FreeBSD/Linux Kernel Cross Reference
sys/vm/vnode_pager.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1991 The Regents of the University of California.
6 * All rights reserved.
7 * Copyright (c) 1993, 1994 John S. Dyson
8 * Copyright (c) 1995, David Greenman
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
43 */
44
45 /*
46 * Page to/from files (vnodes).
47 */
48
49 /*
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
53 */
54
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57
58 #include "opt_vm.h"
59
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sf_buf.h>
76 #include <sys/domainset.h>
77
78 #include <machine/atomic.h>
79
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_map.h>
86 #include <vm/vnode_pager.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89
90 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
91 daddr_t *rtaddress, int *run);
92 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
93 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
94 static void vnode_pager_dealloc(vm_object_t);
95 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
96 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
97 int *, vop_getpages_iodone_t, void *);
98 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
99 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
100 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
101 vm_ooffset_t, struct ucred *cred);
102 static int vnode_pager_generic_getpages_done(struct buf *);
103 static void vnode_pager_generic_getpages_done_async(struct buf *);
104 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
105 vm_offset_t);
106 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
107 vm_offset_t);
108
109 struct pagerops vnodepagerops = {
110 .pgo_alloc = vnode_pager_alloc,
111 .pgo_dealloc = vnode_pager_dealloc,
112 .pgo_getpages = vnode_pager_getpages,
113 .pgo_getpages_async = vnode_pager_getpages_async,
114 .pgo_putpages = vnode_pager_putpages,
115 .pgo_haspage = vnode_pager_haspage,
116 .pgo_update_writecount = vnode_pager_update_writecount,
117 .pgo_release_writecount = vnode_pager_release_writecount,
118 };
119
120 static struct domainset *vnode_domainset = NULL;
121
122 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset,
123 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0,
124 sysctl_handle_domainset, "A", "Default vnode NUMA policy");
125
126 static int nvnpbufs;
127 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
128 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
129
130 static uma_zone_t vnode_pbuf_zone;
131
132 static void
133 vnode_pager_init(void *dummy)
134 {
135
136 #ifdef __LP64__
137 nvnpbufs = nswbuf * 2;
138 #else
139 nvnpbufs = nswbuf / 2;
140 #endif
141 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
142 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
143 }
144 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
145
146 /* Create the VM system backing object for this vnode */
147 int
148 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
149 {
150 vm_object_t object;
151 vm_ooffset_t size = isize;
152 struct vattr va;
153 bool last;
154
155 if (!vn_isdisk(vp) && vn_canvmio(vp) == FALSE)
156 return (0);
157
158 object = vp->v_object;
159 if (object != NULL)
160 return (0);
161
162 if (size == 0) {
163 if (vn_isdisk(vp)) {
164 size = IDX_TO_OFF(INT_MAX);
165 } else {
166 if (VOP_GETATTR(vp, &va, td->td_ucred))
167 return (0);
168 size = va.va_size;
169 }
170 }
171
172 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
173 /*
174 * Dereference the reference we just created. This assumes
175 * that the object is associated with the vp. We still have
176 * to serialize with vnode_pager_dealloc() for the last
177 * potential reference.
178 */
179 VM_OBJECT_RLOCK(object);
180 last = refcount_release(&object->ref_count);
181 VM_OBJECT_RUNLOCK(object);
182 if (last)
183 vrele(vp);
184
185 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
186
187 return (0);
188 }
189
190 void
191 vnode_destroy_vobject(struct vnode *vp)
192 {
193 struct vm_object *obj;
194
195 obj = vp->v_object;
196 if (obj == NULL || obj->handle != vp)
197 return;
198 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
199 VM_OBJECT_WLOCK(obj);
200 MPASS(obj->type == OBJT_VNODE);
201 umtx_shm_object_terminated(obj);
202 if (obj->ref_count == 0) {
203 KASSERT((obj->flags & OBJ_DEAD) == 0,
204 ("vnode_destroy_vobject: Terminating dead object"));
205 vm_object_set_flag(obj, OBJ_DEAD);
206
207 /*
208 * Clean pages and flush buffers.
209 */
210 vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
211 VM_OBJECT_WUNLOCK(obj);
212
213 vinvalbuf(vp, V_SAVE, 0, 0);
214
215 BO_LOCK(&vp->v_bufobj);
216 vp->v_bufobj.bo_flag |= BO_DEAD;
217 BO_UNLOCK(&vp->v_bufobj);
218
219 VM_OBJECT_WLOCK(obj);
220 vm_object_terminate(obj);
221 } else {
222 /*
223 * Woe to the process that tries to page now :-).
224 */
225 vm_pager_deallocate(obj);
226 VM_OBJECT_WUNLOCK(obj);
227 }
228 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
229 }
230
231 /*
232 * Allocate (or lookup) pager for a vnode.
233 * Handle is a vnode pointer.
234 */
235 vm_object_t
236 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
237 vm_ooffset_t offset, struct ucred *cred)
238 {
239 vm_object_t object;
240 struct vnode *vp;
241
242 /*
243 * Pageout to vnode, no can do yet.
