FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_reserv.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Superpage reservation management module
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pagequeue.h>
67 #include <vm/vm_phys.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72 * The reservation system supports the speculative allocation of large physical
73 * pages ("superpages"). Speculative allocation enables the fully automatic
74 * utilization of superpages by the virtual memory system. In other words, no
75 * programmatic directives are required to use superpages.
76 */
77
78 #if VM_NRESERVLEVEL > 0
79
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER
82 #endif
83
84 /*
85 * The number of small pages that are contained in a level 0 reservation
86 */
87 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER)
88 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX)
89
90 /*
91 * The number of bits by which a physical address is shifted to obtain the
92 * reservation number
93 */
94 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
95
96 /*
97 * The size of a level 0 reservation in bytes
98 */
99 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT)
100
101 /*
102 * Computes the index of the small page underlying the given (object, pindex)
103 * within the reservation's array of small pages.
104 */
105 #define VM_RESERV_INDEX(object, pindex) \
106 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107
108 /*
109 * The size of a population map entry
110 */
111 typedef u_long popmap_t;
112
113 /*
114 * The number of bits in a population map entry
115 */
116 #define NBPOPMAP (NBBY * sizeof(popmap_t))
117
118 /*
119 * The number of population map entries in a reservation
120 */
121 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define NPOPMAP_MAX howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123
124 /*
125 * Number of elapsed ticks before we update the LRU queue position. Used
126 * to reduce contention and churn on the list.
127 */
128 #define PARTPOPSLOP 1
129
130 /*
131 * Clear a bit in the population map.
132 */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136
137 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139
140 /*
141 * Set a bit in the population map.
142 */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146
147 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149
150 /*
151 * Is a bit in the population map clear?
152 */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156
157 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159
160 /*
161 * Is a bit in the population map set?
162 */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166
167 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169
170 /*
171 * The reservation structure
172 *
173 * A reservation structure is constructed whenever a large physical page is
174 * speculatively allocated to an object. The reservation provides the small
175 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176 * within that object. The reservation's "popcnt" tracks the number of these
177 * small physical pages that are in use at any given time. When and if the
178 * reservation is not fully utilized, it appears in the queue of partially
179 * populated reservations. The reservation always appears on the containing
180 * object's list of reservations.
181 *
182 * A partially populated reservation can be broken and reclaimed at any time.
183 *
184 * c - constant after boot
185 * d - vm_reserv_domain_lock
186 * o - vm_reserv_object_lock
187 * r - vm_reserv_lock
188 * s - vm_reserv_domain_scan_lock
189 */
190 struct vm_reserv {
191 struct mtx lock; /* reservation lock. */
192 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */
193 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */
194 vm_object_t object; /* (o, r) containing object */
195 vm_pindex_t pindex; /* (o, r) offset in object */
196 vm_page_t pages; /* (c) first page */
197 uint16_t popcnt; /* (r) # of pages in use */
198 uint8_t domain; /* (c) NUMA domain. */
199 char inpartpopq; /* (d, r) */
200 int lasttick; /* (r) last pop update tick. */
201 popmap_t popmap[NPOPMAP_MAX]; /* (r) bit vector, used pages */
202 };
203
204 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
205
206 #define vm_reserv_lockptr(rv) (&(rv)->lock)
207 #define vm_reserv_assert_locked(rv) \
208 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
209 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv))
210 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv))
211 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv))
212
213 /*
214 * The reservation array
215 *
216 * This array is analoguous in function to vm_page_array. It differs in the
217 * respect that it may contain a greater number of useful reservation
218 * structures than there are (physical) superpages. These "invalid"
219 * reservation structures exist to trade-off space for time in the
220 * implementation of vm_reserv_from_page(). Invalid reservation structures are
221 * distinguishable from "valid" reservation structures by inspecting the
222 * reservation's "pages" field. Invalid reservation structures have a NULL
223 * "pages" field.
224 *
225 * vm_reserv_from_page() maps a small (physical) page to an element of this
226 * array by computing a physical reservation number from the page's physical
227 * address. The physical reservation number is used as the array index.
228 *
229 * An "active" reservation is a valid reservation structure that has a non-NULL
230 * "object" field and a non-zero "popcnt" field. In other words, every active
231 * reservation belongs to a particular object. Moreover, every active
232 * reservation has an entry in the containing object's list of reservations.
233 */
234 static vm_reserv_t vm_reserv_array;
235
236 /*
237 * The per-domain partially populated reservation queues
238 *
239 * These queues enable the fast recovery of an unused free small page from a
240 * partially populated reservation. The reservation at the head of a queue
241 * is the least recently changed, partially populated reservation.
242 *
243 * Access to this queue is synchronized by the per-domain reservation lock.
244 * Threads reclaiming free pages from the queue must hold the per-domain scan
245 * lock.
246 */
247 struct vm_reserv_domain {
248 struct mtx lock;
249 struct vm_reserv_queue partpop; /* (d) */
250 struct vm_reserv marker; /* (d, s) scan marker/lock */
251 } __aligned(CACHE_LINE_SIZE);
252
253 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
254
255 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock)
256 #define vm_reserv_domain_assert_locked(d) \
257 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
258 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d))
259 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d))
260
261 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock)
262 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock)
263
264 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
265 "Reservation Info");
266
267 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
268 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
269 &vm_reserv_broken, "Cumulative number of broken reservations");
270
271 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
272 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
273 &vm_reserv_freed, "Cumulative number of freed reservations");
274
275 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
276
277 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
278 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
279
280 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
281
282 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
283 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
284 sysctl_vm_reserv_partpopq, "A",
285 "Partially populated reservation queues");
286
287 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
288 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
289 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
290
291 /*
292 * The object lock pool is used to synchronize the rvq. We can not use a
293 * pool mutex because it is required before malloc works.
