FreeBSD/Linux Kernel Cross Reference
sys/vm/vnode_pager.c
1 /*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 */
42
43 /*
44 * Page to/from files (vnodes).
45 */
46
47 /*
48 * TODO:
49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 * greatly re-simplify the vnode_pager.
51 */
52
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55
56 #include "opt_vm.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70
71 #include <machine/atomic.h>
72
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83 daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89 int *, vop_getpages_iodone_t, void *);
90 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93 vm_ooffset_t, struct ucred *cred);
94 static int vnode_pager_generic_getpages_done(struct buf *);
95 static void vnode_pager_generic_getpages_done_async(struct buf *);
96
97 struct pagerops vnodepagerops = {
98 .pgo_alloc = vnode_pager_alloc,
99 .pgo_dealloc = vnode_pager_dealloc,
100 .pgo_getpages = vnode_pager_getpages,
101 .pgo_getpages_async = vnode_pager_getpages_async,
102 .pgo_putpages = vnode_pager_putpages,
103 .pgo_haspage = vnode_pager_haspage,
104 };
105
106 int vnode_pbuf_freecnt;
107 int vnode_async_pbuf_freecnt;
108
109 /* Create the VM system backing object for this vnode */
110 int
111 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112 {
113 vm_object_t object;
114 vm_ooffset_t size = isize;
115 struct vattr va;
116
117 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118 return (0);
119
120 while ((object = vp->v_object) != NULL) {
121 VM_OBJECT_WLOCK(object);
122 if (!(object->flags & OBJ_DEAD)) {
123 VM_OBJECT_WUNLOCK(object);
124 return (0);
125 }
126 VOP_UNLOCK(vp, 0);
127 vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130 }
131
132 if (size == 0) {
133 if (vn_isdisk(vp, NULL)) {
134 size = IDX_TO_OFF(INT_MAX);
135 } else {
136 if (VOP_GETATTR(vp, &va, td->td_ucred))
137 return (0);
138 size = va.va_size;
139 }
140 }
141
142 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143 /*
144 * Dereference the reference we just created. This assumes
145 * that the object is associated with the vp.
146 */
147 VM_OBJECT_WLOCK(object);
148 object->ref_count--;
149 VM_OBJECT_WUNLOCK(object);
150 vrele(vp);
151
152 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153
154 return (0);
155 }
156
157 void
158 vnode_destroy_vobject(struct vnode *vp)
159 {
160 struct vm_object *obj;
161
162 obj = vp->v_object;
163 if (obj == NULL)
164 return;
165 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166 VM_OBJECT_WLOCK(obj);
167 umtx_shm_object_terminated(obj);
168 if (obj->ref_count == 0) {
169 /*
170 * don't double-terminate the object
171 */
172 if ((obj->flags & OBJ_DEAD) == 0) {
173 vm_object_terminate(obj);
174 } else {
175 /*
176 * Waiters were already handled during object
177 * termination. The exclusive vnode lock hopefully
178 * prevented new waiters from referencing the dying
179 * object.
180 */
181 KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182 ("OBJ_DISCONNECTWNT set obj %p flags %x",
183 obj, obj->flags));
184 vp->v_object = NULL;
185 VM_OBJECT_WUNLOCK(obj);
186 }
187 } else {
188 /*
189 * Woe to the process that tries to page now :-).
190 */
191 vm_pager_deallocate(obj);
192 VM_OBJECT_WUNLOCK(obj);
193 }
194 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195 }
196
197
198 /*
199 * Allocate (or lookup) pager for a vnode.
200 * Handle is a vnode pointer.
201 *
202 * MPSAFE
203 */
204 vm_object_t
205 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206 vm_ooffset_t offset, struct ucred *cred)
207 {
208 vm_object_t object;
209 struct vnode *vp;
210
211 /*
212 * Pageout to vnode, no can do yet.
213 */
214 if (handle == NULL)
215 return (NULL);
216
217 vp = (struct vnode *) handle;
218
219 /*
220 * If the object is being terminated, wait for it to
221 * go away.
222 */
223 retry:
224 while ((object = vp->v_object) != NULL) {
225 VM_OBJECT_WLOCK(object);
226 if ((object->flags & OBJ_DEAD) == 0)
227 break;
228 vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230 }
231
232 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233
234 if (object == NULL) {
235 /*
236 * Add an object of the appropriate size
237 */
238 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239
240 object->un_pager.vnp.vnp_size = size;
241 object->un_pager.vnp.writemappings = 0;
242
243 object->handle = handle;
244 VI_LOCK(vp);
245 if (vp->v_object != NULL) {
246 /*
247 * Object has been created while we were sleeping
248 */
249 VI_UNLOCK(vp);
250 VM_OBJECT_WLOCK(object);
251 KASSERT(object->ref_count == 1,
252 ("leaked ref %p %d", object, object->ref_count));
253 object->type = OBJT_DEAD;
254 object->ref_count = 0;
255 VM_OBJECT_WUNLOCK(object);
256 vm_object_destroy(object);
257 goto retry;
258 }
259 vp->v_object = object;
260 VI_UNLOCK(vp);
261 } else {
262 object->ref_count++;
263 #if VM_NRESERVLEVEL > 0
264 vm_object_color(object, 0);
265 #endif
266 VM_OBJECT_WUNLOCK(object);
267 }
268 vrefact(vp);
269 return (object);
270 }
271
272 /*
273 * The object must be locked.