244 */
245 if (handle == NULL)
246 return (NULL);
247
248 vp = (struct vnode *)handle;
249 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
250 VNPASS(vp->v_usecount > 0, vp);
251 retry:
252 object = vp->v_object;
253
254 if (object == NULL) {
255 /*
256 * Add an object of the appropriate size
257 */
258 object = vm_object_allocate(OBJT_VNODE,
259 OFF_TO_IDX(round_page(size)));
260
261 object->un_pager.vnp.vnp_size = size;
262 object->un_pager.vnp.writemappings = 0;
263 object->domain.dr_policy = vnode_domainset;
264 object->handle = handle;
265 if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) {
266 VM_OBJECT_WLOCK(object);
267 vm_object_set_flag(object, OBJ_SIZEVNLOCK);
268 VM_OBJECT_WUNLOCK(object);
269 }
270 VI_LOCK(vp);
271 if (vp->v_object != NULL) {
272 /*
273 * Object has been created while we were allocating.
274 */
275 VI_UNLOCK(vp);
276 VM_OBJECT_WLOCK(object);
277 KASSERT(object->ref_count == 1,
278 ("leaked ref %p %d", object, object->ref_count));
279 object->type = OBJT_DEAD;
280 refcount_init(&object->ref_count, 0);
281 VM_OBJECT_WUNLOCK(object);
282 vm_object_destroy(object);
283 goto retry;
284 }
285 vp->v_object = object;
286 VI_UNLOCK(vp);
287 vrefact(vp);
288 } else {
289 vm_object_reference(object);
290 #if VM_NRESERVLEVEL > 0
291 if ((object->flags & OBJ_COLORED) == 0) {
292 VM_OBJECT_WLOCK(object);
293 vm_object_color(object, 0);
294 VM_OBJECT_WUNLOCK(object);
295 }
296 #endif
297 }
298 return (object);
299 }
300
301 /*
302 * The object must be locked.
303 */
304 static void
305 vnode_pager_dealloc(vm_object_t object)
306 {
307 struct vnode *vp;
308 int refs;
309
310 vp = object->handle;
311 if (vp == NULL)
312 panic("vnode_pager_dealloc: pager already dealloced");
313
314 VM_OBJECT_ASSERT_WLOCKED(object);
315 vm_object_pip_wait(object, "vnpdea");
316 refs = object->ref_count;
317
318 object->handle = NULL;
319 object->type = OBJT_DEAD;
320 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
321 if (object->un_pager.vnp.writemappings > 0) {
322 object->un_pager.vnp.writemappings = 0;
323 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
324 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
325 __func__, vp, vp->v_writecount);
326 }
327 vp->v_object = NULL;
328 VI_LOCK(vp);
329
330 /*
331 * vm_map_entry_set_vnode_text() cannot reach this vnode by
332 * following object->handle. Clear all text references now.
333 * This also clears the transient references from
334 * kern_execve(), which is fine because dead_vnodeops uses nop
335 * for VOP_UNSET_TEXT().
336 */
337 if (vp->v_writecount < 0)
338 vp->v_writecount = 0;
339 VI_UNLOCK(vp);
340 VM_OBJECT_WUNLOCK(object);
341 if (refs > 0)
342 vunref(vp);
343 VM_OBJECT_WLOCK(object);
344 }
345
346 static boolean_t
347 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
348 int *after)
349 {
350 struct vnode *vp = object->handle;
351 daddr_t bn;
352 uintptr_t lockstate;
353 int err;
354 daddr_t reqblock;
355 int poff;
356 int bsize;
357 int pagesperblock, blocksperpage;
358
359 VM_OBJECT_ASSERT_LOCKED(object);
360 /*
361 * If no vp or vp is doomed or marked transparent to VM, we do not
362 * have the page.
363 */
364 if (vp == NULL || VN_IS_DOOMED(vp))
365 return FALSE;
366 /*
367 * If the offset is beyond end of file we do
368 * not have the page.
369 */
370 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
371 return FALSE;
372
373 bsize = vp->v_mount->mnt_stat.f_iosize;
374 pagesperblock = bsize / PAGE_SIZE;
375 blocksperpage = 0;
376 if (pagesperblock > 0) {
377 reqblock = pindex / pagesperblock;
378 } else {
379 blocksperpage = (PAGE_SIZE / bsize);
380 reqblock = pindex * blocksperpage;
381 }
382 lockstate = VM_OBJECT_DROP(object);
383 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
384 VM_OBJECT_PICKUP(object, lockstate);
385 if (err)
386 return TRUE;
387 if (bn == -1)
388 return FALSE;
389 if (pagesperblock > 0) {
390 poff = pindex - (reqblock * pagesperblock);
391 if (before) {
392 *before *= pagesperblock;
393 *before += poff;
394 }
395 if (after) {
396 /*
397 * The BMAP vop can report a partial block in the
398 * 'after', but must not report blocks after EOF.
399 * Assert the latter, and truncate 'after' in case
400 * of the former.
401 */
402 KASSERT((reqblock + *after) * pagesperblock <
403 roundup2(object->size, pagesperblock),
404 ("%s: reqblock %jd after %d size %ju", __func__,
405 (intmax_t )reqblock, *after,
406 (uintmax_t )object->size));
407 *after *= pagesperblock;
408 *after += pagesperblock - (poff + 1);
409 if (pindex + *after >= object->size)
410 *after = object->size - 1 - pindex;
411 }
412 } else {
413 if (before) {
414 *before /= blocksperpage;
415 }
416
417 if (after) {
418 *after /= blocksperpage;
419 }
420 }
421 return TRUE;
422 }
423
424 /*
425 * Lets the VM system know about a change in size for a file.