294 *
295 * The "hash" function could be made faster without divide and modulo.
296 */
297 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU
298
299 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
300
301 #define vm_reserv_object_lock_idx(object) \
302 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
303 #define vm_reserv_object_lock_ptr(object) \
304 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
305 #define vm_reserv_object_lock(object) \
306 mtx_lock(vm_reserv_object_lock_ptr((object)))
307 #define vm_reserv_object_unlock(object) \
308 mtx_unlock(vm_reserv_object_lock_ptr((object)))
309
310 static void vm_reserv_break(vm_reserv_t rv);
311 static void vm_reserv_depopulate(vm_reserv_t rv, int index);
312 static vm_reserv_t vm_reserv_from_page(vm_page_t m);
313 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv,
314 vm_pindex_t pindex);
315 static void vm_reserv_populate(vm_reserv_t rv, int index);
316 static void vm_reserv_reclaim(vm_reserv_t rv);
317
318 /*
319 * Returns the current number of full reservations.
320 *
321 * Since the number of full reservations is computed without acquiring any
322 * locks, the returned value is inexact.
323 */
324 static int
325 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
326 {
327 vm_paddr_t paddr;
328 struct vm_phys_seg *seg;
329 vm_reserv_t rv;
330 int fullpop, segind;
331
332 fullpop = 0;
333 for (segind = 0; segind < vm_phys_nsegs; segind++) {
334 seg = &vm_phys_segs[segind];
335 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
336 #ifdef VM_PHYSSEG_SPARSE
337 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
338 (seg->start >> VM_LEVEL_0_SHIFT);
339 #else
340 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
341 #endif
342 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
343 VM_LEVEL_0_SIZE <= seg->end) {
344 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
345 paddr += VM_LEVEL_0_SIZE;
346 rv++;
347 }
348 }
349 return (sysctl_handle_int(oidp, &fullpop, 0, req));
350 }
351
352 /*
353 * Describes the current state of the partially populated reservation queue.
354 */
355 static int
356 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
357 {
358 struct sbuf sbuf;
359 vm_reserv_t rv;
360 int counter, error, domain, level, unused_pages;
361
362 error = sysctl_wire_old_buffer(req, 0);
363 if (error != 0)
364 return (error);
365 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
366 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n");
367 for (domain = 0; domain < vm_ndomains; domain++) {
368 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
369 counter = 0;
370 unused_pages = 0;
371 vm_reserv_domain_lock(domain);
372 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
373 if (rv == &vm_rvd[domain].marker)
374 continue;
375 counter++;
376 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
377 }
378 vm_reserv_domain_unlock(domain);
379 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
380 domain, level,
381 unused_pages * ((int)PAGE_SIZE / 1024), counter);
382 }
383 }
384 error = sbuf_finish(&sbuf);
385 sbuf_delete(&sbuf);
386 return (error);
387 }
388
389 /*
390 * Remove a reservation from the object's objq.
391 */
392 static void
393 vm_reserv_remove(vm_reserv_t rv)
394 {
395 vm_object_t object;
396
397 vm_reserv_assert_locked(rv);
398 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
399 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
400 KASSERT(rv->object != NULL,
401 ("vm_reserv_remove: reserv %p is free", rv));
402 KASSERT(!rv->inpartpopq,
403 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
404 object = rv->object;
405 vm_reserv_object_lock(object);
406 LIST_REMOVE(rv, objq);
407 rv->object = NULL;
408 vm_reserv_object_unlock(object);
409 }
410
411 /*
412 * Insert a new reservation into the object's objq.
413 */
414 static void
415 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
416 {
417 int i;
418
419 vm_reserv_assert_locked(rv);
420 CTR6(KTR_VM,
421 "%s: rv %p(%p) object %p new %p popcnt %d",
422 __FUNCTION__, rv, rv->pages, rv->object, object,
423 rv->popcnt);
424 KASSERT(rv->object == NULL,
425 ("vm_reserv_insert: reserv %p isn't free", rv));
426 KASSERT(rv->popcnt == 0,
427 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
428 KASSERT(!rv->inpartpopq,
429 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
430 for (i = 0; i < NPOPMAP; i++)
431 KASSERT(rv->popmap[i] == 0,
432 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
433 vm_reserv_object_lock(object);
434 rv->pindex = pindex;
435 rv->object = object;
436 rv->lasttick = ticks;
437 LIST_INSERT_HEAD(&object->rvq, rv, objq);
438 vm_reserv_object_unlock(object);
439 }
440
441 /*
442 * Reduces the given reservation's population count. If the population count
443 * becomes zero, the reservation is destroyed. Additionally, moves the
444 * reservation to the tail of the partially populated reservation queue if the
445 * population count is non-zero.