274 */
275 static void
276 vnode_pager_dealloc(vm_object_t object)
277 {
278 struct vnode *vp;
279 int refs;
280
281 vp = object->handle;
282 if (vp == NULL)
283 panic("vnode_pager_dealloc: pager already dealloced");
284
285 VM_OBJECT_ASSERT_WLOCKED(object);
286 vm_object_pip_wait(object, "vnpdea");
287 refs = object->ref_count;
288
289 object->handle = NULL;
290 object->type = OBJT_DEAD;
291 if (object->flags & OBJ_DISCONNECTWNT) {
292 vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293 wakeup(object);
294 }
295 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296 if (object->un_pager.vnp.writemappings > 0) {
297 object->un_pager.vnp.writemappings = 0;
298 VOP_ADD_WRITECOUNT(vp, -1);
299 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300 __func__, vp, vp->v_writecount);
301 }
302 vp->v_object = NULL;
303 VOP_UNSET_TEXT(vp);
304 VM_OBJECT_WUNLOCK(object);
305 while (refs-- > 0)
306 vunref(vp);
307 VM_OBJECT_WLOCK(object);
308 }
309
310 static boolean_t
311 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312 int *after)
313 {
314 struct vnode *vp = object->handle;
315 daddr_t bn;
316 int err;
317 daddr_t reqblock;
318 int poff;
319 int bsize;
320 int pagesperblock, blocksperpage;
321
322 VM_OBJECT_ASSERT_WLOCKED(object);
323 /*
324 * If no vp or vp is doomed or marked transparent to VM, we do not
325 * have the page.
326 */
327 if (vp == NULL || vp->v_iflag & VI_DOOMED)
328 return FALSE;
329 /*
330 * If the offset is beyond end of file we do
331 * not have the page.
332 */
333 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334 return FALSE;
335
336 bsize = vp->v_mount->mnt_stat.f_iosize;
337 pagesperblock = bsize / PAGE_SIZE;
338 blocksperpage = 0;
339 if (pagesperblock > 0) {
340 reqblock = pindex / pagesperblock;
341 } else {
342 blocksperpage = (PAGE_SIZE / bsize);
343 reqblock = pindex * blocksperpage;
344 }
345 VM_OBJECT_WUNLOCK(object);
346 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347 VM_OBJECT_WLOCK(object);
348 if (err)
349 return TRUE;
350 if (bn == -1)
351 return FALSE;
352 if (pagesperblock > 0) {
353 poff = pindex - (reqblock * pagesperblock);
354 if (before) {
355 *before *= pagesperblock;
356 *before += poff;
357 }
358 if (after) {
359 /*
360 * The BMAP vop can report a partial block in the
361 * 'after', but must not report blocks after EOF.
362 * Assert the latter, and truncate 'after' in case
363 * of the former.
364 */
365 KASSERT((reqblock + *after) * pagesperblock <
366 roundup2(object->size, pagesperblock),
367 ("%s: reqblock %jd after %d size %ju", __func__,
368 (intmax_t )reqblock, *after,
369 (uintmax_t )object->size));
370 *after *= pagesperblock;
371 *after += pagesperblock - (poff + 1);
372 if (pindex + *after >= object->size)
373 *after = object->size - 1 - pindex;
374 }
375 } else {
376 if (before) {
377 *before /= blocksperpage;
378 }
379
380 if (after) {
381 *after /= blocksperpage;
382 }
383 }
384 return TRUE;
385 }
386
387 /*
388 * Lets the VM system know about a change in size for a file.
389 * We adjust our own internal size and flush any cached pages in
390 * the associated object that are affected by the size change.
391 *
392 * Note: this routine may be invoked as a result of a pager put
393 * operation (possibly at object termination time), so we must be careful.
394 */
395 void
396 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397 {
398 vm_object_t object;
399 vm_page_t m;
400 vm_pindex_t nobjsize;
401
402 if ((object = vp->v_object) == NULL)
403 return;
404 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405 VM_OBJECT_WLOCK(object);
406 if (object->type == OBJT_DEAD) {
407 VM_OBJECT_WUNLOCK(object);
408 return;
409 }
410 KASSERT(object->type == OBJT_VNODE,
411 ("not vnode-backed object %p", object));
412 if (nsize == object->un_pager.vnp.vnp_size) {
413 /*
414 * Hasn't changed size
415 */
416 VM_OBJECT_WUNLOCK(object);
417 return;
418 }
419 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420 if (nsize < object->un_pager.vnp.vnp_size) {
421 /*
422 * File has shrunk. Toss any cached pages beyond the new EOF.
423 */
424 if (nobjsize < object->size)
425 vm_object_page_remove(object, nobjsize, object->size,
426 0);
427 /*
428 * this gets rid of garbage at the end of a page that is now
429 * only partially backed by the vnode.
430 *
431 * XXX for some reason (I don't know yet), if we take a
432 * completely invalid page and mark it partially valid
433 * it can screw up NFS reads, so we don't allow the case.
434 */
435 if ((nsize & PAGE_MASK) &&
436 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437 m->valid != 0) {
438 int base = (int)nsize & PAGE_MASK;
439 int size = PAGE_SIZE - base;
440
441 /*
442 * Clear out partial-page garbage in case
443 * the page has been mapped.
444 */
445 pmap_zero_page_area(m, base, size);
446
447 /*
448 * Update the valid bits to reflect the blocks that
449 * have been zeroed. Some of these valid bits may
450 * have already been set.
451 */
452 vm_page_set_valid_range(m, base, size);
453
454 /*
455 * Round "base" to the next block boundary so that the
456 * dirty bit for a partially zeroed block is not
457 * cleared.
458 */
459 base = roundup2(base, DEV_BSIZE);
460
461 /*
462 * Clear out partial-page dirty bits.
463 *
464 * note that we do not clear out the valid
465 * bits. This would prevent bogus_page
466 * replacement from working properly.