426 * We adjust our own internal size and flush any cached pages in
427 * the associated object that are affected by the size change.
428 *
429 * Note: this routine may be invoked as a result of a pager put
430 * operation (possibly at object termination time), so we must be careful.
431 */
432 void
433 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
434 {
435 vm_object_t object;
436 vm_page_t m;
437 vm_pindex_t nobjsize;
438
439 if ((object = vp->v_object) == NULL)
440 return;
441 #ifdef DEBUG_VFS_LOCKS
442 {
443 struct mount *mp;
444
445 mp = vp->v_mount;
446 if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0)
447 assert_vop_elocked(vp,
448 "vnode_pager_setsize and not locked vnode");
449 }
450 #endif
451 VM_OBJECT_WLOCK(object);
452 if (object->type == OBJT_DEAD) {
453 VM_OBJECT_WUNLOCK(object);
454 return;
455 }
456 KASSERT(object->type == OBJT_VNODE,
457 ("not vnode-backed object %p", object));
458 if (nsize == object->un_pager.vnp.vnp_size) {
459 /*
460 * Hasn't changed size
461 */
462 VM_OBJECT_WUNLOCK(object);
463 return;
464 }
465 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
466 if (nsize < object->un_pager.vnp.vnp_size) {
467 /*
468 * File has shrunk. Toss any cached pages beyond the new EOF.
469 */
470 if (nobjsize < object->size)
471 vm_object_page_remove(object, nobjsize, object->size,
472 0);
473 /*
474 * this gets rid of garbage at the end of a page that is now
475 * only partially backed by the vnode.
476 *
477 * XXX for some reason (I don't know yet), if we take a
478 * completely invalid page and mark it partially valid
479 * it can screw up NFS reads, so we don't allow the case.
480 */
481 if (!(nsize & PAGE_MASK))
482 goto out;
483 m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
484 if (m == NULL)
485 goto out;
486 if (!vm_page_none_valid(m)) {
487 int base = (int)nsize & PAGE_MASK;
488 int size = PAGE_SIZE - base;
489
490 /*
491 * Clear out partial-page garbage in case
492 * the page has been mapped.
493 */
494 pmap_zero_page_area(m, base, size);
495
496 /*
497 * Update the valid bits to reflect the blocks that
498 * have been zeroed. Some of these valid bits may
499 * have already been set.
500 */
501 vm_page_set_valid_range(m, base, size);
502
503 /*
504 * Round "base" to the next block boundary so that the
505 * dirty bit for a partially zeroed block is not
506 * cleared.
507 */
508 base = roundup2(base, DEV_BSIZE);
509
510 /*
511 * Clear out partial-page dirty bits.
512 *
513 * note that we do not clear out the valid
514 * bits. This would prevent bogus_page
515 * replacement from working properly.
516 */
517 vm_page_clear_dirty(m, base, PAGE_SIZE - base);
518 }
519 vm_page_xunbusy(m);
520 }
521 out:
522 #if defined(__powerpc__) && !defined(__powerpc64__)
523 object->un_pager.vnp.vnp_size = nsize;
524 #else
525 atomic_store_64(&object->un_pager.vnp.vnp_size, nsize);
526 #endif
527 object->size = nobjsize;
528 VM_OBJECT_WUNLOCK(object);
529 }
530
531 /*
532 * calculate the linear (byte) disk address of specified virtual
533 * file address
534 */
535 static int
536 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
537 int *run)
538 {
539 int bsize;
540 int err;
541 daddr_t vblock;
542 daddr_t voffset;
543
544 if (VN_IS_DOOMED(vp))
545 return -1;
546
547 bsize = vp->v_mount->mnt_stat.f_iosize;
548 vblock = address / bsize;
549 voffset = address % bsize;
550
551 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
552 if (err == 0) {
553 if (*rtaddress != -1)
554 *rtaddress += voffset / DEV_BSIZE;
555 if (run) {
556 *run += 1;
557 *run *= bsize / PAGE_SIZE;
558 *run -= voffset / PAGE_SIZE;
559 }
560 }
561
562 return (err);
563 }
564
565 /*
566 * small block filesystem vnode pager input
567 */
568 static int
569 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
570 {
571 struct vnode *vp;
572 struct bufobj *bo;
573 struct buf *bp;
574 struct sf_buf *sf;
575 daddr_t fileaddr;
576 vm_offset_t bsize;
577 vm_page_bits_t bits;
578 int error, i;
579
580 error = 0;
581 vp = object->handle;
582 if (VN_IS_DOOMED(vp))
583 return VM_PAGER_BAD;
584
585 bsize = vp->v_mount->mnt_stat.f_iosize;
586
587 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
588
589 sf = sf_buf_alloc(m, 0);
590
591 for (i = 0; i < PAGE_SIZE / bsize; i++) {
592 vm_ooffset_t address;
593
594 bits = vm_page_bits(i * bsize, bsize);
595 if (m->valid & bits)
596 continue;
597
598 address = IDX_TO_OFF(m->pindex) + i * bsize;
599 if (address >= object->un_pager.vnp.vnp_size) {
