.  Moves the reservation
  273  * to the tail of the partially-populated reservation queue.
  274  *
  275  * The free page queue must be locked.
  276  */
  277 static void
  278 vm_reserv_populate(vm_reserv_t rv)
  279 {
  280 
  281         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  282         KASSERT(rv->object != NULL,
  283             ("vm_reserv_populate: reserv %p is free", rv));
  284         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
  285             ("vm_reserv_populate: reserv %p is already full", rv));
  286         KASSERT(rv->pages->psind == 0,
  287             ("vm_reserv_populate: reserv %p is already promoted", rv));
  288         if (rv->inpartpopq) {
  289                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
  290                 rv->inpartpopq = FALSE;
  291         }
  292         rv->popcnt++;
  293         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
  294                 rv->inpartpopq = TRUE;
  295                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
  296         } else
  297                 rv->pages->psind = 1;
  298 }
  299 
  300 /*
  301  * Allocates a contiguous set of physical pages of the given size "npages"
  302  * from existing or newly created reservations.  All of the physical pages
  303  * must be at or above the given physical address "low" and below the given
  304  * physical address "high".  The given value "alignment" determines the
  305  * alignment of the first physical page in the set.  If the given value
  306  * "boundary" is non-zero, then the set of physical pages cannot cross any
  307  * physical address boundary that is a multiple of that value.  Both
  308  * "alignment" and "boundary" must be a power of two.
  309  *
  310  * The object and free page queue must be locked.
  311  */
  312 vm_page_t
  313 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
  314     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
  315 {
  316         vm_paddr_t pa, size;
  317         vm_page_t m, m_ret, mpred, msucc;
  318         vm_pindex_t first, leftcap, rightcap;
  319         vm_reserv_t rv;
  320         u_long allocpages, maxpages, minpages;
  321         int i, index, n;
  322 
  323         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  324         VM_OBJECT_ASSERT_WLOCKED(object);
  325         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
  326 
  327         /*
  328          * Is a reservation fundamentally impossible?
  329          */
  330         if (pindex < VM_RESERV_INDEX(object, pindex) ||
  331             pindex + npages > object->size)
  332                 return (NULL);
  333 
  334         /*
  335          * All reservations of a particular size have the same alignment.
  336          * Assuming that the first page is allocated from a reservation, the
  337          * least significant bits of its physical address can be determined
  338          * from its offset from the beginning of the reservation and the size
  339          * of the reservation.
  340          *
  341          * Could the specified index within a reservation of the smallest
  342          * possible size satisfy the alignment and boundary requirements?
  343          */
  344         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
  345         if ((pa & (alignment - 1)) != 0)
  346                 return (NULL);
  347         size = npages << PAGE_SHIFT;
  348         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
  349                 return (NULL);
  350 
  351         /*
  352          * Look for an existing reservation.
  353          */
  354         mpred = vm_radix_lookup_le(&object->rtree, pindex);
  355         if (mpred != NULL) {
  356                 KASSERT(mpred->pindex < pindex,
  357                     ("vm_reserv_alloc_contig: pindex already allocated"));
  358                 rv = vm_reserv_from_page(mpred);
  359                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
  360                         goto found;
  361                 msucc = TAILQ_NEXT(mpred, listq);
  362         } else
  363                 msucc = TAILQ_FIRST(&object->memq);
  364         if (msucc != NULL) {
  365                 KASSERT(msucc->pindex > pindex,
  366                     ("vm_reserv_alloc_page: pindex already allocated"));
  367                 rv = vm_reserv_from_page(msucc);
  368                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
  369                         goto found;
  370         }
  371 
  372         /*
  373          * Could at least one reservation fit between the first index to the
  374          * left that can be used ("leftcap") and the first index to the right
  375          * that cannot be used ("rightcap")?
  376          */
  377         first = pindex - VM_RESERV_INDEX(object, pindex);
  378         if (mpred != NULL) {
  379                 if ((rv = vm_reserv_from_page(mpred))->object != object)
  380                         leftcap = mpred->pindex + 1;
  381                 else
  382                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
  383                 if (leftcap > first)
  384                         return (NULL);
  385         }
  386         minpages = VM_RESERV_INDEX(object, pindex) + npages;
  387         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
  388         allocpages = maxpages;
  389         if (msucc != NULL) {
  390                 if ((rv = vm_reserv_from_page(msucc))->object != object)
  391                         rightcap = msucc->pindex;
  392                 else
  393                         rightcap = rv->pindex;
  394                 if (first + maxpages > rightcap) {
  395                         if (maxpages == VM_LEVEL_0_NPAGES)
  396                                 return (NULL);
  397 
  398                         /*
  399                          * At least one reservation will fit between "leftcap"
  400                          * and "rightcap".  However, a reservation for the
  401                          * last of the requested pages will not fit.  Reduce
  402                          * the size of the upcoming allocation accordingly.