467 */
468 vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469 }
470 }
471 object->un_pager.vnp.vnp_size = nsize;
472 object->size = nobjsize;
473 VM_OBJECT_WUNLOCK(object);
474 }
475
476 /*
477 * calculate the linear (byte) disk address of specified virtual
478 * file address
479 */
480 static int
481 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
482 int *run)
483 {
484 int bsize;
485 int err;
486 daddr_t vblock;
487 daddr_t voffset;
488
489 if (address < 0)
490 return -1;
491
492 if (vp->v_iflag & VI_DOOMED)
493 return -1;
494
495 bsize = vp->v_mount->mnt_stat.f_iosize;
496 vblock = address / bsize;
497 voffset = address % bsize;
498
499 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
500 if (err == 0) {
501 if (*rtaddress != -1)
502 *rtaddress += voffset / DEV_BSIZE;
503 if (run) {
504 *run += 1;
505 *run *= bsize/PAGE_SIZE;
506 *run -= voffset/PAGE_SIZE;
507 }
508 }
509
510 return (err);
511 }
512
513 /*
514 * small block filesystem vnode pager input
515 */
516 static int
517 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
518 {
519 struct vnode *vp;
520 struct bufobj *bo;
521 struct buf *bp;
522 struct sf_buf *sf;
523 daddr_t fileaddr;
524 vm_offset_t bsize;
525 vm_page_bits_t bits;
526 int error, i;
527
528 error = 0;
529 vp = object->handle;
530 if (vp->v_iflag & VI_DOOMED)
531 return VM_PAGER_BAD;
532
533 bsize = vp->v_mount->mnt_stat.f_iosize;
534
535 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
536
537 sf = sf_buf_alloc(m, 0);
538
539 for (i = 0; i < PAGE_SIZE / bsize; i++) {
540 vm_ooffset_t address;
541
542 bits = vm_page_bits(i * bsize, bsize);
543 if (m->valid & bits)
544 continue;
545
546 address = IDX_TO_OFF(m->pindex) + i * bsize;
547 if (address >= object->un_pager.vnp.vnp_size) {
548 fileaddr = -1;
549 } else {
550 error = vnode_pager_addr(vp, address, &fileaddr, NULL);
551 if (error)
552 break;
553 }
554 if (fileaddr != -1) {
555 bp = getpbuf(&vnode_pbuf_freecnt);
556
557 /* build a minimal buffer header */
558 bp->b_iocmd = BIO_READ;
559 bp->b_iodone = bdone;
560 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
561 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
562 bp->b_rcred = crhold(curthread->td_ucred);
563 bp->b_wcred = crhold(curthread->td_ucred);
564 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
565 bp->b_blkno = fileaddr;
566 pbgetbo(bo, bp);
567 bp->b_vp = vp;
568 bp->b_bcount = bsize;
569 bp->b_bufsize = bsize;
570 bp->b_runningbufspace = bp->b_bufsize;
571 atomic_add_long(&runningbufspace, bp->b_runningbufspace);
572
573 /* do the input */
574 bp->b_iooffset = dbtob(bp->b_blkno);
575 bstrategy(bp);
576
577 bwait(bp, PVM, "vnsrd");
578
579 if ((bp->b_ioflags & BIO_ERROR) != 0)
580 error = EIO;
581
582 /*
583 * free the buffer header back to the swap buffer pool
584 */
585 bp->b_vp = NULL;
586 pbrelbo(bp);
587 relpbuf(bp, &vnode_pbuf_freecnt);
588 if (error)
589 break;
590 } else
591 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
592 KASSERT((m->dirty & bits) == 0,
593 ("vnode_pager_input_smlfs: page %p is dirty", m));
594 VM_OBJECT_WLOCK(object);
595 m->valid |= bits;
596 VM_OBJECT_WUNLOCK(object);
597 }
598 sf_buf_free(sf);
599 if (error) {
600 return VM_PAGER_ERROR;
601 }
602 return VM_PAGER_OK;
603 }
604
605 /*
606 * old style vnode pager input routine
607 */
608 static int
609 vnode_pager_input_old(vm_object_t object, vm_page_t m)
610 {
611 struct uio auio;
612 struct iovec aiov;
613 int error;
614 int size;
615 struct sf_buf *sf;
616 struct vnode *vp;
617
618 VM_OBJECT_ASSERT_WLOCKED(object);
619 error = 0;
620
621 /*
622 * Return failure if beyond current EOF
623 */
624 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
625 return VM_PAGER_BAD;
626 } else {
627 size = PAGE_SIZE;
628 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
629 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
630 vp = object->handle;
631 VM_OBJECT_WUNLOCK(object);
632
633 /*
634 * Allocate a kernel virtual address and initialize so that
635 * we can use VOP_READ/WRITE routines.
636 */
637 sf = sf_buf_alloc(m, 0);
638
639 aiov.iov_base = (caddr_t)sf_buf_kva(sf);
640 aiov.iov_len = size;
641 auio.uio_iov = &aiov;
642 auio.uio_iovcnt = 1;
643 auio.uio_offset = IDX_TO_OFF(m->pindex);
644 auio.uio_segflg = UIO_SYSSPACE;
645 auio.uio_rw = UIO_READ;
646 auio.uio_resid = size;
647 auio.uio_td = curthread;
648
649 error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
650 if (!error) {
651 int count = size - auio.uio_resid;
652
653 if (count == 0)
654 error = EINVAL;
655 else if (count != PAGE_SIZE)
656 bzero((caddr_t)sf_buf_kva(sf) + count,
657 PAGE_SIZE - count);
658 }
659 sf_buf_free(sf);
660
661 VM_OBJECT_WLOCK(object);
662 }
663 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
664 if (!error)
665 m->valid = VM_PAGE_BITS_ALL;
666 return error ? VM_PAGER_ERROR : VM_PAGER_OK;
667 }
668
669 /*
670 * generic vnode pager input routine
671 */
672
673 /*
674 * Local media VFS's that do not implement their own VOP_GETPAGES
675 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
676 * to implement the previous behaviour.