600 fileaddr = -1;
601 } else {
602 error = vnode_pager_addr(vp, address, &fileaddr, NULL);
603 if (error)
604 break;
605 }
606 if (fileaddr != -1) {
607 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
608
609 /* build a minimal buffer header */
610 bp->b_iocmd = BIO_READ;
611 bp->b_iodone = bdone;
612 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
613 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
614 bp->b_rcred = crhold(curthread->td_ucred);
615 bp->b_wcred = crhold(curthread->td_ucred);
616 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
617 bp->b_blkno = fileaddr;
618 pbgetbo(bo, bp);
619 bp->b_vp = vp;
620 bp->b_bcount = bsize;
621 bp->b_bufsize = bsize;
622 bp->b_runningbufspace = bp->b_bufsize;
623 atomic_add_long(&runningbufspace, bp->b_runningbufspace);
624
625 /* do the input */
626 bp->b_iooffset = dbtob(bp->b_blkno);
627 bstrategy(bp);
628
629 bwait(bp, PVM, "vnsrd");
630
631 if ((bp->b_ioflags & BIO_ERROR) != 0) {
632 KASSERT(bp->b_error != 0,
633 ("%s: buf error but b_error == 0\n", __func__));
634 error = bp->b_error;
635 }
636
637 /*
638 * free the buffer header back to the swap buffer pool
639 */
640 bp->b_vp = NULL;
641 pbrelbo(bp);
642 uma_zfree(vnode_pbuf_zone, bp);
643 if (error)
644 break;
645 } else
646 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
647 KASSERT((m->dirty & bits) == 0,
648 ("vnode_pager_input_smlfs: page %p is dirty", m));
649 vm_page_bits_set(m, &m->valid, bits);
650 }
651 sf_buf_free(sf);
652 if (error) {
653 return VM_PAGER_ERROR;
654 }
655 return VM_PAGER_OK;
656 }
657
658 /*
659 * old style vnode pager input routine
660 */
661 static int
662 vnode_pager_input_old(vm_object_t object, vm_page_t m)
663 {
664 struct uio auio;
665 struct iovec aiov;
666 int error;
667 int size;
668 struct sf_buf *sf;
669 struct vnode *vp;
670
671 VM_OBJECT_ASSERT_WLOCKED(object);
672 error = 0;
673
674 /*
675 * Return failure if beyond current EOF
676 */
677 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
678 return VM_PAGER_BAD;
679 } else {
680 size = PAGE_SIZE;
681 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
682 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
683 vp = object->handle;
684 VM_OBJECT_WUNLOCK(object);
685
686 /*
687 * Allocate a kernel virtual address and initialize so that
688 * we can use VOP_READ/WRITE routines.
689 */
690 sf = sf_buf_alloc(m, 0);
691
692 aiov.iov_base = (caddr_t)sf_buf_kva(sf);
693 aiov.iov_len = size;
694 auio.uio_iov = &aiov;
695 auio.uio_iovcnt = 1;
696 auio.uio_offset = IDX_TO_OFF(m->pindex);
697 auio.uio_segflg = UIO_SYSSPACE;
698 auio.uio_rw = UIO_READ;
699 auio.uio_resid = size;
700 auio.uio_td = curthread;
701
702 error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
703 if (!error) {
704 int count = size - auio.uio_resid;
705
706 if (count == 0)
707 error = EINVAL;
708 else if (count != PAGE_SIZE)
709 bzero((caddr_t)sf_buf_kva(sf) + count,
710 PAGE_SIZE - count);
711 }
712 sf_buf_free(sf);
713
714 VM_OBJECT_WLOCK(object);
715 }
716 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
717 if (!error)
718 vm_page_valid(m);
719 return error ? VM_PAGER_ERROR : VM_PAGER_OK;
720 }
721
722 /*
723 * generic vnode pager input routine
724 */
725
726 /*
727 * Local media VFS's that do not implement their own VOP_GETPAGES
728 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
729 * to implement the previous behaviour.
730 *
731 * All other FS's should use the bypass to get to the local media
732 * backing vp's VOP_GETPAGES.
733 */
734 static int
735 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
736 int *rahead)
737 {
738 struct vnode *vp;
739 int rtval;
740
741 /* Handle is stable with paging in progress. */
742 vp = object->handle;
743 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
744 KASSERT(rtval != EOPNOTSUPP,
745 ("vnode_pager: FS getpages not implemented\n"));
746 return rtval;
747 }
748
749 static int
750 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
751 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
752 {
753 struct vnode *vp;
754 int rtval;
755
756 vp = object->handle;
757 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
758 KASSERT(rtval != EOPNOTSUPP,
759 ("vnode_pager: FS getpages_async not implemented\n"));
760 return (rtval);
761 }
762
763 /*
764 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
765 * local filesystems, where partially valid pages can only occur at
766 * the end of file.