  403                          */
  404                         allocpages = minpages;
  405                 }
  406         }
  407 
  408         /*
  409          * Would the last new reservation extend past the end of the object?
  410          */
  411         if (first + maxpages > object->size) {
  412                 /*
  413                  * Don't allocate the last new reservation if the object is a
  414                  * vnode or backed by another object that is a vnode. 
  415                  */
  416                 if (object->type == OBJT_VNODE ||
  417                     (object->backing_object != NULL &&
  418                     object->backing_object->type == OBJT_VNODE)) {
  419                         if (maxpages == VM_LEVEL_0_NPAGES)
  420                                 return (NULL);
  421                         allocpages = minpages;
  422                 }
  423                 /* Speculate that the object may grow. */
  424         }
  425 
  426         /*
  427          * Allocate the physical pages.  The alignment and boundary specified
  428          * for this allocation may be different from the alignment and
  429          * boundary specified for the requested pages.  For instance, the
  430          * specified index may not be the first page within the first new
  431          * reservation.
  432          */
  433         m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
  434             VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
  435         if (m == NULL)
  436                 return (NULL);
  437 
  438         /*
  439          * The allocated physical pages always begin at a reservation
  440          * boundary, but they do not always end at a reservation boundary.
  441          * Initialize every reservation that is completely covered by the
  442          * allocated physical pages.
  443          */
  444         m_ret = NULL;
  445         index = VM_RESERV_INDEX(object, pindex);
  446         do {
  447                 rv = vm_reserv_from_page(m);
  448                 KASSERT(rv->pages == m,
  449                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
  450                     rv));
  451                 KASSERT(rv->object == NULL,
  452                     ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
  453                 LIST_INSERT_HEAD(&object->rvq, rv, objq);
  454                 rv->object = object;
  455                 rv->pindex = first;
  456                 KASSERT(rv->popcnt == 0,
  457                     ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
  458                     rv));
  459                 KASSERT(!rv->inpartpopq,
  460                     ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
  461                     rv));
  462                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
  463                 for (i = 0; i < n; i++)
  464                         vm_reserv_populate(rv);
  465                 npages -= n;
  466                 if (m_ret == NULL) {
  467                         m_ret = &rv->pages[index];
  468                         index = 0;
  469                 }
  470                 m += VM_LEVEL_0_NPAGES;
  471                 first += VM_LEVEL_0_NPAGES;
  472                 allocpages -= VM_LEVEL_0_NPAGES;
  473         } while (allocpages >= VM_LEVEL_0_NPAGES);
  474         return (m_ret);
  475 
  476         /*
  477          * Found a matching reservation.
  478          */
  479 found:
  480         index = VM_RESERV_INDEX(object, pindex);
  481         /* Does the allocation fit within the reservation? */
  482         if (index + npages > VM_LEVEL_0_NPAGES)
  483                 return (NULL);
  484         m = &rv->pages[index];
  485         pa = VM_PAGE_TO_PHYS(m);
  486         if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
  487             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
  488                 return (NULL);
  489         /* Handle vm_page_rename(m, new_object, ...). */
  490         for (i = 0; i < npages; i++)
  491                 if ((rv->pages[index + i].flags & (PG_CACHED | PG_FREE)) == 0)
  492                         return (NULL);
  493         for (i = 0; i < npages; i++)
  494                 vm_reserv_populate(rv);
  495         return (m);
  496 }
  497 
  498 /*
  499  * Allocates a page from an existing or newly-created reservation.
  500  *
  501  * The page "mpred" must immediately precede the offset "pindex" within the
  502  * specified object.
  503  *
  504  * The object and free page queue must be locked.
  505  */
  506 vm_page_t
  507 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
  508 {
  509         vm_page_t m, msucc;
  510         vm_pindex_t first, leftcap, rightcap;
  511         vm_reserv_t rv;
  512 
  513         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  514         VM_OBJECT_ASSERT_WLOCKED(object);
  515 
  516         /*
  517          * Is a reservation fundamentally impossible?