446 */
447 static void
448 vm_reserv_depopulate(vm_reserv_t rv, int index)
449 {
450 struct vm_domain *vmd;
451
452 vm_reserv_assert_locked(rv);
453 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
454 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
455 KASSERT(rv->object != NULL,
456 ("vm_reserv_depopulate: reserv %p is free", rv));
457 KASSERT(popmap_is_set(rv->popmap, index),
458 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
459 index));
460 KASSERT(rv->popcnt > 0,
461 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
462 KASSERT(rv->domain < vm_ndomains,
463 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
464 rv, rv->domain));
465 if (rv->popcnt == VM_LEVEL_0_NPAGES) {
466 KASSERT(rv->pages->psind == 1,
467 ("vm_reserv_depopulate: reserv %p is already demoted",
468 rv));
469 rv->pages->psind = 0;
470 }
471 popmap_clear(rv->popmap, index);
472 rv->popcnt--;
473 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
474 rv->popcnt == 0) {
475 vm_reserv_domain_lock(rv->domain);
476 if (rv->inpartpopq) {
477 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
478 rv->inpartpopq = FALSE;
479 }
480 if (rv->popcnt != 0) {
481 rv->inpartpopq = TRUE;
482 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
483 partpopq);
484 }
485 vm_reserv_domain_unlock(rv->domain);
486 rv->lasttick = ticks;
487 }
488 vmd = VM_DOMAIN(rv->domain);
489 if (rv->popcnt == 0) {
490 vm_reserv_remove(rv);
491 vm_domain_free_lock(vmd);
492 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
493 vm_domain_free_unlock(vmd);
494 counter_u64_add(vm_reserv_freed, 1);
495 }
496 vm_domain_freecnt_inc(vmd, 1);
497 }
498
499 /*
500 * Returns the reservation to which the given page might belong.
501 */
502 static __inline vm_reserv_t
503 vm_reserv_from_page(vm_page_t m)
504 {
505 #ifdef VM_PHYSSEG_SPARSE
506 struct vm_phys_seg *seg;
507
508 seg = &vm_phys_segs[m->segind];
509 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) -
510 (seg->start >> VM_LEVEL_0_SHIFT));
511 #else
512 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
513 #endif
514 }
515
516 /*
517 * Returns an existing reservation or NULL and initialized successor pointer.
518 */
519 static vm_reserv_t
520 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
521 vm_page_t mpred, vm_page_t *msuccp)
522 {
523 vm_reserv_t rv;
524 vm_page_t msucc;
525
526 msucc = NULL;
527 if (mpred != NULL) {
528 KASSERT(mpred->object == object,
529 ("vm_reserv_from_object: object doesn't contain mpred"));
530 KASSERT(mpred->pindex < pindex,
531 ("vm_reserv_from_object: mpred doesn't precede pindex"));
532 rv = vm_reserv_from_page(mpred);
533 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
534 goto found;
535 msucc = TAILQ_NEXT(mpred, listq);
536 } else
537 msucc = TAILQ_FIRST(&object->memq);
538 if (msucc != NULL) {
539 KASSERT(msucc->pindex > pindex,
540 ("vm_reserv_from_object: msucc doesn't succeed pindex"));
541 rv = vm_reserv_from_page(msucc);
542 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
543 goto found;
544 }
545 rv = NULL;
546
547 found:
548 *msuccp = msucc;
549
550 return (rv);
551 }
552
553 /*
554 * Returns TRUE if the given reservation contains the given page index and
555 * FALSE otherwise.
556 */
557 static __inline boolean_t
558 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
559 {
560
561 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
562 }
563
564 /*
565 * Increases the given reservation's population count. Moves the reservation
566 * to the tail of the partially populated reservation queue.
567 */
568 static void
569 vm_reserv_populate(vm_reserv_t rv, int index)
570 {
571
572 vm_reserv_assert_locked(rv);
573 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
574 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
575 KASSERT(rv->object != NULL,
576 ("vm_reserv_populate: reserv %p is free", rv));
577 KASSERT(popmap_is_clear(rv->popmap, index),
578 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
579 index));
580 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
581 ("vm_reserv_populate: reserv %p is already full", rv));
582 KASSERT(rv->pages->psind == 0,
583 ("vm_reserv_populate: reserv %p is already promoted", rv));
584 KASSERT(rv->domain < vm_ndomains,
585 ("vm_reserv_populate: reserv %p's domain is corrupted %d",
586 rv, rv->domain));
587 popmap_set(rv->popmap, index);
588 rv->popcnt++;
589 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
590 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
591 return;
592 rv->lasttick = ticks;
593 vm_reserv_domain_lock(rv->domain);
594 if (rv->inpartpopq) {
595 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
596 rv->inpartpopq = FALSE;
597 }
598 if (rv->popcnt < VM_LEVEL_0_NPAGES) {
599 rv->inpartpopq = TRUE;
600 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
601 } else {
602 KASSERT(rv->pages->psind == 0,
603 ("vm_reserv_populate: reserv %p is already promoted",
604 rv));
605 rv->pages->psind = 1;
606 }
607 vm_reserv_domain_unlock(rv->domain);
608 }
609
610 /*
611 * Allocates a contiguous set of physical pages of the given size "npages"
612 * from existing or newly created reservations. All of the physical pages
613 * must be at or above the given physical address "low" and below the given
614 * physical address "high". The given value "alignment" determines the
615 * alignment of the first physical page in the set. If the given value
616 * "boundary" is non-zero, then the set of physical pages cannot cross any
617 * physical address boundary that is a multiple of that value. Both
618 * "alignment" and "boundary" must be a power of two.
619 *
620 * The page "mpred" must immediately precede the offset "pindex" within the
621 * specified object.
622 *
623 * The object must be locked.
624 */
625 vm_page_t
626 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
627 int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
628 u_long alignment, vm_paddr_t boundary)
629 {
630 struct vm_domain *vmd;
631 vm_paddr_t pa, size;
632 vm_page_t m, m_ret, msucc;
633 vm_pindex_t first, leftcap, rightcap;
634 vm_reserv_t rv;
635 u_long allocpages, maxpages, minpages;
636 int i, index, n;
637
638 VM_OBJECT_ASSERT_WLOCKED(object);
639 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
640
641 /*
642 * Is a reservation fundamentally impossible?
