FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_reserv.c
1 /*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Superpage reservation management module
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_vm.h"
43
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_phys.h>
60 #include <vm/vm_radix.h>
61 #include <vm/vm_reserv.h>
62
63 /*
64 * The reservation system supports the speculative allocation of large physical
65 * pages ("superpages"). Speculative allocation enables the fully-automatic
66 * utilization of superpages by the virtual memory system. In other words, no
67 * programmatic directives are required to use superpages.
68 */
69
70 #if VM_NRESERVLEVEL > 0
71
72 /*
73 * The number of small pages that are contained in a level 0 reservation
74 */
75 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER)
76
77 /*
78 * The number of bits by which a physical address is shifted to obtain the
79 * reservation number
80 */
81 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
82
83 /*
84 * The size of a level 0 reservation in bytes
85 */
86 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT)
87
88 /*
89 * Computes the index of the small page underlying the given (object, pindex)
90 * within the reservation's array of small pages.
91 */
92 #define VM_RESERV_INDEX(object, pindex) \
93 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94
95 /*
96 * The reservation structure
97 *
98 * A reservation structure is constructed whenever a large physical page is
99 * speculatively allocated to an object. The reservation provides the small
100 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
101 * within that object. The reservation's "popcnt" tracks the number of these
102 * small physical pages that are in use at any given time. When and if the
103 * reservation is not fully utilized, it appears in the queue of partially-
104 * populated reservations. The reservation always appears on the containing
105 * object's list of reservations.
106 *
107 * A partially-populated reservation can be broken and reclaimed at any time.
108 */
109 struct vm_reserv {
110 TAILQ_ENTRY(vm_reserv) partpopq;
111 LIST_ENTRY(vm_reserv) objq;
112 vm_object_t object; /* containing object */
113 vm_pindex_t pindex; /* offset within object */
114 vm_page_t pages; /* first page of a superpage */
115 int popcnt; /* # of pages in use */
116 char inpartpopq;
117 };
118
119 /*
120 * The reservation array
121 *
122 * This array is analoguous in function to vm_page_array. It differs in the
123 * respect that it may contain a greater number of useful reservation
124 * structures than there are (physical) superpages. These "invalid"
125 * reservation structures exist to trade-off space for time in the
126 * implementation of vm_reserv_from_page(). Invalid reservation structures are
127 * distinguishable from "valid" reservation structures by inspecting the
128 * reservation's "pages" field. Invalid reservation structures have a NULL
129 * "pages" field.
130 *
131 * vm_reserv_from_page() maps a small (physical) page to an element of this
132 * array by computing a physical reservation number from the page's physical
133 * address. The physical reservation number is used as the array index.
134 *
135 * An "active" reservation is a valid reservation structure that has a non-NULL
136 * "object" field and a non-zero "popcnt" field. In other words, every active
137 * reservation belongs to a particular object. Moreover, every active
138 * reservation has an entry in the containing object's list of reservations.
139 */
140 static vm_reserv_t vm_reserv_array;
141
142 /*
143 * The partially-populated reservation queue
144 *
145 * This queue enables the fast recovery of an unused cached or free small page
146 * from a partially-populated reservation. The reservation at the head of
147 * this queue is the least-recently-changed, partially-populated reservation.
148 *
149 * Access to this queue is synchronized by the free page queue lock.
150 */
151 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
152 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
153
154 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
155
156 static long vm_reserv_broken;
157 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
158 &vm_reserv_broken, 0, "Cumulative number of broken reservations");
159
160 static long vm_reserv_freed;
161 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
162 &vm_reserv_freed, 0, "Cumulative number of freed reservations");
163
164 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
165
166 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
167 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
168
169 static long vm_reserv_reclaimed;
170 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
171 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
172
173 static void vm_reserv_depopulate(vm_reserv_t rv);
174 static vm_reserv_t vm_reserv_from_page(vm_page_t m);
175 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv,
176 vm_pindex_t pindex);
177 static void vm_reserv_populate(vm_reserv_t rv);
178 static void vm_reserv_reclaim(vm_reserv_t rv);
179
180 /*
181 * Describes the current state of the partially-populated reservation queue.