677 *
678 * All other FS's should use the bypass to get to the local media
679 * backing vp's VOP_GETPAGES.
680 */
681 static int
682 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
683 int *rahead)
684 {
685 struct vnode *vp;
686 int rtval;
687
688 vp = object->handle;
689 VM_OBJECT_WUNLOCK(object);
690 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
691 KASSERT(rtval != EOPNOTSUPP,
692 ("vnode_pager: FS getpages not implemented\n"));
693 VM_OBJECT_WLOCK(object);
694 return rtval;
695 }
696
697 static int
698 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
699 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
700 {
701 struct vnode *vp;
702 int rtval;
703
704 vp = object->handle;
705 VM_OBJECT_WUNLOCK(object);
706 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
707 KASSERT(rtval != EOPNOTSUPP,
708 ("vnode_pager: FS getpages_async not implemented\n"));
709 VM_OBJECT_WLOCK(object);
710 return (rtval);
711 }
712
713 /*
714 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
715 * local filesystems, where partially valid pages can only occur at
716 * the end of file.
717 */
718 int
719 vnode_pager_local_getpages(struct vop_getpages_args *ap)
720 {
721
722 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
723 ap->a_rbehind, ap->a_rahead, NULL, NULL));
724 }
725
726 int
727 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
728 {
729
730 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
731 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
732 }
733
734 /*
735 * This is now called from local media FS's to operate against their
736 * own vnodes if they fail to implement VOP_GETPAGES.
737 */
738 int
739 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
740 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
741 {
742 vm_object_t object;
743 struct bufobj *bo;
744 struct buf *bp;
745 off_t foff;
746 int bsize, pagesperblock, *freecnt;
747 int error, before, after, rbehind, rahead, poff, i;
748 int bytecount, secmask;
749
750 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
751 ("%s does not support devices", __func__));
752
753 if (vp->v_iflag & VI_DOOMED)
754 return (VM_PAGER_BAD);
755
756 object = vp->v_object;
757 foff = IDX_TO_OFF(m[0]->pindex);
758 bsize = vp->v_mount->mnt_stat.f_iosize;
759 pagesperblock = bsize / PAGE_SIZE;
760
761 KASSERT(foff < object->un_pager.vnp.vnp_size,
762 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
763 KASSERT(count <= sizeof(bp->b_pages),
764 ("%s: requested %d pages", __func__, count));
765
766 /*
767 * The last page has valid blocks. Invalid part can only
768 * exist at the end of file, and the page is made fully valid
769 * by zeroing in vm_pager_get_pages().
770 */
771 if (m[count - 1]->valid != 0 && --count == 0) {
772 if (iodone != NULL)
773 iodone(arg, m, 1, 0);
774 return (VM_PAGER_OK);
775 }
776
777 /*
778 * Synchronous and asynchronous paging operations use different
779 * free pbuf counters. This is done to avoid asynchronous requests
780 * to consume all pbufs.
781 * Allocate the pbuf at the very beginning of the function, so that
782 * if we are low on certain kind of pbufs don't even proceed to BMAP,
783 * but sleep.
784 */
785 freecnt = iodone != NULL ?
786 &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
787 bp = getpbuf(freecnt);
788
789 /*
790 * Get the underlying device blocks for the file with VOP_BMAP().
791 * If the file system doesn't support VOP_BMAP, use old way of
792 * getting pages via VOP_READ.
793 */
794 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
795 if (error == EOPNOTSUPP) {
796 relpbuf(bp, freecnt);
797 VM_OBJECT_WLOCK(object);
798 for (i = 0; i < count; i++) {
799 PCPU_INC(cnt.v_vnodein);
800 PCPU_INC(cnt.v_vnodepgsin);
801 error = vnode_pager_input_old(object, m[i]);
802 if (error)
803 break;
804 }
805 VM_OBJECT_WUNLOCK(object);
806 return (error);
807 } else if (error != 0) {
808 relpbuf(bp, freecnt);
809 return (VM_PAGER_ERROR);
810 }
811
812 /*
813 * If the file system supports BMAP, but blocksize is smaller
814 * than a page size, then use special small filesystem code.
815 */
816 if (pagesperblock == 0) {
817 relpbuf(bp, freecnt);
818 for (i = 0; i < count; i++) {
819 PCPU_INC(cnt.v_vnodein);
820 PCPU_INC(cnt.v_vnodepgsin);
821 error = vnode_pager_input_smlfs(object, m[i]);
822 if (error)
823 break;
824 }
825 return (error);
826 }
827
828 /*
829 * A sparse file can be encountered only for a single page request,
830 * which may not be preceded by call to vm_pager_haspage().