643 */
644 if (pindex < VM_RESERV_INDEX(object, pindex) ||
645 pindex + npages > object->size)
646 return (NULL);
647
648 /*
649 * All reservations of a particular size have the same alignment.
650 * Assuming that the first page is allocated from a reservation, the
651 * least significant bits of its physical address can be determined
652 * from its offset from the beginning of the reservation and the size
653 * of the reservation.
654 *
655 * Could the specified index within a reservation of the smallest
656 * possible size satisfy the alignment and boundary requirements?
657 */
658 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
659 if ((pa & (alignment - 1)) != 0)
660 return (NULL);
661 size = npages << PAGE_SHIFT;
662 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
663 return (NULL);
664
665 /*
666 * Look for an existing reservation.
667 */
668 rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
669 if (rv != NULL) {
670 KASSERT(object != kernel_object || rv->domain == domain,
671 ("vm_reserv_alloc_contig: domain mismatch"));
672 index = VM_RESERV_INDEX(object, pindex);
673 /* Does the allocation fit within the reservation? */
674 if (index + npages > VM_LEVEL_0_NPAGES)
675 return (NULL);
676 domain = rv->domain;
677 vmd = VM_DOMAIN(domain);
678 vm_reserv_lock(rv);
679 /* Handle reclaim race. */
680 if (rv->object != object)
681 goto out;
682 m = &rv->pages[index];
683 pa = VM_PAGE_TO_PHYS(m);
684 if (pa < low || pa + size > high ||
685 (pa & (alignment - 1)) != 0 ||
686 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
687 goto out;
688 /* Handle vm_page_rename(m, new_object, ...). */
689 for (i = 0; i < npages; i++)
690 if (popmap_is_set(rv->popmap, index + i))
691 goto out;
692 if (!vm_domain_allocate(vmd, req, npages))
693 goto out;
694 for (i = 0; i < npages; i++)
695 vm_reserv_populate(rv, index + i);
696 vm_reserv_unlock(rv);
697 return (m);
698 out:
699 vm_reserv_unlock(rv);
700 return (NULL);
701 }
702
703 /*
704 * Could at least one reservation fit between the first index to the
705 * left that can be used ("leftcap") and the first index to the right
706 * that cannot be used ("rightcap")?
707 *
708 * We must synchronize with the reserv object lock to protect the
709 * pindex/object of the resulting reservations against rename while
710 * we are inspecting.
711 */
712 first = pindex - VM_RESERV_INDEX(object, pindex);
713 minpages = VM_RESERV_INDEX(object, pindex) + npages;
714 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
715 allocpages = maxpages;
716 vm_reserv_object_lock(object);
717 if (mpred != NULL) {
718 if ((rv = vm_reserv_from_page(mpred))->object != object)
719 leftcap = mpred->pindex + 1;
720 else
721 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
722 if (leftcap > first) {
723 vm_reserv_object_unlock(object);
724 return (NULL);
725 }
726 }
727 if (msucc != NULL) {
728 if ((rv = vm_reserv_from_page(msucc))->object != object)
729 rightcap = msucc->pindex;
730 else
731 rightcap = rv->pindex;
732 if (first + maxpages > rightcap) {
733 if (maxpages == VM_LEVEL_0_NPAGES) {
734 vm_reserv_object_unlock(object);
735 return (NULL);
736 }
737
738 /*
739 * At least one reservation will fit between "leftcap"
740 * and "rightcap". However, a reservation for the
741 * last of the requested pages will not fit. Reduce
742 * the size of the upcoming allocation accordingly.
743 */
744 allocpages = minpages;
745 }
746 }
747 vm_reserv_object_unlock(object);
748
749 /*
750 * Would the last new reservation extend past the end of the object?
751 *
752 * If the object is unlikely to grow don't allocate a reservation for
753 * the tail.
754 */
755 if ((object->flags & OBJ_ANON) == 0 &&
756 first + maxpages > object->size) {
757 if (maxpages == VM_LEVEL_0_NPAGES)
758 return (NULL);
759 allocpages = minpages;
760 }
761
762 /*
763 * Allocate the physical pages. The alignment and boundary specified
764 * for this allocation may be different from the alignment and
765 * boundary specified for the requested pages. For instance, the
766 * specified index may not be the first page within the first new
767 * reservation.
768 */
769 m = NULL;
770 vmd = VM_DOMAIN(domain);
771 if (vm_domain_allocate(vmd, req, npages)) {
772 vm_domain_free_lock(vmd);
773 m = vm_phys_alloc_contig(domain, allocpages, low, high,
774 ulmax(alignment, VM_LEVEL_0_SIZE),
775 boundary > VM_LEVEL_0_SIZE ? boundary : 0);
776 vm_domain_free_unlock(vmd);
777 if (m == NULL) {
778 vm_domain_freecnt_inc(vmd, npages);
779 return (NULL);
780 }
781 } else
782 return (NULL);
783 KASSERT(vm_page_domain(m) == domain,
784 ("vm_reserv_alloc_contig: Page domain does not match requested."));
785
786 /*
787 * The allocated physical pages always begin at a reservation
788 * boundary, but they do not always end at a reservation boundary.
789 * Initialize every reservation that is completely covered by the
790 * allocated physical pages.