182 */
183 static int
184 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
185 {
186 struct sbuf sbuf;
187 vm_reserv_t rv;
188 int counter, error, level, unused_pages;
189
190 error = sysctl_wire_old_buffer(req, 0);
191 if (error != 0)
192 return (error);
193 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
194 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n");
195 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
196 counter = 0;
197 unused_pages = 0;
198 mtx_lock(&vm_page_queue_free_mtx);
199 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
200 counter++;
201 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
202 }
203 mtx_unlock(&vm_page_queue_free_mtx);
204 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
205 unused_pages * ((int)PAGE_SIZE / 1024), counter);
206 }
207 error = sbuf_finish(&sbuf);
208 sbuf_delete(&sbuf);
209 return (error);
210 }
211
212 /*
213 * Reduces the given reservation's population count. If the population count
214 * becomes zero, the reservation is destroyed. Additionally, moves the
215 * reservation to the tail of the partially-populated reservations queue if the
216 * population count is non-zero.
217 *
218 * The free page queue lock must be held.
219 */
220 static void
221 vm_reserv_depopulate(vm_reserv_t rv)
222 {
223
224 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
225 KASSERT(rv->object != NULL,
226 ("vm_reserv_depopulate: reserv %p is free", rv));
227 KASSERT(rv->popcnt > 0,
228 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
229 if (rv->inpartpopq) {
230 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
231 rv->inpartpopq = FALSE;
232 } else {
233 KASSERT(rv->pages->psind == 1,
234 ("vm_reserv_depopulate: reserv %p is already demoted",
235 rv));
236 rv->pages->psind = 0;
237 }
238 rv->popcnt--;
239 if (rv->popcnt == 0) {
240 LIST_REMOVE(rv, objq);
241 rv->object = NULL;
242 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
243 vm_reserv_freed++;
244 } else {
245 rv->inpartpopq = TRUE;
246 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
247 }
248 }
249
250 /*
251 * Returns the reservation to which the given page might belong.
252 */
253 static __inline vm_reserv_t
254 vm_reserv_from_page(vm_page_t m)
255 {
256
257 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
258 }
259
260 /*
261 * Returns TRUE if the given reservation contains the given page index and
262 * FALSE otherwise.
263 */
264 static __inline boolean_t
265 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
266 {
267
268 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
269 }
270
271 /*
272 * Increases the given reservation's population count. Moves the reservation
273 * to the tail of the partially-populated reservation queue.
274 *
275 * The free page queue must be locked.
276 */
277 static void
278 vm_reserv_populate(vm_reserv_t rv)
279 {
280
281 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
282 KASSERT(rv->object != NULL,
283 ("vm_reserv_populate: reserv %p is free", rv));
284 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
285 ("vm_reserv_populate: reserv %p is already full", rv));
286 KASSERT(rv->pages->psind == 0,
287 ("vm_reserv_populate: reserv %p is already promoted", rv));
288 if (rv->inpartpopq) {
289 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
290 rv->inpartpopq = FALSE;
291 }
292 rv->popcnt++;
293 if (rv->popcnt < VM_LEVEL_0_NPAGES) {
294 rv->inpartpopq = TRUE;
295 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
296 } else
297 rv->pages->psind = 1;
298 }
299
300 /*
301 * Allocates a contiguous set of physical pages of the given size "npages"
302 * from existing or newly created reservations. All of the physical pages
303 * must be at or above the given physical address "low" and below the given
304 * physical address "high". The given value "alignment" determines the
305 * alignment of the first physical page in the set. If the given value
306 * "boundary" is non-zero, then the set of physical pages cannot cross any
307 * physical address boundary that is a multiple of that value. Both
308 * "alignment" and "boundary" must be a power of two.
309 *
310 * The object and free page queue must be locked.
311 */
312 vm_page_t
313 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
314 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
315 {
316 vm_paddr_t pa, size;
317 vm_page_t m, m_ret, mpred, msucc;
318 vm_pindex_t first, leftcap, rightcap;
319 vm_reserv_t rv;
320 u_long allocpages, maxpages, minpages;
321 int i, index, n;
322
323 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
324 VM_OBJECT_ASSERT_WLOCKED(object);
325 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
326
327 /*
328 * Is a reservation fundamentally impossible?
329 */
330 if (pindex < VM_RESERV_INDEX(object, pindex) ||
331 pindex + npages > object->size)
332 return (NULL);
333
334 /*
335 * All reservations of a particular size have the same alignment.
336 * Assuming that the first page is allocated from a reservation, the
337 * least significant bits of its physical address can be determined
338 * from its offset from the beginning of the reservation and the size
339 * of the reservation.