831 */
832 if (bp->b_blkno == -1) {
833 KASSERT(count == 1,
834 ("%s: array[%d] request to a sparse file %p", __func__,
835 count, vp));
836 relpbuf(bp, freecnt);
837 pmap_zero_page(m[0]);
838 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
839 __func__, m[0]));
840 VM_OBJECT_WLOCK(object);
841 m[0]->valid = VM_PAGE_BITS_ALL;
842 VM_OBJECT_WUNLOCK(object);
843 return (VM_PAGER_OK);
844 }
845
846 bp->b_blkno += (foff % bsize) / DEV_BSIZE;
847
848 /* Recalculate blocks available after/before to pages. */
849 poff = (foff % bsize) / PAGE_SIZE;
850 before *= pagesperblock;
851 before += poff;
852 after *= pagesperblock;
853 after += pagesperblock - (poff + 1);
854 if (m[0]->pindex + after >= object->size)
855 after = object->size - 1 - m[0]->pindex;
856 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
857 __func__, count, after + 1));
858 after -= count - 1;
859
860 /* Trim requested rbehind/rahead to possible values. */
861 rbehind = a_rbehind ? *a_rbehind : 0;
862 rahead = a_rahead ? *a_rahead : 0;
863 rbehind = min(rbehind, before);
864 rbehind = min(rbehind, m[0]->pindex);
865 rahead = min(rahead, after);
866 rahead = min(rahead, object->size - m[count - 1]->pindex);
867 KASSERT(rbehind + rahead + count <= sizeof(bp->b_pages),
868 ("%s: behind %d ahead %d count %d", __func__,
869 rbehind, rahead, count));
870
871 /*
872 * Fill in the bp->b_pages[] array with requested and optional
873 * read behind or read ahead pages. Read behind pages are looked
874 * up in a backward direction, down to a first cached page. Same
875 * for read ahead pages, but there is no need to shift the array
876 * in case of encountering a cached page.
877 */
878 i = bp->b_npages = 0;
879 if (rbehind) {
880 vm_pindex_t startpindex, tpindex;
881 vm_page_t p;
882
883 VM_OBJECT_WLOCK(object);
884 startpindex = m[0]->pindex - rbehind;
885 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
886 p->pindex >= startpindex)
887 startpindex = p->pindex + 1;
888
889 /* tpindex is unsigned; beware of numeric underflow. */
890 for (tpindex = m[0]->pindex - 1;
891 tpindex >= startpindex && tpindex < m[0]->pindex;
892 tpindex--, i++) {
893 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
894 if (p == NULL) {
895 /* Shift the array. */
896 for (int j = 0; j < i; j++)
897 bp->b_pages[j] = bp->b_pages[j +
898 tpindex + 1 - startpindex];
899 break;
900 }
901 bp->b_pages[tpindex - startpindex] = p;
902 }
903
904 bp->b_pgbefore = i;
905 bp->b_npages += i;
906 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
907 } else
908 bp->b_pgbefore = 0;
909
910 /* Requested pages. */
911 for (int j = 0; j < count; j++, i++)
912 bp->b_pages[i] = m[j];
913 bp->b_npages += count;
914
915 if (rahead) {
916 vm_pindex_t endpindex, tpindex;
917 vm_page_t p;
918
919 if (!VM_OBJECT_WOWNED(object))
920 VM_OBJECT_WLOCK(object);
921 endpindex = m[count - 1]->pindex + rahead + 1;
922 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
923 p->pindex < endpindex)
924 endpindex = p->pindex;
925 if (endpindex > object->size)
926 endpindex = object->size;
927
928 for (tpindex = m[count - 1]->pindex + 1;
929 tpindex < endpindex; i++, tpindex++) {
930 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
931 if (p == NULL)
932 break;
933 bp->b_pages[i] = p;
934 }
935
936 bp->b_pgafter = i - bp->b_npages;
937 bp->b_npages = i;
938 } else
939 bp->b_pgafter = 0;
940
941 if (VM_OBJECT_WOWNED(object))
942 VM_OBJECT_WUNLOCK(object);
943
944 /* Report back actual behind/ahead read. */
945 if (a_rbehind)
946 *a_rbehind = bp->b_pgbefore;
947 if (a_rahead)
948 *a_rahead = bp->b_pgafter;
949
950 KASSERT(bp->b_npages <= sizeof(bp->b_pages),
951 ("%s: buf %p overflowed", __func__, bp));
952
953 /*
954 * Recalculate first offset and bytecount with regards to read behind.
955 * Truncate bytecount to vnode real size and round up physical size
956 * for real devices.
957 */
958 foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
959 bytecount = bp->b_npages << PAGE_SHIFT;
960 if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
961 bytecount = object->un_pager.vnp.vnp_size - foff;
962 secmask = bo->bo_bsize - 1;
963 KASSERT(secmask < PAGE_SIZE && secmask > 0,
964 ("%s: sector size %d too large", __func__, secmask + 1));
965 bytecount = (bytecount + secmask) & ~secmask;
966
967 /*
968 * And map the pages to be read into the kva, if the filesystem
969 * requires mapped buffers.