  518          */
  519         if (pindex < VM_RESERV_INDEX(object, pindex) ||
  520             pindex >= object->size)
  521                 return (NULL);
  522 
  523         /*
  524          * Look for an existing reservation.
  525          */
  526         if (mpred != NULL) {
  527                 KASSERT(mpred->object == object,
  528                     ("vm_reserv_alloc_page: object doesn't contain mpred"));
  529                 KASSERT(mpred->pindex < pindex,
  530                     ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
  531                 rv = vm_reserv_from_page(mpred);
  532                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
  533                         goto found;
  534                 msucc = TAILQ_NEXT(mpred, listq);
  535         } else
  536                 msucc = TAILQ_FIRST(&object->memq);
  537         if (msucc != NULL) {
  538                 KASSERT(msucc->pindex > pindex,
  539                     ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
  540                 rv = vm_reserv_from_page(msucc);
  541                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
  542                         goto found;
  543         }
  544 
  545         /*
  546          * Could a reservation fit between the first index to the left that
  547          * can be used and the first index to the right that cannot be used?
  548          */
  549         first = pindex - VM_RESERV_INDEX(object, pindex);
  550         if (mpred != NULL) {
  551                 if ((rv = vm_reserv_from_page(mpred))->object != object)
  552                         leftcap = mpred->pindex + 1;
  553                 else
  554                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
  555                 if (leftcap > first)
  556                         return (NULL);
  557         }
  558         if (msucc != NULL) {
  559                 if ((rv = vm_reserv_from_page(msucc))->object != object)
  560                         rightcap = msucc->pindex;
  561                 else
  562                         rightcap = rv->pindex;
  563                 if (first + VM_LEVEL_0_NPAGES > rightcap)
  564                         return (NULL);
  565         }
  566 
  567         /*
  568          * Would a new reservation extend past the end of the object? 
  569          */
  570         if (first + VM_LEVEL_0_NPAGES > object->size) {
  571                 /*
  572                  * Don't allocate a new reservation if the object is a vnode or
  573                  * backed by another object that is a vnode. 
  574                  */
  575                 if (object->type == OBJT_VNODE ||
  576                     (object->backing_object != NULL &&
  577                     object->backing_object->type == OBJT_VNODE))
  578                         return (NULL);
  579                 /* Speculate that the object may grow. */
  580         }
  581 
  582         /*
  583          * Allocate and populate the new reservation.
  584          */
  585         m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
  586         if (m == NULL)
  587                 return (NULL);
  588         rv = vm_reserv_from_page(m);
  589         KASSERT(rv->pages == m,
  590             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
  591         KASSERT(rv->object == NULL,
  592             ("vm_reserv_alloc_page: reserv %p isn't free", rv));
  593         LIST_INSERT_HEAD(&object->rvq, rv, objq);
  594         rv->object = object;
  595         rv->pindex = first;
  596         KASSERT(rv->popcnt == 0,
  597             ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
  598         KASSERT(!rv->inpartpopq,
  599             ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
  600         vm_reserv_populate(rv);
  601         return (&rv->pages[VM_RESERV_INDEX(object, pindex)]);
  602 
  603         /*
  604          * Found a matching reservation.
  605          */
  606 found:
  607         m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
  608         /* Handle vm_page_rename(m, new_object, ...). */
  609         if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
  610                 return (NULL);
  611         vm_reserv_populate(rv);
  612         return (m);
  613 }
  614 
  615 /*
  616  * Breaks all reservations belonging to the given object.
  617  */
  618 void
  619 vm_reserv_break_all(vm_object_t object)
  620 {
  621         vm_reserv_t rv;
  622         int i;
  623 
  624         mtx_lock(&vm_page_queue_free_mtx);
  625         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
  626                 KASSERT(rv->object == object,
  627                     ("vm_reserv_break_all: reserv %p is corrupted", rv));
  628                 if (rv->inpartpopq) {
  629                         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
  630                         rv->inpartpopq = FALSE;
  631                 }
  632                 LIST_REMOVE(rv, objq);
  633                 rv->object = NULL;
  634                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
  635                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
  636                                 vm_phys_free_pages(&rv->pages[i], 0);
  637                         else
  638                                 rv->popcnt--;
  639                 }
  640                 KASSERT(rv->popcnt == 0,
  641                     ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
  642                     rv));
  643                 vm_reserv_broken++;
  644         }
  645         mtx_unlock(&vm_page_queue_free_mtx);
  646 }
  647 
  648 /*
  649  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
  650  * page is freed and FALSE otherwise.