340 *
341 * Could the specified index within a reservation of the smallest
342 * possible size satisfy the alignment and boundary requirements?
343 */
344 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
345 if ((pa & (alignment - 1)) != 0)
346 return (NULL);
347 size = npages << PAGE_SHIFT;
348 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
349 return (NULL);
350
351 /*
352 * Look for an existing reservation.
353 */
354 mpred = vm_radix_lookup_le(&object->rtree, pindex);
355 if (mpred != NULL) {
356 KASSERT(mpred->pindex < pindex,
357 ("vm_reserv_alloc_contig: pindex already allocated"));
358 rv = vm_reserv_from_page(mpred);
359 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
360 goto found;
361 msucc = TAILQ_NEXT(mpred, listq);
362 } else
363 msucc = TAILQ_FIRST(&object->memq);
364 if (msucc != NULL) {
365 KASSERT(msucc->pindex > pindex,
366 ("vm_reserv_alloc_contig: pindex already allocated"));
367 rv = vm_reserv_from_page(msucc);
368 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
369 goto found;
370 }
371
372 /*
373 * Could at least one reservation fit between the first index to the
374 * left that can be used ("leftcap") and the first index to the right
375 * that cannot be used ("rightcap")?
376 */
377 first = pindex - VM_RESERV_INDEX(object, pindex);
378 if (mpred != NULL) {
379 if ((rv = vm_reserv_from_page(mpred))->object != object)
380 leftcap = mpred->pindex + 1;
381 else
382 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
383 if (leftcap > first)
384 return (NULL);
385 }
386 minpages = VM_RESERV_INDEX(object, pindex) + npages;
387 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
388 allocpages = maxpages;
389 if (msucc != NULL) {
390 if ((rv = vm_reserv_from_page(msucc))->object != object)
391 rightcap = msucc->pindex;
392 else
393 rightcap = rv->pindex;
394 if (first + maxpages > rightcap) {
395 if (maxpages == VM_LEVEL_0_NPAGES)
396 return (NULL);
397
398 /*
399 * At least one reservation will fit between "leftcap"
400 * and "rightcap". However, a reservation for the
401 * last of the requested pages will not fit. Reduce
402 * the size of the upcoming allocation accordingly.
403 */
404 allocpages = minpages;
405 }
406 }
407
408 /*
409 * Would the last new reservation extend past the end of the object?
410 */
411 if (first + maxpages > object->size) {
412 /*
413 * Don't allocate the last new reservation if the object is a
414 * vnode or backed by another object that is a vnode.
415 */
416 if (object->type == OBJT_VNODE ||
417 (object->backing_object != NULL &&
418 object->backing_object->type == OBJT_VNODE)) {
419 if (maxpages == VM_LEVEL_0_NPAGES)
420 return (NULL);
421 allocpages = minpages;
422 }
423 /* Speculate that the object may grow. */
424 }
425
426 /*
427 * Allocate the physical pages. The alignment and boundary specified
428 * for this allocation may be different from the alignment and
429 * boundary specified for the requested pages. For instance, the
430 * specified index may not be the first page within the first new
431 * reservation.
432 */
433 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
434 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
435 if (m == NULL)
436 return (NULL);
437
438 /*
439 * The allocated physical pages always begin at a reservation
440 * boundary, but they do not always end at a reservation boundary.
441 * Initialize every reservation that is completely covered by the
442 * allocated physical pages.
443 */
444 m_ret = NULL;
445 index = VM_RESERV_INDEX(object, pindex);
446 do {
447 rv = vm_reserv_from_page(m);
448 KASSERT(rv->pages == m,
449 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
450 rv));
451 KASSERT(rv->object == NULL,
452 ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
453 LIST_INSERT_HEAD(&object->rvq, rv, objq);
454 rv->object = object;
455 rv->pindex = first;
456 KASSERT(rv->popcnt == 0,
457 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
458 rv));
459 KASSERT(!rv->inpartpopq,
460 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
461 rv));
462 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
463 for (i = 0; i < n; i++)
464 vm_reserv_populate(rv);
465 npages -= n;
466 if (m_ret == NULL) {
467 m_ret = &rv->pages[index];
468 index = 0;
469 }
470 m += VM_LEVEL_0_NPAGES;
471 first += VM_LEVEL_0_NPAGES;
472 allocpages -= VM_LEVEL_0_NPAGES;
473 } while (allocpages >= VM_LEVEL_0_NPAGES);
474 return (m_ret);
475
476 /*
477 * Found a matching reservation.