791 */
792 m_ret = NULL;
793 index = VM_RESERV_INDEX(object, pindex);
794 do {
795 rv = vm_reserv_from_page(m);
796 KASSERT(rv->pages == m,
797 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
798 rv));
799 vm_reserv_lock(rv);
800 vm_reserv_insert(rv, object, first);
801 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
802 for (i = 0; i < n; i++)
803 vm_reserv_populate(rv, index + i);
804 npages -= n;
805 if (m_ret == NULL) {
806 m_ret = &rv->pages[index];
807 index = 0;
808 }
809 vm_reserv_unlock(rv);
810 m += VM_LEVEL_0_NPAGES;
811 first += VM_LEVEL_0_NPAGES;
812 allocpages -= VM_LEVEL_0_NPAGES;
813 } while (allocpages >= VM_LEVEL_0_NPAGES);
814 return (m_ret);
815 }
816
817 /*
818 * Allocate a physical page from an existing or newly created reservation.
819 *
820 * The page "mpred" must immediately precede the offset "pindex" within the
821 * specified object.
822 *
823 * The object must be locked.
824 */
825 vm_page_t
826 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
827 int req, vm_page_t mpred)
828 {
829 struct vm_domain *vmd;
830 vm_page_t m, msucc;
831 vm_pindex_t first, leftcap, rightcap;
832 vm_reserv_t rv;
833 int index;
834
835 VM_OBJECT_ASSERT_WLOCKED(object);
836
837 /*
838 * Is a reservation fundamentally impossible?
839 */
840 if (pindex < VM_RESERV_INDEX(object, pindex) ||
841 pindex >= object->size)
842 return (NULL);
843
844 /*
845 * Look for an existing reservation.
846 */
847 rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
848 if (rv != NULL) {
849 KASSERT(object != kernel_object || rv->domain == domain,
850 ("vm_reserv_alloc_page: domain mismatch"));
851 domain = rv->domain;
852 vmd = VM_DOMAIN(domain);
853 index = VM_RESERV_INDEX(object, pindex);
854 m = &rv->pages[index];
855 vm_reserv_lock(rv);
856 /* Handle reclaim race. */
857 if (rv->object != object ||
858 /* Handle vm_page_rename(m, new_object, ...). */
859 popmap_is_set(rv->popmap, index)) {
860 m = NULL;
861 goto out;
862 }
863 if (vm_domain_allocate(vmd, req, 1) == 0)
864 m = NULL;
865 else
866 vm_reserv_populate(rv, index);
867 out:
868 vm_reserv_unlock(rv);
869 return (m);
870 }
871
872 /*
873 * Could a reservation fit between the first index to the left that
874 * can be used and the first index to the right that cannot be used?
875 *
876 * We must synchronize with the reserv object lock to protect the
877 * pindex/object of the resulting reservations against rename while
878 * we are inspecting.
879 */
880 first = pindex - VM_RESERV_INDEX(object, pindex);
881 vm_reserv_object_lock(object);
882 if (mpred != NULL) {
883 if ((rv = vm_reserv_from_page(mpred))->object != object)
884 leftcap = mpred->pindex + 1;
885 else
886 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
887 if (leftcap > first) {
888 vm_reserv_object_unlock(object);
889 return (NULL);
890 }
891 }
892 if (msucc != NULL) {
893 if ((rv = vm_reserv_from_page(msucc))->object != object)
894 rightcap = msucc->pindex;
895 else
896 rightcap = rv->pindex;
897 if (first + VM_LEVEL_0_NPAGES > rightcap) {
898 vm_reserv_object_unlock(object);
899 return (NULL);
900 }
901 }
902 vm_reserv_object_unlock(object);
903
904 /*
905 * Would the last new reservation extend past the end of the object?
906 *
907 * If the object is unlikely to grow don't allocate a reservation for
908 * the tail.
909 */
910 if ((object->flags & OBJ_ANON) == 0 &&
911 first + VM_LEVEL_0_NPAGES > object->size)
912 return (NULL);
913
914 /*
915 * Allocate and populate the new reservation.
916 */
917 m = NULL;
918 vmd = VM_DOMAIN(domain);
919 if (vm_domain_allocate(vmd, req, 1)) {
920 vm_domain_free_lock(vmd);
921 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
922 VM_LEVEL_0_ORDER);
923 vm_domain_free_unlock(vmd);
924 if (m == NULL) {
925 vm_domain_freecnt_inc(vmd, 1);
926 return (NULL);
927 }
928 } else
929 return (NULL);
930 rv = vm_reserv_from_page(m);
931 vm_reserv_lock(rv);
932 KASSERT(rv->pages == m,
933 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
934 vm_reserv_insert(rv, object, first);
935 index = VM_RESERV_INDEX(object, pindex);
936 vm_reserv_populate(rv, index);
937 vm_reserv_unlock(rv);
938
939 return (&rv->pages[index]);
940 }
941
942 /*
943 * Breaks the given reservation. All free pages in the reservation
944 * are returned to the physical memory allocator. The reservation's
945 * population count and map are reset to their initial state.
946 *
947 * The given reservation must not be in the partially populated reservation
948 * queue.
949 */
950 static void
951 vm_reserv_break(vm_reserv_t rv)
952 {
953 u_long changes;
954 int bitpos, hi, i, lo;
955
956 vm_reserv_assert_locked(rv);
957 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
958 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
959 vm_reserv_remove(rv);
960 rv->pages->psind = 0;
961 hi = lo = -1;
962 for (i = 0; i <= NPOPMAP; i++) {
963 /*
964 * "changes" is a bitmask that marks where a new sequence of
965 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
966 * considered to be 1 if and only if lo == hi. The bits of
967 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
968 */
969 if (i == NPOPMAP)
970 changes = lo != hi;
971 else {
972 changes = rv->popmap[i];
973 changes ^= (changes << 1) | (lo == hi);
974 rv->popmap[i] = 0;
975 }
976 while (changes != 0) {
977 /*
978 * If the next change marked begins a run of 0s, set
979 * lo to mark that position. Otherwise set hi and
980 * free pages from lo up to hi.