970 */
971 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
972 unmapped_buf_allowed) {
973 bp->b_data = unmapped_buf;
974 bp->b_offset = 0;
975 } else {
976 bp->b_data = bp->b_kvabase;
977 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
978 }
979
980 /* Build a minimal buffer header. */
981 bp->b_iocmd = BIO_READ;
982 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
983 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
984 bp->b_rcred = crhold(curthread->td_ucred);
985 bp->b_wcred = crhold(curthread->td_ucred);
986 pbgetbo(bo, bp);
987 bp->b_vp = vp;
988 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
989 bp->b_iooffset = dbtob(bp->b_blkno);
990
991 atomic_add_long(&runningbufspace, bp->b_runningbufspace);
992 PCPU_INC(cnt.v_vnodein);
993 PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
994
995 if (iodone != NULL) { /* async */
996 bp->b_pgiodone = iodone;
997 bp->b_caller1 = arg;
998 bp->b_iodone = vnode_pager_generic_getpages_done_async;
999 bp->b_flags |= B_ASYNC;
1000 BUF_KERNPROC(bp);
1001 bstrategy(bp);
1002 return (VM_PAGER_OK);
1003 } else {
1004 bp->b_iodone = bdone;
1005 bstrategy(bp);
1006 bwait(bp, PVM, "vnread");
1007 error = vnode_pager_generic_getpages_done(bp);
1008 for (i = 0; i < bp->b_npages; i++)
1009 bp->b_pages[i] = NULL;
1010 bp->b_vp = NULL;
1011 pbrelbo(bp);
1012 relpbuf(bp, &vnode_pbuf_freecnt);
1013 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1014 }
1015 }
1016
1017 static void
1018 vnode_pager_generic_getpages_done_async(struct buf *bp)
1019 {
1020 int error;
1021
1022 error = vnode_pager_generic_getpages_done(bp);
1023 /* Run the iodone upon the requested range. */
1024 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1025 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1026 for (int i = 0; i < bp->b_npages; i++)
1027 bp->b_pages[i] = NULL;
1028 bp->b_vp = NULL;
1029 pbrelbo(bp);
1030 relpbuf(bp, &vnode_async_pbuf_freecnt);
1031 }
1032
1033 static int
1034 vnode_pager_generic_getpages_done(struct buf *bp)
1035 {
1036 vm_object_t object;
1037 off_t tfoff, nextoff;
1038 int i, error;
1039
1040 error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1041 object = bp->b_vp->v_object;
1042
1043 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1044 if (!buf_mapped(bp)) {
1045 bp->b_data = bp->b_kvabase;
1046 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1047 bp->b_npages);
1048 }
1049 bzero(bp->b_data + bp->b_bcount,
1050 PAGE_SIZE * bp->b_npages - bp->b_bcount);
1051 }
1052 if (buf_mapped(bp)) {
1053 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1054 bp->b_data = unmapped_buf;
1055 }
1056
1057 VM_OBJECT_WLOCK(object);
1058 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1059 i < bp->b_npages; i++, tfoff = nextoff) {
1060 vm_page_t mt;
1061
1062 nextoff = tfoff + PAGE_SIZE;
1063 mt = bp->b_pages[i];
1064
1065 if (nextoff <= object->un_pager.vnp.vnp_size) {
1066 /*
1067 * Read filled up entire page.
1068 */
1069 mt->valid = VM_PAGE_BITS_ALL;
1070 KASSERT(mt->dirty == 0,
1071 ("%s: page %p is dirty", __func__, mt));
1072 KASSERT(!pmap_page_is_mapped(mt),
1073 ("%s: page %p is mapped", __func__, mt));
1074 } else {
1075 /*
1076 * Read did not fill up entire page.
1077 *
1078 * Currently we do not set the entire page valid,
1079 * we just try to clear the piece that we couldn't
1080 * read.
1081 */
1082 vm_page_set_valid_range(mt, 0,
1083 object->un_pager.vnp.vnp_size - tfoff);
1084 KASSERT((mt->dirty & vm_page_bits(0,
1085 object->un_pager.vnp.vnp_size - tfoff)) == 0,
1086 ("%s: page %p is dirty", __func__, mt));
1087 }
1088
1089 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1090 vm_page_readahead_finish(mt);
1091 }
1092 VM_OBJECT_WUNLOCK(object);
1093 if (error != 0)
1094 printf("%s: I/O read error %d\n", __func__, error);
1095
1096 return (error);
1097 }
1098
1099 /*
1100 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
1101 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1102 * vnode_pager_generic_putpages() to implement the previous behaviour.
1103 *
1104 * All other FS's should use the bypass to get to the local media
1105 * backing vp's VOP_PUTPAGES.
1106 */
1107 static void
1108 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1109 int flags, int *rtvals)
1110 {
1111 int rtval;
1112 struct vnode *vp;
1113 int bytes = count * PAGE_SIZE;
1114
1115 /*
1116 * Force synchronous operation if we are extremely low on memory
1117 * to prevent a low-memory deadlock. VOP operations often need to
1118 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1119 * operation ). The swapper handles the case by limiting the amount
1120 * of asynchronous I/O, but that sort of solution doesn't scale well
1121 * for the vnode pager without a lot of work.
1122 *
1123 * Also, the backing vnode's iodone routine may not wake the pageout
1124 * daemon up. This should be probably be addressed XXX.
1125 */
1126
1127 if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min)
1128 flags |= VM_PAGER_PUT_SYNC;
1129
1130 /*
1131 * Call device-specific putpages function
1132 */
1133 vp = object->handle;
1134 VM_OBJECT_WUNLOCK(object);
1135 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1136 KASSERT(rtval != EOPNOTSUPP,
1137 ("vnode_pager: stale FS putpages\n"));
1138 VM_OBJECT_WLOCK(object);
1139 }
1140
1141 static int
1142 vn_off2bidx(vm_ooffset_t offset)
1143 {
1144
1145 return ((offset & PAGE_MASK) / DEV_BSIZE);
1146 }
1147
1148 static bool
1149 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1150 {
1151
1152 KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1153 offset < IDX_TO_OFF(m->pindex + 1),
1154 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1155 (uintmax_t)offset));
1156 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1157 }
1158
1159 /*
1160 * This is now called from local media FS's to operate against their
1161 * own vnodes if they fail to implement VOP_PUTPAGES.
1162 *
1163 * This is typically called indirectly via the pageout daemon and
1164 * clustering has already typically occurred, so in general we ask the
1165 * underlying filesystem to write the data out asynchronously rather
1166 * then delayed.