478 */
479 found:
480 index = VM_RESERV_INDEX(object, pindex);
481 /* Does the allocation fit within the reservation? */
482 if (index + npages > VM_LEVEL_0_NPAGES)
483 return (NULL);
484 m = &rv->pages[index];
485 pa = VM_PAGE_TO_PHYS(m);
486 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
487 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
488 return (NULL);
489 /* Handle vm_page_rename(m, new_object, ...). */
490 for (i = 0; i < npages; i++)
491 if ((rv->pages[index + i].flags & (PG_CACHED | PG_FREE)) == 0)
492 return (NULL);
493 for (i = 0; i < npages; i++)
494 vm_reserv_populate(rv);
495 return (m);
496 }
497
498 /*
499 * Allocates a page from an existing or newly-created reservation.
500 *
501 * The page "mpred" must immediately precede the offset "pindex" within the
502 * specified object.
503 *
504 * The object and free page queue must be locked.
505 */
506 vm_page_t
507 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
508 {
509 vm_page_t m, msucc;
510 vm_pindex_t first, leftcap, rightcap;
511 vm_reserv_t rv;
512
513 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
514 VM_OBJECT_ASSERT_WLOCKED(object);
515
516 /*
517 * Is a reservation fundamentally impossible?
518 */
519 if (pindex < VM_RESERV_INDEX(object, pindex) ||
520 pindex >= object->size)
521 return (NULL);
522
523 /*
524 * Look for an existing reservation.
525 */
526 if (mpred != NULL) {
527 KASSERT(mpred->object == object,
528 ("vm_reserv_alloc_page: object doesn't contain mpred"));
529 KASSERT(mpred->pindex < pindex,
530 ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
531 rv = vm_reserv_from_page(mpred);
532 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
533 goto found;
534 msucc = TAILQ_NEXT(mpred, listq);
535 } else
536 msucc = TAILQ_FIRST(&object->memq);
537 if (msucc != NULL) {
538 KASSERT(msucc->pindex > pindex,
539 ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
540 rv = vm_reserv_from_page(msucc);
541 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
542 goto found;
543 }
544
545 /*
546 * Could a reservation fit between the first index to the left that
547 * can be used and the first index to the right that cannot be used?
548 */
549 first = pindex - VM_RESERV_INDEX(object, pindex);
550 if (mpred != NULL) {
551 if ((rv = vm_reserv_from_page(mpred))->object != object)
552 leftcap = mpred->pindex + 1;
553 else
554 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
555 if (leftcap > first)
556 return (NULL);
557 }
558 if (msucc != NULL) {
559 if ((rv = vm_reserv_from_page(msucc))->object != object)
560 rightcap = msucc->pindex;
561 else
562 rightcap = rv->pindex;
563 if (first + VM_LEVEL_0_NPAGES > rightcap)
564 return (NULL);
565 }
566
567 /*
568 * Would a new reservation extend past the end of the object?
569 */
570 if (first + VM_LEVEL_0_NPAGES > object->size) {
571 /*
572 * Don't allocate a new reservation if the object is a vnode or
573 * backed by another object that is a vnode.
574 */
575 if (object->type == OBJT_VNODE ||
576 (object->backing_object != NULL &&
577 object->backing_object->type == OBJT_VNODE))
578 return (NULL);
579 /* Speculate that the object may grow. */
580 }
581
582 /*
583 * Allocate and populate the new reservation.
584 */
585 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
586 if (m == NULL)
587 return (NULL);
588 rv = vm_reserv_from_page(m);
589 KASSERT(rv->pages == m,
590 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
591 KASSERT(rv->object == NULL,
592 ("vm_reserv_alloc_page: reserv %p isn't free", rv));
593 LIST_INSERT_HEAD(&object->rvq, rv, objq);
594 rv->object = object;
595 rv->pindex = first;
596 KASSERT(rv->popcnt == 0,
597 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
598 KASSERT(!rv->inpartpopq,
599 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
600 vm_reserv_populate(rv);
601 return (&rv->pages[VM_RESERV_INDEX(object, pindex)]);
602
603 /*
604 * Found a matching reservation.
605 */
606 found:
607 m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
608 /* Handle vm_page_rename(m, new_object, ...). */
609 if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
610 return (NULL);
611 vm_reserv_populate(rv);
612 return (m);
613 }
614
615 /*
616 * Breaks all reservations belonging to the given object.