767 */
768 int
769 vnode_pager_local_getpages(struct vop_getpages_args *ap)
770 {
771
772 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
773 ap->a_rbehind, ap->a_rahead, NULL, NULL));
774 }
775
776 int
777 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
778 {
779 int error;
780
781 error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
782 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
783 if (error != 0 && ap->a_iodone != NULL)
784 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
785 return (error);
786 }
787
788 /*
789 * This is now called from local media FS's to operate against their
790 * own vnodes if they fail to implement VOP_GETPAGES.
791 */
792 int
793 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
794 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
795 {
796 vm_object_t object;
797 struct bufobj *bo;
798 struct buf *bp;
799 off_t foff;
800 #ifdef INVARIANTS
801 off_t blkno0;
802 #endif
803 int bsize, pagesperblock;
804 int error, before, after, rbehind, rahead, poff, i;
805 int bytecount, secmask;
806
807 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
808 ("%s does not support devices", __func__));
809
810 if (VN_IS_DOOMED(vp))
811 return (VM_PAGER_BAD);
812
813 object = vp->v_object;
814 foff = IDX_TO_OFF(m[0]->pindex);
815 bsize = vp->v_mount->mnt_stat.f_iosize;
816 pagesperblock = bsize / PAGE_SIZE;
817
818 KASSERT(foff < object->un_pager.vnp.vnp_size,
819 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
820 KASSERT(count <= atop(maxphys),
821 ("%s: requested %d pages", __func__, count));
822
823 /*
824 * The last page has valid blocks. Invalid part can only
825 * exist at the end of file, and the page is made fully valid
826 * by zeroing in vm_pager_get_pages().
827 */
828 if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
829 if (iodone != NULL)
830 iodone(arg, m, 1, 0);
831 return (VM_PAGER_OK);
832 }
833
834 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
835 MPASS((bp->b_flags & B_MAXPHYS) != 0);
836
837 /*
838 * Get the underlying device blocks for the file with VOP_BMAP().
839 * If the file system doesn't support VOP_BMAP, use old way of
840 * getting pages via VOP_READ.
841 */
842 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
843 if (error == EOPNOTSUPP) {
844 uma_zfree(vnode_pbuf_zone, bp);
845 VM_OBJECT_WLOCK(object);
846 for (i = 0; i < count; i++) {
847 VM_CNT_INC(v_vnodein);
848 VM_CNT_INC(v_vnodepgsin);
849 error = vnode_pager_input_old(object, m[i]);
850 if (error)
851 break;
852 }
853 VM_OBJECT_WUNLOCK(object);
854 return (error);
855 } else if (error != 0) {
856 uma_zfree(vnode_pbuf_zone, bp);
857 return (VM_PAGER_ERROR);
858 }
859
860 /*
861 * If the file system supports BMAP, but blocksize is smaller
862 * than a page size, then use special small filesystem code.
863 */
864 if (pagesperblock == 0) {
865 uma_zfree(vnode_pbuf_zone, bp);
866 for (i = 0; i < count; i++) {
867 VM_CNT_INC(v_vnodein);
868 VM_CNT_INC(v_vnodepgsin);
869 error = vnode_pager_input_smlfs(object, m[i]);
870 if (error)
871 break;
872 }
873 return (error);
874 }
875
876 /*
877 * A sparse file can be encountered only for a single page request,
878 * which may not be preceded by call to vm_pager_haspage().
879 */
880 if (bp->b_blkno == -1) {
881 KASSERT(count == 1,
882 ("%s: array[%d] request to a sparse file %p", __func__,
883 count, vp));
884 uma_zfree(vnode_pbuf_zone, bp);
885 pmap_zero_page(m[0]);
886 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
887 __func__, m[0]));
888 vm_page_valid(m[0]);
889 return (VM_PAGER_OK);
890 }
891
892 #ifdef INVARIANTS
893 blkno0 = bp->b_blkno;
894 #endif
895 bp->b_blkno += (foff % bsize) / DEV_BSIZE;
896
897 /* Recalculate blocks available after/before to pages. */
898 poff = (foff % bsize) / PAGE_SIZE;
899 before *= pagesperblock;
900 before += poff;
901 after *= pagesperblock;
902 after += pagesperblock - (poff + 1);
903 if (m[0]->pindex + after >= object->size)
904 after = object->size - 1 - m[0]->pindex;
905 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
906 __func__, count, after + 1));
907 after -= count - 1;
908
909 /* Trim requested rbehind/rahead to possible values. */
910 rbehind = a_rbehind ? *a_rbehind : 0;
911 rahead = a_rahead ? *a_rahead : 0;
912 rbehind = min(rbehind, before);
913 rbehind = min(rbehind, m[0]->pindex);
914 rahead = min(rahead, after);
915 rahead = min(rahead, object->size - m[count - 1]->pindex);
916 /*
917 * Check that total amount of pages fit into buf. Trim rbehind and
918 * rahead evenly if not.
919 */
920 if (rbehind + rahead + count > atop(maxphys)) {
921 int trim, sum;
922
923 trim = rbehind + rahead + count - atop(maxphys) + 1;
924 sum = rbehind + rahead;
925 if (rbehind == before) {
926 /* Roundup rbehind trim to block size. */
927 rbehind -= roundup(trim * rbehind / sum, pagesperblock);
928 if (rbehind < 0)
929 rbehind = 0;
930 } else
931 rbehind -= trim * rbehind / sum;
932 rahead -= trim * rahead / sum;
933 }
934 KASSERT(rbehind + rahead + count <= atop(maxphys),
935 ("%s: behind %d ahead %d count %d maxphys %lu", __func__,
936 rbehind, rahead, count, maxphys));
937
938 /*
939 * Fill in the bp->b_pages[] array with requested and optional
940 * read behind or read ahead pages. Read behind pages are looked
941 * up in a backward direction, down to a first cached page. Same
942 * for read ahead pages, but there is no need to shift the array
943 * in case of encountering a cached page.