1167 */
1168 int
1169 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1170 int flags, int *rtvals)
1171 {
1172 vm_object_t object;
1173 vm_page_t m;
1174 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1175 struct uio auio;
1176 struct iovec aiov;
1177 off_t prev_resid, wrsz;
1178 int count, error, i, maxsize, ncount, pgoff, ppscheck;
1179 bool in_hole;
1180 static struct timeval lastfail;
1181 static int curfail;
1182
1183 object = vp->v_object;
1184 count = bytecount / PAGE_SIZE;
1185
1186 for (i = 0; i < count; i++)
1187 rtvals[i] = VM_PAGER_ERROR;
1188
1189 if ((int64_t)ma[0]->pindex < 0) {
1190 printf("vnode_pager_generic_putpages: "
1191 "attempt to write meta-data 0x%jx(%lx)\n",
1192 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1193 rtvals[0] = VM_PAGER_BAD;
1194 return (VM_PAGER_BAD);
1195 }
1196
1197 maxsize = count * PAGE_SIZE;
1198 ncount = count;
1199
1200 poffset = IDX_TO_OFF(ma[0]->pindex);
1201
1202 /*
1203 * If the page-aligned write is larger then the actual file we
1204 * have to invalidate pages occurring beyond the file EOF. However,
1205 * there is an edge case where a file may not be page-aligned where
1206 * the last page is partially invalid. In this case the filesystem
1207 * may not properly clear the dirty bits for the entire page (which
1208 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1209 * With the page locked we are free to fix-up the dirty bits here.
1210 *
1211 * We do not under any circumstances truncate the valid bits, as
1212 * this will screw up bogus page replacement.
1213 */
1214 VM_OBJECT_RLOCK(object);
1215 if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1216 if (!VM_OBJECT_TRYUPGRADE(object)) {
1217 VM_OBJECT_RUNLOCK(object);
1218 VM_OBJECT_WLOCK(object);
1219 if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1220 goto downgrade;
1221 }
1222 if (object->un_pager.vnp.vnp_size > poffset) {
1223 maxsize = object->un_pager.vnp.vnp_size - poffset;
1224 ncount = btoc(maxsize);
1225 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1226 pgoff = roundup2(pgoff, DEV_BSIZE);
1227
1228 /*
1229 * If the object is locked and the following
1230 * conditions hold, then the page's dirty
1231 * field cannot be concurrently changed by a
1232 * pmap operation.
1233 */
1234 m = ma[ncount - 1];
1235 vm_page_assert_sbusied(m);
1236 KASSERT(!pmap_page_is_write_mapped(m),
1237 ("vnode_pager_generic_putpages: page %p is not read-only", m));
1238 MPASS(m->dirty != 0);
1239 vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1240 pgoff);
1241 }
1242 } else {
1243 maxsize = 0;
1244 ncount = 0;
1245 }
1246 for (i = ncount; i < count; i++)
1247 rtvals[i] = VM_PAGER_BAD;
1248 downgrade:
1249 VM_OBJECT_LOCK_DOWNGRADE(object);
1250 }
1251
1252 auio.uio_iov = &aiov;
1253 auio.uio_segflg = UIO_NOCOPY;
1254 auio.uio_rw = UIO_WRITE;
1255 auio.uio_td = NULL;
1256 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1257
1258 for (prev_offset = poffset; prev_offset < maxblksz;) {
1259 /* Skip clean blocks. */
1260 for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1261 m = ma[OFF_TO_IDX(prev_offset - poffset)];
1262 for (i = vn_off2bidx(prev_offset);
1263 i < sizeof(vm_page_bits_t) * NBBY &&
1264 prev_offset < maxblksz; i++) {
1265 if (vn_dirty_blk(m, prev_offset)) {
1266 in_hole = false;
1267 break;
1268 }
1269 prev_offset += DEV_BSIZE;
1270 }
1271 }
1272 if (in_hole)
1273 goto write_done;
1274
1275 /* Find longest run of dirty blocks. */
1276 for (next_offset = prev_offset; next_offset < maxblksz;) {
1277 m = ma[OFF_TO_IDX(next_offset - poffset)];
1278 for (i = vn_off2bidx(next_offset);
1279 i < sizeof(vm_page_bits_t) * NBBY &&
1280 next_offset < maxblksz; i++) {
1281 if (!vn_dirty_blk(m, next_offset))
1282 goto start_write;
1283 next_offset += DEV_BSIZE;
1284 }
1285 }
1286 start_write:
1287 if (next_offset > poffset + maxsize)
1288 next_offset = poffset + maxsize;
1289
1290 /*
1291 * Getting here requires finding a dirty block in the
1292 * 'skip clean blocks' loop.
1293 */
1294 MPASS(prev_offset < next_offset);
1295
1296 VM_OBJECT_RUNLOCK(object);
1297 aiov.iov_base = NULL;
1298 auio.uio_iovcnt = 1;
1299 auio.uio_offset = prev_offset;
1300 prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1301 prev_offset;
1302 error = VOP_WRITE(vp, &auio,
1303 vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1304
1305 wrsz = prev_resid - auio.uio_resid;
1306 if (wrsz == 0) {
1307 if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1308 vn_printf(vp, "vnode_pager_putpages: "
1309 "zero-length write at %ju resid %zd\n",
1310 auio.uio_offset, auio.uio_resid);
1311 }
1312 VM_OBJECT_RLOCK(object);
1313 break;
1314 }
1315
1316 /* Adjust the starting offset for next iteration. */
1317 prev_offset += wrsz;
1318 MPASS(auio.uio_offset == prev_offset);
1319
1320 ppscheck = 0;
1321 if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1322 &curfail, 1)) != 0)
1323 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1324 error);
1325 if (auio.uio_resid != 0 && (ppscheck != 0 ||
1326 ppsratecheck(&lastfail, &curfail, 1) != 0))
1327 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1328 "at %ju\n", auio.uio_resid,
1329 (uintmax_t)ma[0]->pindex);
1330 VM_OBJECT_RLOCK(object);
1331 if (error != 0 || auio.uio_resid != 0)
1332 break;
1333 }
1334 write_done:
1335 /* Mark completely processed pages. */
1336 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1337 rtvals[i] = VM_PAGER_OK;
1338 /* Mark partial EOF page. */
1339 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1340 rtvals[i++] = VM_PAGER_OK;
1341 /* Unwritten pages in range, free bonus if the page is clean. */
1342 for (; i < ncount; i++)
1343 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1344 VM_OBJECT_RUNLOCK(object);
1345 PCPU_ADD(cnt.v_vnodepgsout, i);
1346 PCPU_INC(cnt.v_vnodeout);
1347 return (rtvals[0]);
1348 }
1349
1350 int
1351 vnode_pager_putpages_ioflags(int pager_flags)
1352 {
1353 int ioflags;
1354
1355 /*
1356 * Pageouts are already clustered, use IO_ASYNC to force a
1357 * bawrite() rather then a bdwrite() to prevent paging I/O
1358 * from saturating the buffer cache. Dummy-up the sequential
1359 * heuristic to cause large ranges to cluster. If neither
1360 * IO_SYNC or IO_ASYNC is set, the system decides how to
1361 * cluster.