617 */
618 void
619 vm_reserv_break_all(vm_object_t object)
620 {
621 vm_reserv_t rv;
622 int i;
623
624 mtx_lock(&vm_page_queue_free_mtx);
625 while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
626 KASSERT(rv->object == object,
627 ("vm_reserv_break_all: reserv %p is corrupted", rv));
628 if (rv->inpartpopq) {
629 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
630 rv->inpartpopq = FALSE;
631 }
632 LIST_REMOVE(rv, objq);
633 rv->object = NULL;
634 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
635 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
636 vm_phys_free_pages(&rv->pages[i], 0);
637 else
638 rv->popcnt--;
639 }
640 KASSERT(rv->popcnt == 0,
641 ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
642 rv));
643 vm_reserv_broken++;
644 }
645 mtx_unlock(&vm_page_queue_free_mtx);
646 }
647
648 /*
649 * Frees the given page if it belongs to a reservation. Returns TRUE if the
650 * page is freed and FALSE otherwise.
651 *
652 * The free page queue lock must be held.
653 */
654 boolean_t
655 vm_reserv_free_page(vm_page_t m)
656 {
657 vm_reserv_t rv;
658
659 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
660 rv = vm_reserv_from_page(m);
661 if (rv->object == NULL)
662 return (FALSE);
663 if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
664 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
665 VM_LEVEL_0_ORDER);
666 vm_reserv_depopulate(rv);
667 return (TRUE);
668 }
669
670 /*
671 * Initializes the reservation management system. Specifically, initializes
672 * the reservation array.
673 *
674 * Requires that vm_page_array and first_page are initialized!
675 */
676 void
677 vm_reserv_init(void)
678 {
679 vm_paddr_t paddr;
680 int i;
681
682 /*
683 * Initialize the reservation array. Specifically, initialize the
684 * "pages" field for every element that has an underlying superpage.
685 */
686 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
687 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
688 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
689 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
690 PHYS_TO_VM_PAGE(paddr);
691 paddr += VM_LEVEL_0_SIZE;
692 }
693 }
694 }
695
696 /*
697 * Returns a reservation level if the given page belongs to a fully-populated
698 * reservation and -1 otherwise.
699 */
700 int
701 vm_reserv_level_iffullpop(vm_page_t m)
702 {
703 vm_reserv_t rv;
704
705 rv = vm_reserv_from_page(m);
706 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
707 }
708
709 /*
710 * Prepare for the reactivation of a cached page.
711 *
712 * First, suppose that the given page "m" was allocated individually, i.e., not
713 * as part of a reservation, and cached. Then, suppose a reservation
714 * containing "m" is allocated by the same object. Although "m" and the
715 * reservation belong to the same object, "m"'s pindex may not match the
716 * reservation's.
717 *
718 * The free page queue must be locked.
719 */
720 boolean_t
721 vm_reserv_reactivate_page(vm_page_t m)
722 {
723 vm_reserv_t rv;
724 int i, m_index;
725
726 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
727 rv = vm_reserv_from_page(m);
728 if (rv->object == NULL)
729 return (FALSE);
730 KASSERT((m->flags & PG_CACHED) != 0,
731 ("vm_reserv_uncache_page: page %p is not cached", m));
732 if (m->object == rv->object &&
733 m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
734 vm_reserv_populate(rv);
735 else {
736 KASSERT(rv->inpartpopq,
737 ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
738 rv));
739 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
740 rv->inpartpopq = FALSE;
741 LIST_REMOVE(rv, objq);
742 rv->object = NULL;
743 /* Don't vm_phys_free_pages(m, 0). */
744 m_index = m - rv->pages;
745 for (i = 0; i < m_index; i++) {
746 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
747 vm_phys_free_pages(&rv->pages[i], 0);
748 else
749 rv->popcnt--;
750 }
751 for (i++; i < VM_LEVEL_0_NPAGES; i++) {
752 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
753 vm_phys_free_pages(&rv->pages[i], 0);
754 else
755 rv->popcnt--;
756 }
757 KASSERT(rv->popcnt == 0,
758 ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
759 rv));
760 vm_reserv_broken++;
761 }
762 return (TRUE);
763 }
764
765 /*
766 * Breaks the given partially-populated reservation, releasing its cached and
767 * free pages to the physical memory allocator.
768 *
769 * The free page queue lock must be held.