  651  *
  652  * The free page queue lock must be held.
  653  */
  654 boolean_t
  655 vm_reserv_free_page(vm_page_t m)
  656 {
  657         vm_reserv_t rv;
  658 
  659         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  660         rv = vm_reserv_from_page(m);
  661         if (rv->object == NULL)
  662                 return (FALSE);
  663         if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
  664                 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
  665                     VM_LEVEL_0_ORDER);
  666         vm_reserv_depopulate(rv);
  667         return (TRUE);
  668 }
  669 
  670 /*
  671  * Initializes the reservation management system.  Specifically, initializes
  672  * the reservation array.
  673  *
  674  * Requires that vm_page_array and first_page are initialized!
  675  */
  676 void
  677 vm_reserv_init(void)
  678 {
  679         vm_paddr_t paddr;
  680         int i;
  681 
  682         /*
  683          * Initialize the reservation array.  Specifically, initialize the
  684          * "pages" field for every element that has an underlying superpage.
  685          */
  686         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
  687                 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
  688                 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
  689                         vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
  690                             PHYS_TO_VM_PAGE(paddr);
  691                         paddr += VM_LEVEL_0_SIZE;
  692                 }
  693         }
  694 }
  695 
  696 /*
  697  * Returns a reservation level if the given page belongs to a fully-populated
  698  * reservation and -1 otherwise.
  699  */
  700 int
  701 vm_reserv_level_iffullpop(vm_page_t m)
  702 {
  703         vm_reserv_t rv;
  704 
  705         rv = vm_reserv_from_page(m);
  706         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
  707 }
  708 
  709 /*
  710  * Prepare for the reactivation of a cached page.
  711  *
  712  * First, suppose that the given page "m" was allocated individually, i.e., not
  713  * as part of a reservation, and cached.  Then, suppose a reservation
  714  * containing "m" is allocated by the same object.  Although "m" and the
  715  * reservation belong to the same object, "m"'s pindex may not match the
  716  * reservation's.
  717  *
  718  * The free page queue must be locked.
  719  */
  720 boolean_t
  721 vm_reserv_reactivate_page(vm_page_t m)
  722 {
  723         vm_reserv_t rv;
  724         int i, m_index;
  725 
  726         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  727         rv = vm_reserv_from_page(m);
  728         if (rv->object == NULL)
  729                 return (FALSE);
  730         KASSERT((m->flags & PG_CACHED) != 0,
  731             ("vm_reserv_uncache_page: page %p is not cached", m));
  732         if (m->object == rv->object &&
  733             m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
  734                 vm_reserv_populate(rv);
  735         else {
  736                 KASSERT(rv->inpartpopq,
  737                     ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
  738                     rv));
  739                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
  740                 rv->inpartpopq = FALSE;
  741                 LIST_REMOVE(rv, objq);
  742                 rv->object = NULL;
  743                 /* Don't vm_phys_free_pages(m, 0). */
  744                 m_index = m - rv->pages;
  745                 for (i = 0; i < m_index; i++) {
  746                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
  747                                 vm_phys_free_pages(&rv->pages[i], 0);
  748                         else
  749                                 rv->popcnt--;
  750                 }
  751                 for (i++; i < VM_LEVEL_0_NPAGES; i++) {
  752                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
  753                                 vm_phys_free_pages(&rv->pages[i], 0);
  754                         else
  755                                 rv->popcnt--;
  756                 }
  757                 KASSERT(rv->popcnt == 0,
  758                     ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
  759                     rv));
  760                 vm_reserv_broken++;
  761         }
  762         return (TRUE);
  763 }
  764 
  765 /*
  766  * Breaks the given partially-populated reservation, releasing its cached and
  767  * free pages to the physical memory allocator.
  768  *
  769  * The free page queue lock must be held.
  770  */
  771 static void
  772 vm_reserv_reclaim(vm_reserv_t rv)
  773 {
  774         int i;
  775 
  776         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  777         KASSERT(rv->inpartpopq,
  778             ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
  779         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
  780         rv->inpartpopq = FALSE;
  781         KASSERT(rv->object != NULL,
  782             ("vm_reserv_reclaim: reserv %p is free", rv));
  783         LIST_REMOVE(rv, objq);
  784         rv->object = NULL;
  785         for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
  786                 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
  787                         vm_phys_free_pages(&rv->pages[i], 0);
  788                 else
  789                         rv->popcnt--;
  790         }
  791         KASSERT(rv->popcnt == 0,
  792             ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
  793         vm_reserv_reclaimed++;
  794 }
  795 
  796 /*
  797  * Breaks the reservation at the head of the partially-populated reservation
  798  * queue, releasing its cached and free pages to the physical memory
  799  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
  800  *
  801  * The free page queue lock must be held.