981 */
982 bitpos = ffsl(changes) - 1;
983 changes ^= 1UL << bitpos;
984 if (lo == hi)
985 lo = NBPOPMAP * i + bitpos;
986 else {
987 hi = NBPOPMAP * i + bitpos;
988 vm_domain_free_lock(VM_DOMAIN(rv->domain));
989 vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
990 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
991 lo = hi;
992 }
993 }
994 }
995 rv->popcnt = 0;
996 counter_u64_add(vm_reserv_broken, 1);
997 }
998
999 /*
1000 * Breaks all reservations belonging to the given object.
1001 */
1002 void
1003 vm_reserv_break_all(vm_object_t object)
1004 {
1005 vm_reserv_t rv;
1006
1007 /*
1008 * This access of object->rvq is unsynchronized so that the
1009 * object rvq lock can nest after the domain_free lock. We
1010 * must check for races in the results. However, the object
1011 * lock prevents new additions, so we are guaranteed that when
1012 * it returns NULL the object is properly empty.
1013 */
1014 while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1015 vm_reserv_lock(rv);
1016 /* Reclaim race. */
1017 if (rv->object != object) {
1018 vm_reserv_unlock(rv);
1019 continue;
1020 }
1021 vm_reserv_domain_lock(rv->domain);
1022 if (rv->inpartpopq) {
1023 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1024 rv->inpartpopq = FALSE;
1025 }
1026 vm_reserv_domain_unlock(rv->domain);
1027 vm_reserv_break(rv);
1028 vm_reserv_unlock(rv);
1029 }
1030 }
1031
1032 /*
1033 * Frees the given page if it belongs to a reservation. Returns TRUE if the
1034 * page is freed and FALSE otherwise.
1035 */
1036 boolean_t
1037 vm_reserv_free_page(vm_page_t m)
1038 {
1039 vm_reserv_t rv;
1040 boolean_t ret;
1041
1042 rv = vm_reserv_from_page(m);
1043 if (rv->object == NULL)
1044 return (FALSE);
1045 vm_reserv_lock(rv);
1046 /* Re-validate after lock. */
1047 if (rv->object != NULL) {
1048 vm_reserv_depopulate(rv, m - rv->pages);
1049 ret = TRUE;
1050 } else
1051 ret = FALSE;
1052 vm_reserv_unlock(rv);
1053
1054 return (ret);
1055 }
1056
1057 /*
1058 * Initializes the reservation management system. Specifically, initializes
1059 * the reservation array.
1060 *
1061 * Requires that vm_page_array and first_page are initialized!
1062 */
1063 void
1064 vm_reserv_init(void)
1065 {
1066 vm_paddr_t paddr;
1067 struct vm_phys_seg *seg;
1068 struct vm_reserv *rv;
1069 struct vm_reserv_domain *rvd;
1070 #ifdef VM_PHYSSEG_SPARSE
1071 vm_pindex_t used;
1072 #endif
1073 int i, j, segind;
1074
1075 /*
1076 * Initialize the reservation array. Specifically, initialize the
1077 * "pages" field for every element that has an underlying superpage.
1078 */
1079 #ifdef VM_PHYSSEG_SPARSE
1080 used = 0;
1081 #endif
1082 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1083 seg = &vm_phys_segs[segind];
1084 #ifdef VM_PHYSSEG_SPARSE
1085 seg->first_reserv = &vm_reserv_array[used];
1086 used += howmany(seg->end, VM_LEVEL_0_SIZE) -
1087 seg->start / VM_LEVEL_0_SIZE;
1088 #else
1089 seg->first_reserv =
1090 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT];
1091 #endif
1092 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1093 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
1094 (seg->start >> VM_LEVEL_0_SHIFT);
1095 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1096 VM_LEVEL_0_SIZE <= seg->end) {
1097 rv->pages = PHYS_TO_VM_PAGE(paddr);
1098 rv->domain = seg->domain;
1099 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1100 paddr += VM_LEVEL_0_SIZE;
1101 rv++;
1102 }
1103 }
1104 for (i = 0; i < MAXMEMDOM; i++) {
1105 rvd = &vm_rvd[i];
1106 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1107 TAILQ_INIT(&rvd->partpop);
1108 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1109
1110 /*
1111 * Fully populated reservations should never be present in the
1112 * partially populated reservation queues.
1113 */
1114 rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1115 for (j = 0; j < NBPOPMAP; j++)
1116 popmap_set(rvd->marker.popmap, j);
1117 }
1118
1119 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1120 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1121 MTX_DEF);
1122 }
1123
1124 /*
1125 * Returns true if the given page belongs to a reservation and that page is
1126 * free. Otherwise, returns false.
1127 */
1128 bool
1129 vm_reserv_is_page_free(vm_page_t m)
1130 {
1131 vm_reserv_t rv;
1132
1133 rv = vm_reserv_from_page(m);
1134 if (rv->object == NULL)
1135 return (false);
1136 return (popmap_is_clear(rv->popmap, m - rv->pages));
1137 }
1138
1139 /*
1140 * If the given page belongs to a reservation, returns the level of that
1141 * reservation. Otherwise, returns -1.
1142 */
1143 int
1144 vm_reserv_level(vm_page_t m)
1145 {
1146 vm_reserv_t rv;
1147
1148 rv = vm_reserv_from_page(m);
1149 return (rv->object != NULL ? 0 : -1);
1150 }
1151
1152 /*
1153 * Returns a reservation level if the given page belongs to a fully populated
1154 * reservation and -1 otherwise.