1362 */
1363 ioflags = IO_VMIO;
1364 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1365 ioflags |= IO_SYNC;
1366 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1367 ioflags |= IO_ASYNC;
1368 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1369 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1370 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1371 return (ioflags);
1372 }
1373
1374 /*
1375 * vnode_pager_undirty_pages().
1376 *
1377 * A helper to mark pages as clean after pageout that was possibly
1378 * done with a short write. The lpos argument specifies the page run
1379 * length in bytes, and the written argument specifies how many bytes
1380 * were actually written. eof is the offset past the last valid byte
1381 * in the vnode using the absolute file position of the first byte in
1382 * the run as the base from which it is computed.
1383 */
1384 void
1385 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1386 int lpos)
1387 {
1388 vm_object_t obj;
1389 int i, pos, pos_devb;
1390
1391 if (written == 0 && eof >= lpos)
1392 return;
1393 obj = ma[0]->object;
1394 VM_OBJECT_WLOCK(obj);
1395 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1396 if (pos < trunc_page(written)) {
1397 rtvals[i] = VM_PAGER_OK;
1398 vm_page_undirty(ma[i]);
1399 } else {
1400 /* Partially written page. */
1401 rtvals[i] = VM_PAGER_AGAIN;
1402 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1403 }
1404 }
1405 if (eof >= lpos) /* avoid truncation */
1406 goto done;
1407 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1408 if (pos != trunc_page(pos)) {
1409 /*
1410 * The page contains the last valid byte in
1411 * the vnode, mark the rest of the page as
1412 * clean, potentially making the whole page
1413 * clean.
1414 */
1415 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1416 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1417 pos_devb);
1418
1419 /*
1420 * If the page was cleaned, report the pageout
1421 * on it as successful. msync() no longer
1422 * needs to write out the page, endlessly
1423 * creating write requests and dirty buffers.
1424 */
1425 if (ma[i]->dirty == 0)
1426 rtvals[i] = VM_PAGER_OK;
1427
1428 pos = round_page(pos);
1429 } else {
1430 /* vm_pageout_flush() clears dirty */
1431 rtvals[i] = VM_PAGER_BAD;
1432 pos += PAGE_SIZE;
1433 }
1434 }
1435 done:
1436 VM_OBJECT_WUNLOCK(obj);
1437 }
1438
1439 void
1440 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1441 vm_offset_t end)
1442 {
1443 struct vnode *vp;
1444 vm_ooffset_t old_wm;
1445
1446 VM_OBJECT_WLOCK(object);
1447 if (object->type != OBJT_VNODE) {
1448 VM_OBJECT_WUNLOCK(object);
1449 return;
1450 }
1451 old_wm = object->un_pager.vnp.writemappings;
1452 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1453 vp = object->handle;
1454 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1455 ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1456 VOP_ADD_WRITECOUNT(vp, 1);
1457 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1458 __func__, vp, vp->v_writecount);
1459 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1460 ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1461 VOP_ADD_WRITECOUNT(vp, -1);
1462 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1463 __func__, vp, vp->v_writecount);
1464 }
1465 VM_OBJECT_WUNLOCK(object);
1466 }
1467
1468 void
1469 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1470 vm_offset_t end)
1471 {
1472 struct vnode *vp;
1473 struct mount *mp;
1474 vm_offset_t inc;
1475
1476 VM_OBJECT_WLOCK(object);
1477
1478 /*
1479 * First, recheck the object type to account for the race when
1480 * the vnode is reclaimed.
1481 */
1482 if (object->type != OBJT_VNODE) {
1483 VM_OBJECT_WUNLOCK(object);
1484 return;
1485 }
1486
1487 /*
1488 * Optimize for the case when writemappings is not going to
1489 * zero.
1490 */
1491 inc = end - start;
1492 if (object->un_pager.vnp.writemappings != inc) {
1493 object->un_pager.vnp.writemappings -= inc;
1494 VM_OBJECT_WUNLOCK(object);
1495 return;
1496 }
1497
1498 vp = object->handle;
1499 vhold(vp);
1500 VM_OBJECT_WUNLOCK(object);
1501 mp = NULL;
1502 vn_start_write(vp, &mp, V_WAIT);
1503 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1504
1505 /*
1506 * Decrement the object's writemappings, by swapping the start
1507 * and end arguments for vnode_pager_update_writecount(). If
1508 * there was not a race with vnode reclaimation, then the
1509 * vnode's v_writecount is decremented.
1510 */
1511 vnode_pager_update_writecount(object, end, start);
1512 VOP_UNLOCK(vp, 0);
1513 vdrop(vp);
1514 if (mp != NULL)
1515 vn_finished_write(mp);
1516 }
Cache object: 3ee0a8f7f487f0d421ebe8a5f07c74df
|