  802  */
  803 boolean_t
  804 vm_reserv_reclaim_inactive(void)
  805 {
  806         vm_reserv_t rv;
  807 
  808         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  809         if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
  810                 vm_reserv_reclaim(rv);
  811                 return (TRUE);
  812         }
  813         return (FALSE);
  814 }
  815 
  816 /*
  817  * Searches the partially-populated reservation queue for the least recently
  818  * active reservation with unused pages, i.e., cached or free, that satisfy the
  819  * given request for contiguous physical memory.  If a satisfactory reservation
  820  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
  821  * otherwise.
  822  *
  823  * The free page queue lock must be held.
  824  */
  825 boolean_t
  826 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
  827     u_long alignment, vm_paddr_t boundary)
  828 {
  829         vm_paddr_t pa, pa_length, size;
  830         vm_reserv_t rv;
  831         int i;
  832 
  833         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
  834         if (npages > VM_LEVEL_0_NPAGES - 1)
  835                 return (FALSE);
  836         size = npages << PAGE_SHIFT;
  837         TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
  838                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
  839                 if (pa + PAGE_SIZE - size < low) {
  840                         /* this entire reservation is too low; go to next */
  841                         continue;
  842                 }
  843                 pa_length = 0;
  844                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
  845                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
  846                                 pa_length += PAGE_SIZE;
  847                                 if (pa_length == PAGE_SIZE) {
  848                                         pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
  849                                         if (pa + size > high) {
  850                                                 /* skip to next reservation */
  851                                                 break;
  852                                         } else if (pa < low ||
  853                                             (pa & (alignment - 1)) != 0 ||
  854                                             ((pa ^ (pa + size - 1)) &
  855                                             ~(boundary - 1)) != 0)
  856                                                 pa_length = 0;
  857                                 }
  858                                 if (pa_length >= size) {
  859                                         vm_reserv_reclaim(rv);
  860                                         return (TRUE);
  861                                 }
  862                         } else
  863                                 pa_length = 0;
  864         }
  865         return (FALSE);
  866 }
  867 
  868 /*
  869  * Transfers the reservation underlying the given page to a new object.
  870  *
  871  * The object must be locked.
  872  */
  873 void
  874 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
  875     vm_pindex_t old_object_offset)
  876 {
  877         vm_reserv_t rv;
  878 
  879         VM_OBJECT_ASSERT_WLOCKED(new_object);
  880         rv = vm_reserv_from_page(m);
  881         if (rv->object == old_object) {
  882                 mtx_lock(&vm_page_queue_free_mtx);
  883                 if (rv->object == old_object) {
  884                         LIST_REMOVE(rv, objq);
  885                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
  886                         rv->object = new_object;
  887                         rv->pindex -= old_object_offset;
  888                 }
  889                 mtx_unlock(&vm_page_queue_free_mtx);
  890         }
  891 }
  892 
  893 /*
  894  * Allocates the virtual and physical memory required by the reservation
  895  * management system's data structures, in particular, the reservation array.
  896  */
  897 vm_paddr_t
  898 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
  899 {
  900         vm_paddr_t new_end;
  901         size_t size;
  902 
  903         /*
  904          * Calculate the size (in bytes) of the reservation array.  Round up
  905          * from "high_water" because every small page is mapped to an element
  906          * in the reservation array based on its physical address.  Thus, the
  907          * number of elements in the reservation array can be greater than the
  908          * number of superpages. 
  909          */
  910         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
  911 
  912         /*
  913          * Allocate and map the physical memory for the reservation array.  The
  914          * next available virtual address is returned by reference.
  915          */
  916         new_end = end - round_page(size);
  917         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
  918             VM_PROT_READ | VM_PROT_WRITE);
  919         bzero(vm_reserv_array, size);
  920 
  921         /*
  922          * Return the next available physical address.
  923          */
  924         return (new_end);
  925 }
  926 
  927 #endif  /* VM_NRESERVLEVEL > 0 */

Cache object: 41ab4d10a91ec1d0ffa7a1998dd07e4c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.