1155 */
1156 int
1157 vm_reserv_level_iffullpop(vm_page_t m)
1158 {
1159 vm_reserv_t rv;
1160
1161 rv = vm_reserv_from_page(m);
1162 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1163 }
1164
1165 /*
1166 * Remove a partially populated reservation from the queue.
1167 */
1168 static void
1169 vm_reserv_dequeue(vm_reserv_t rv)
1170 {
1171
1172 vm_reserv_domain_assert_locked(rv->domain);
1173 vm_reserv_assert_locked(rv);
1174 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1175 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1176 KASSERT(rv->inpartpopq,
1177 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1178
1179 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1180 rv->inpartpopq = FALSE;
1181 }
1182
1183 /*
1184 * Breaks the given partially populated reservation, releasing its free pages
1185 * to the physical memory allocator.
1186 */
1187 static void
1188 vm_reserv_reclaim(vm_reserv_t rv)
1189 {
1190
1191 vm_reserv_assert_locked(rv);
1192 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1193 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1194 if (rv->inpartpopq) {
1195 vm_reserv_domain_lock(rv->domain);
1196 vm_reserv_dequeue(rv);
1197 vm_reserv_domain_unlock(rv->domain);
1198 }
1199 vm_reserv_break(rv);
1200 counter_u64_add(vm_reserv_reclaimed, 1);
1201 }
1202
1203 /*
1204 * Breaks a reservation near the head of the partially populated reservation
1205 * queue, releasing its free pages to the physical memory allocator. Returns
1206 * TRUE if a reservation is broken and FALSE otherwise.
1207 */
1208 bool
1209 vm_reserv_reclaim_inactive(int domain)
1210 {
1211 vm_reserv_t rv;
1212
1213 vm_reserv_domain_lock(domain);
1214 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1215 /*
1216 * A locked reservation is likely being updated or reclaimed,
1217 * so just skip ahead.
1218 */
1219 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1220 vm_reserv_dequeue(rv);
1221 break;
1222 }
1223 }
1224 vm_reserv_domain_unlock(domain);
1225 if (rv != NULL) {
1226 vm_reserv_reclaim(rv);
1227 vm_reserv_unlock(rv);
1228 return (true);
1229 }
1230 return (false);
1231 }
1232
1233 /*
1234 * Determine whether this reservation has free pages that satisfy the given
1235 * request for contiguous physical memory. Start searching from the lower
1236 * bound, defined by low_index.
1237 */
1238 static bool
1239 vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
1240 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1241 {
1242 vm_paddr_t pa, size;
1243 u_long changes;
1244 int bitpos, bits_left, i, hi, lo, n;
1245
1246 vm_reserv_assert_locked(rv);
1247 size = npages << PAGE_SHIFT;
1248 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1249 lo = (pa < low) ?
1250 ((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
1251 i = lo / NBPOPMAP;
1252 changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
1253 hi = (pa + VM_LEVEL_0_SIZE > high) ?
1254 ((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
1255 n = hi / NBPOPMAP;
1256 bits_left = hi % NBPOPMAP;
1257 hi = lo = -1;
1258 for (;;) {
1259 /*
1260 * "changes" is a bitmask that marks where a new sequence of
1261 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1262 * considered to be 1 if and only if lo == hi. The bits of
1263 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1264 */
1265 changes ^= (changes << 1) | (lo == hi);
1266 while (changes != 0) {
1267 /*
1268 * If the next change marked begins a run of 0s, set
1269 * lo to mark that position. Otherwise set hi and
1270 * look for a satisfactory first page from lo up to hi.
1271 */
1272 bitpos = ffsl(changes) - 1;
1273 changes ^= 1UL << bitpos;
1274 if (lo == hi) {
1275 lo = NBPOPMAP * i + bitpos;
1276 continue;
1277 }
1278 hi = NBPOPMAP * i + bitpos;
1279 pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1280 if ((pa & (alignment - 1)) != 0) {
1281 /* Skip to next aligned page. */
1282 lo += (((pa - 1) | (alignment - 1)) + 1) >>
1283 PAGE_SHIFT;
1284 if (lo >= VM_LEVEL_0_NPAGES)
1285 return (false);
1286 pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1287 }
1288 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1289 /* Skip to next boundary-matching page. */
1290 lo += (((pa - 1) | (boundary - 1)) + 1) >>
1291 PAGE_SHIFT;
1292 if (lo >= VM_LEVEL_0_NPAGES)
1293 return (false);
1294 pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1295 }
1296 if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
1297 return (true);
1298 lo = hi;
1299 }
1300 if (++i < n)
1301 changes = rv->popmap[i];
1302 else if (i == n)
1303 changes = bits_left == 0 ? -1UL :
1304 (rv->popmap[n] | (-1UL << bits_left));
1305 else
1306 return (false);
1307 }
1308 }
1309
1310 /*
1311 * Searches the partially populated reservation queue for the least recently
1312 * changed reservation with free pages that satisfy the given request for
1313 * contiguous physical memory. If a satisfactory reservation is found, it is
1314 * broken. Returns true if a reservation is broken and false otherwise.