944 */
945 i = bp->b_npages = 0;
946 if (rbehind) {
947 vm_pindex_t startpindex, tpindex;
948 vm_page_t p;
949
950 VM_OBJECT_WLOCK(object);
951 startpindex = m[0]->pindex - rbehind;
952 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
953 p->pindex >= startpindex)
954 startpindex = p->pindex + 1;
955
956 /* tpindex is unsigned; beware of numeric underflow. */
957 for (tpindex = m[0]->pindex - 1;
958 tpindex >= startpindex && tpindex < m[0]->pindex;
959 tpindex--, i++) {
960 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
961 if (p == NULL) {
962 /* Shift the array. */
963 for (int j = 0; j < i; j++)
964 bp->b_pages[j] = bp->b_pages[j +
965 tpindex + 1 - startpindex];
966 break;
967 }
968 bp->b_pages[tpindex - startpindex] = p;
969 }
970
971 bp->b_pgbefore = i;
972 bp->b_npages += i;
973 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
974 } else
975 bp->b_pgbefore = 0;
976
977 /* Requested pages. */
978 for (int j = 0; j < count; j++, i++)
979 bp->b_pages[i] = m[j];
980 bp->b_npages += count;
981
982 if (rahead) {
983 vm_pindex_t endpindex, tpindex;
984 vm_page_t p;
985
986 if (!VM_OBJECT_WOWNED(object))
987 VM_OBJECT_WLOCK(object);
988 endpindex = m[count - 1]->pindex + rahead + 1;
989 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
990 p->pindex < endpindex)
991 endpindex = p->pindex;
992 if (endpindex > object->size)
993 endpindex = object->size;
994
995 for (tpindex = m[count - 1]->pindex + 1;
996 tpindex < endpindex; i++, tpindex++) {
997 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
998 if (p == NULL)
999 break;
1000 bp->b_pages[i] = p;
1001 }
1002
1003 bp->b_pgafter = i - bp->b_npages;
1004 bp->b_npages = i;
1005 } else
1006 bp->b_pgafter = 0;
1007
1008 if (VM_OBJECT_WOWNED(object))
1009 VM_OBJECT_WUNLOCK(object);
1010
1011 /* Report back actual behind/ahead read. */
1012 if (a_rbehind)
1013 *a_rbehind = bp->b_pgbefore;
1014 if (a_rahead)
1015 *a_rahead = bp->b_pgafter;
1016
1017 #ifdef INVARIANTS
1018 KASSERT(bp->b_npages <= atop(maxphys),
1019 ("%s: buf %p overflowed", __func__, bp));
1020 for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1021 if (bp->b_pages[j] == bogus_page)
1022 continue;
1023 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1024 j - prev, ("%s: pages array not consecutive, bp %p",
1025 __func__, bp));
1026 prev = j;
1027 }
1028 #endif
1029
1030 /*
1031 * Recalculate first offset and bytecount with regards to read behind.
1032 * Truncate bytecount to vnode real size and round up physical size
1033 * for real devices.
1034 */
1035 foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1036 bytecount = bp->b_npages << PAGE_SHIFT;
1037 if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1038 bytecount = object->un_pager.vnp.vnp_size - foff;
1039 secmask = bo->bo_bsize - 1;
1040 KASSERT(secmask < PAGE_SIZE && secmask > 0,
1041 ("%s: sector size %d too large", __func__, secmask + 1));
1042 bytecount = (bytecount + secmask) & ~secmask;
1043
1044 /*
1045 * And map the pages to be read into the kva, if the filesystem
1046 * requires mapped buffers.