770 */
771 static void
772 vm_reserv_reclaim(vm_reserv_t rv)
773 {
774 int i;
775
776 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
777 KASSERT(rv->inpartpopq,
778 ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
779 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
780 rv->inpartpopq = FALSE;
781 KASSERT(rv->object != NULL,
782 ("vm_reserv_reclaim: reserv %p is free", rv));
783 LIST_REMOVE(rv, objq);
784 rv->object = NULL;
785 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
786 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
787 vm_phys_free_pages(&rv->pages[i], 0);
788 else
789 rv->popcnt--;
790 }
791 KASSERT(rv->popcnt == 0,
792 ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
793 vm_reserv_reclaimed++;
794 }
795
796 /*
797 * Breaks the reservation at the head of the partially-populated reservation
798 * queue, releasing its cached and free pages to the physical memory
799 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise.
800 *
801 * The free page queue lock must be held.
802 */
803 boolean_t
804 vm_reserv_reclaim_inactive(void)
805 {
806 vm_reserv_t rv;
807
808 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
809 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
810 vm_reserv_reclaim(rv);
811 return (TRUE);
812 }
813 return (FALSE);
814 }
815
816 /*
817 * Searches the partially-populated reservation queue for the least recently
818 * active reservation with unused pages, i.e., cached or free, that satisfy the
819 * given request for contiguous physical memory. If a satisfactory reservation
820 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE
821 * otherwise.
822 *
823 * The free page queue lock must be held.
824 */
825 boolean_t
826 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
827 u_long alignment, vm_paddr_t boundary)
828 {
829 vm_paddr_t pa, pa_length, size;
830 vm_reserv_t rv;
831 int i;
832
833 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
834 if (npages > VM_LEVEL_0_NPAGES - 1)
835 return (FALSE);
836 size = npages << PAGE_SHIFT;
837 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
838 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
839 if (pa + PAGE_SIZE - size < low) {
840 /* this entire reservation is too low; go to next */
841 continue;
842 }
843 pa_length = 0;
844 for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
845 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
846 pa_length += PAGE_SIZE;
847 if (pa_length == PAGE_SIZE) {
848 pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
849 if (pa + size > high) {
850 /* skip to next reservation */
851 break;
852 } else if (pa < low ||
853 (pa & (alignment - 1)) != 0 ||
854 ((pa ^ (pa + size - 1)) &
855 ~(boundary - 1)) != 0)
856 pa_length = 0;
857 }
858 if (pa_length >= size) {
859 vm_reserv_reclaim(rv);
860 return (TRUE);
861 }
862 } else
863 pa_length = 0;
864 }
865 return (FALSE);
866 }
867
868 /*
869 * Transfers the reservation underlying the given page to a new object.
870 *
871 * The object must be locked.
872 */
873 void
874 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
875 vm_pindex_t old_object_offset)
876 {
877 vm_reserv_t rv;
878
879 VM_OBJECT_ASSERT_WLOCKED(new_object);
880 rv = vm_reserv_from_page(m);
881 if (rv->object == old_object) {
882 mtx_lock(&vm_page_queue_free_mtx);
883 if (rv->object == old_object) {
884 LIST_REMOVE(rv, objq);
885 LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
886 rv->object = new_object;
887 rv->pindex -= old_object_offset;
888 }
889 mtx_unlock(&vm_page_queue_free_mtx);
890 }
891 }
892
893 /*
894 * Allocates the virtual and physical memory required by the reservation
895 * management system's data structures, in particular, the reservation array.
896 */
897 vm_paddr_t
898 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
899 {
900 vm_paddr_t new_end;
901 size_t size;
902
903 /*
904 * Calculate the size (in bytes) of the reservation array. Round up
905 * from "high_water" because every small page is mapped to an element
906 * in the reservation array based on its physical address. Thus, the
907 * number of elements in the reservation array can be greater than the
908 * number of superpages.
909 */
910 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
911
912 /*
913 * Allocate and map the physical memory for the reservation array. The
914 * next available virtual address is returned by reference.
915 */
916 new_end = end - round_page(size);
917 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
918 VM_PROT_READ | VM_PROT_WRITE);
919 bzero(vm_reserv_array, size);
920
921 /*
922 * Return the next available physical address.
923 */
924 return (new_end);
925 }
926
927 #endif /* VM_NRESERVLEVEL > 0 */
Cache object: c86d215a560f69107aa1d785a6d88900
|