1315 */
1316 bool
1317 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1318 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1319 {
1320 struct vm_reserv_queue *queue;
1321 vm_paddr_t pa, size;
1322 vm_reserv_t marker, rv, rvn;
1323
1324 if (npages > VM_LEVEL_0_NPAGES - 1)
1325 return (false);
1326 marker = &vm_rvd[domain].marker;
1327 queue = &vm_rvd[domain].partpop;
1328 size = npages << PAGE_SHIFT;
1329
1330 vm_reserv_domain_scan_lock(domain);
1331 vm_reserv_domain_lock(domain);
1332 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1333 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1334 if (pa + VM_LEVEL_0_SIZE - size < low) {
1335 /* This entire reservation is too low; go to next. */
1336 continue;
1337 }
1338 if (pa + size > high) {
1339 /* This entire reservation is too high; go to next. */
1340 continue;
1341 }
1342
1343 if (vm_reserv_trylock(rv) == 0) {
1344 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1345 vm_reserv_domain_unlock(domain);
1346 vm_reserv_lock(rv);
1347 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) !=
1348 rv) {
1349 vm_reserv_unlock(rv);
1350 vm_reserv_domain_lock(domain);
1351 rvn = TAILQ_NEXT(marker, partpopq);
1352 TAILQ_REMOVE(queue, marker, partpopq);
1353 continue;
1354 }
1355 vm_reserv_domain_lock(domain);
1356 TAILQ_REMOVE(queue, marker, partpopq);
1357 }
1358 vm_reserv_domain_unlock(domain);
1359 if (vm_reserv_test_contig(rv, npages, low, high,
1360 alignment, boundary)) {
1361 vm_reserv_domain_scan_unlock(domain);
1362 vm_reserv_reclaim(rv);
1363 vm_reserv_unlock(rv);
1364 return (true);
1365 }
1366 vm_reserv_domain_lock(domain);
1367 rvn = TAILQ_NEXT(rv, partpopq);
1368 vm_reserv_unlock(rv);
1369 }
1370 vm_reserv_domain_unlock(domain);
1371 vm_reserv_domain_scan_unlock(domain);
1372 return (false);
1373 }
1374
1375 /*
1376 * Transfers the reservation underlying the given page to a new object.
1377 *
1378 * The object must be locked.
1379 */
1380 void
1381 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1382 vm_pindex_t old_object_offset)
1383 {
1384 vm_reserv_t rv;
1385
1386 VM_OBJECT_ASSERT_WLOCKED(new_object);
1387 rv = vm_reserv_from_page(m);
1388 if (rv->object == old_object) {
1389 vm_reserv_lock(rv);
1390 CTR6(KTR_VM,
1391 "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1392 __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1393 rv->inpartpopq);
1394 if (rv->object == old_object) {
1395 vm_reserv_object_lock(old_object);
1396 rv->object = NULL;
1397 LIST_REMOVE(rv, objq);
1398 vm_reserv_object_unlock(old_object);
1399 vm_reserv_object_lock(new_object);
1400 rv->object = new_object;
1401 rv->pindex -= old_object_offset;
1402 LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1403 vm_reserv_object_unlock(new_object);
1404 }
1405 vm_reserv_unlock(rv);
1406 }
1407 }
1408
1409 /*
1410 * Returns the size (in bytes) of a reservation of the specified level.
1411 */
1412 int
1413 vm_reserv_size(int level)
1414 {
1415
1416 switch (level) {
1417 case 0:
1418 return (VM_LEVEL_0_SIZE);
1419 case -1:
1420 return (PAGE_SIZE);
1421 default:
1422 return (0);
1423 }
1424 }
1425
1426 /*
1427 * Allocates the virtual and physical memory required by the reservation
1428 * management system's data structures, in particular, the reservation array.
1429 */
1430 vm_paddr_t
1431 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1432 {
1433 vm_paddr_t new_end;
1434 vm_pindex_t count;
1435 size_t size;
1436 int i;
1437
1438 count = 0;
1439 for (i = 0; i < vm_phys_nsegs; i++) {
1440 #ifdef VM_PHYSSEG_SPARSE
1441 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) -
1442 vm_phys_segs[i].start / VM_LEVEL_0_SIZE;
1443 #else
1444 count = MAX(count,
1445 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE));
1446 #endif
1447 }
1448
1449 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1450 #ifdef VM_PHYSSEG_SPARSE
1451 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) -
1452 phys_avail[i] / VM_LEVEL_0_SIZE;
1453 #else
1454 count = MAX(count,
1455 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE));
1456 #endif
1457 }
1458
1459 /*
1460 * Calculate the size (in bytes) of the reservation array. Rounding up
1461 * for partial superpages at boundaries, as every small page is mapped
1462 * to an element in the reservation array based on its physical address.
1463 * Thus, the number of elements in the reservation array can be greater
1464 * than the number of superpages.
1465 */
1466 size = count * sizeof(struct vm_reserv);
1467
1468 /*
1469 * Allocate and map the physical memory for the reservation array. The
1470 * next available virtual address is returned by reference.
1471 */
1472 new_end = end - round_page(size);
1473 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1474 VM_PROT_READ | VM_PROT_WRITE);
1475 bzero(vm_reserv_array, size);
1476
1477 /*
1478 * Return the next available physical address.
1479 */
1480 return (new_end);
1481 }
1482
1483 /*
1484 * Returns the superpage containing the given page.
1485 */
1486 vm_page_t
1487 vm_reserv_to_superpage(vm_page_t m)
1488 {
1489 vm_reserv_t rv;
1490
1491 VM_OBJECT_ASSERT_LOCKED(m->object);
1492 rv = vm_reserv_from_page(m);
1493 if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1494 m = rv->pages;
1495 else
1496 m = NULL;
1497
1498 return (m);
1499 }
1500
1501 #endif /* VM_NRESERVLEVEL > 0 */
Cache object: d5633b71a6c94490ead96e5d2c1e6b43
|