1047 */
1048 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1049 unmapped_buf_allowed) {
1050 bp->b_data = unmapped_buf;
1051 bp->b_offset = 0;
1052 } else {
1053 bp->b_data = bp->b_kvabase;
1054 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1055 }
1056
1057 /* Build a minimal buffer header. */
1058 bp->b_iocmd = BIO_READ;
1059 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1060 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1061 bp->b_rcred = crhold(curthread->td_ucred);
1062 bp->b_wcred = crhold(curthread->td_ucred);
1063 pbgetbo(bo, bp);
1064 bp->b_vp = vp;
1065 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1066 bp->b_iooffset = dbtob(bp->b_blkno);
1067 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1068 (blkno0 - bp->b_blkno) * DEV_BSIZE +
1069 IDX_TO_OFF(m[0]->pindex) % bsize,
1070 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1071 "blkno0 %ju b_blkno %ju", bsize,
1072 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1073 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1074
1075 atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1076 VM_CNT_INC(v_vnodein);
1077 VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1078
1079 if (iodone != NULL) { /* async */
1080 bp->b_pgiodone = iodone;
1081 bp->b_caller1 = arg;
1082 bp->b_iodone = vnode_pager_generic_getpages_done_async;
1083 bp->b_flags |= B_ASYNC;
1084 BUF_KERNPROC(bp);
1085 bstrategy(bp);
1086 return (VM_PAGER_OK);
1087 } else {
1088 bp->b_iodone = bdone;
1089 bstrategy(bp);
1090 bwait(bp, PVM, "vnread");
1091 error = vnode_pager_generic_getpages_done(bp);
1092 for (i = 0; i < bp->b_npages; i++)
1093 bp->b_pages[i] = NULL;
1094 bp->b_vp = NULL;
1095 pbrelbo(bp);
1096 uma_zfree(vnode_pbuf_zone, bp);
1097 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1098 }
1099 }
1100
1101 static void
1102 vnode_pager_generic_getpages_done_async(struct buf *bp)
1103 {
1104 int error;
1105
1106 error = vnode_pager_generic_getpages_done(bp);
1107 /* Run the iodone upon the requested range. */
1108 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1109 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1110 for (int i = 0; i < bp->b_npages; i++)
1111 bp->b_pages[i] = NULL;
1112 bp->b_vp = NULL;
1113 pbrelbo(bp);
1114 uma_zfree(vnode_pbuf_zone, bp);
1115 }
1116
1117 static int
1118 vnode_pager_generic_getpages_done(struct buf *bp)
1119 {
1120 vm_object_t object;
1121 off_t tfoff, nextoff;
1122 int i, error;
1123
1124 KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0,
1125 ("%s: buf error but b_error == 0\n", __func__));
1126 error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0;
1127 object = bp->b_vp->v_object;
1128
1129 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1130 if (!buf_mapped(bp)) {
1131 bp->b_data = bp->b_kvabase;
1132 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1133 bp->b_npages);
1134 }
1135 bzero(bp->b_data + bp->b_bcount,
1136 PAGE_SIZE * bp->b_npages - bp->b_bcount);
1137 }
1138 if (buf_mapped(bp)) {
1139 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1140 bp->b_data = unmapped_buf;
1141 }
1142
1143 /*
1144 * If the read failed, we must free any read ahead/behind pages here.
1145 * The requested pages are freed by the caller (for sync requests)
1146 * or by the bp->b_pgiodone callback (for async requests).
1147 */
1148 if (error != 0) {
1149 VM_OBJECT_WLOCK(object);
1150 for (i = 0; i < bp->b_pgbefore; i++)
1151 vm_page_free_invalid(bp->b_pages[i]);
1152 for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++)
1153 vm_page_free_invalid(bp->b_pages[i]);
1154 VM_OBJECT_WUNLOCK(object);
1155 return (error);
1156 }
1157
1158 /* Read lock to protect size. */
1159 VM_OBJECT_RLOCK(object);
1160 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1161 i < bp->b_npages; i++, tfoff = nextoff) {
1162 vm_page_t mt;
1163
1164 nextoff = tfoff + PAGE_SIZE;
1165 mt = bp->b_pages[i];
1166 if (mt == bogus_page)
1167 continue;
1168
1169 if (nextoff <= object->un_pager.vnp.vnp_size) {
1170 /*
1171 * Read filled up entire page.
1172 */
1173 vm_page_valid(mt);
1174 KASSERT(mt->dirty == 0,
1175 ("%s: page %p is dirty", __func__, mt));
1176 KASSERT(!pmap_page_is_mapped(mt),
1177 ("%s: page %p is mapped", __func__, mt));
1178 } else {
1179 /*
1180 * Read did not fill up entire page.
1181 *
1182 * Currently we do not set the entire page valid,
1183 * we just try to clear the piece that we couldn't
1184 * read.
1185 */
1186 vm_page_set_valid_range(mt, 0,
1187 object->un_pager.vnp.vnp_size - tfoff);
1188 KASSERT((mt->dirty & vm_page_bits(0,
1189 object->un_pager.vnp.vnp_size - tfoff)) == 0,
1190 ("%s: page %p is dirty", __func__, mt));
1191 }
1192
1193 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1194 vm_page_readahead_finish(mt);
1195 }
1196 VM_OBJECT_RUNLOCK(object);
1197
1198 return (error);
1199 }
1200
1201 /*
1202 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
1203 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1204 * vnode_pager_generic_putpages() to implement the previous behaviour.
1205 *
1206 * All other FS's should use the bypass to get to the local media
1207 * backing vp's VOP_PUTPAGES.
1208 */
1209 static void
1210 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1211 int flags, int *rtvals)
1212 {
1213 int rtval;
1214 struct vnode *vp;
1215 int bytes = count * PAGE_SIZE;
1216
1217 /*
1218 * Force synchronous operation if we are extremely low on memory
1219 * to prevent a low-memory deadlock. VOP operations often need to
1220 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1221 * operation ). The swapper handles the case by limiting the amount
1222 * of asynchronous I/O, but that sort of solution doesn't scale well
1223 * for the vnode pager without a lot of work.
1224 *
1225 * Also, the backing vnode's iodone routine may not wake the pageout
1226 * daemon up. This should be probably be addressed XXX.
1227 */
1228
1229 if (vm_page_count_min())
1230 flags |= VM_PAGER_PUT_SYNC;
1231
1232 /*
1233 * Call device-specific putpages function
1234 */
1235 vp = object->handle;
1236 VM_OBJECT_WUNLOCK(object);
1237 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1238 KASSERT(rtval != EOPNOTSUPP,
1239 ("vnode_pager: stale FS putpages\n"));
1240 VM_OBJECT_WLOCK(object);
1241 }
1242
1243 static int
1244 vn_off2bidx(vm_ooffset_t offset)
1245 {
1246
1247 return ((offset & PAGE_MASK) / DEV_BSIZE);
1248 }
1249
1250 static bool
1251 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1252 {
1253
1254 KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1255 offset < IDX_TO_OFF(m->pindex + 1),
1256 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1257 (uintmax_t)offset));
1258 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1259 }
1260
1261 /*
1262 * This is now called from local media FS's to operate against their
1263 * own vnodes if they fail to implement VOP_PUTPAGES.
1264 *
1265 * This is typically called indirectly via the pageout daemon and
1266 * clustering has already typically occurred, so in general we ask the
1267 * underlying filesystem to write the data out asynchronously rather
1268 * then delayed.
1269 */
1270 int
1271 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1272 int flags, int *rtvals)
1273 {
1274 vm_object_t object;
1275 vm_page_t m;
1276 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1277 struct uio auio;
1278 struct iovec aiov;
1279 off_t prev_resid, wrsz;
1280 int count, error, i, maxsize, ncount, pgoff, ppscheck;
1281 bool in_hole;
1282 static struct timeval lastfail;
1283 static int curfail;
1284
1285 object = vp->v_object;
1286 count = bytecount / PAGE_SIZE;
1287
1288 for (i = 0; i < count; i++)
1289 rtvals[i] = VM_PAGER_ERROR;
1290
1291 if ((int64_t)ma[0]->pindex < 0) {
1292 printf("vnode_pager_generic_putpages: "
1293 "attempt to write meta-data 0x%jx(%lx)\n",
1294 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1295 rtvals[0] = VM_PAGER_BAD;
1296 return (VM_PAGER_BAD);
1297 }
1298
1299 maxsize = count * PAGE_SIZE;
1300 ncount = count;
1301
1302 poffset = IDX_TO_OFF(ma[0]->pindex);
1303
1304 /*
1305 * If the page-aligned write is larger then the actual file we
1306 * have to invalidate pages occurring beyond the file EOF. However,
1307 * there is an edge case where a file may not be page-aligned where
1308 * the last page is partially invalid. In this case the filesystem
1309 * may not properly clear the dirty bits for the entire page (which
1310 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1311 * With the page busied we are free to fix up the dirty bits here.
1312 *
1313 * We do not under any circumstances truncate the valid bits, as
1314 * this will screw up bogus page replacement.
1315 */
1316 VM_OBJECT_RLOCK(object);
1317 if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1318 if (object->un_pager.vnp.vnp_size > poffset) {
1319 maxsize = object->un_pager.vnp.vnp_size - poffset;
1320 ncount = btoc(maxsize);
1321 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1322 pgoff = roundup2(pgoff, DEV_BSIZE);
1323
1324 /*
1325 * If the page is busy and the following
1326 * conditions hold, then the page's dirty
1327 * field cannot be concurrently changed by a
1328 * pmap operation.
1329 */
1330 m = ma[ncount - 1];
1331 vm_page_assert_sbusied(m);
1332 KASSERT(!pmap_page_is_write_mapped(m),
1333 ("vnode_pager_generic_putpages: page %p is not read-only", m));
1334 MPASS(m->dirty != 0);
1335 vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1336 pgoff);
1337 }
1338 } else {
1339 maxsize = 0;
1340 ncount = 0;
1341 }
1342 for (i = ncount; i < count; i++)
1343 rtvals[i] = VM_PAGER_BAD;
1344 }
1345 VM_OBJECT_RUNLOCK(object);
1346
1347 auio.uio_iov = &aiov;
1348 auio.uio_segflg = UIO_NOCOPY;
1349 auio.uio_rw = UIO_WRITE;
1350 auio.uio_td = NULL;
1351 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1352
1353 for (prev_offset = poffset; prev_offset < maxblksz;) {
1354 /* Skip clean blocks. */
1355 for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1356 m = ma[OFF_TO_IDX(prev_offset - poffset)];
1357 for (i = vn_off2bidx(prev_offset);
1358 i < sizeof(vm_page_bits_t) * NBBY &&
1359 prev_offset < maxblksz; i++) {
1360 if (vn_dirty_blk(m, prev_offset)) {
1361 in_hole = false;
1362 break;
1363 }
1364 prev_offset += DEV_BSIZE;
1365 }
1366 }
1367 if (in_hole)
1368 goto write_done;
1369
1370 /* Find longest run of dirty blocks. */
1371 for (next_offset = prev_offset; next_offset < maxblksz;) {
1372 m = ma[OFF_TO_IDX(next_offset - poffset)];
1373 for (i = vn_off2bidx(next_offset);
1374 i < sizeof(vm_page_bits_t) * NBBY &&
1375 next_offset < maxblksz; i++) {
1376 if (!vn_dirty_blk(m, next_offset))
1377 goto start_write;
1378 next_offset += DEV_BSIZE;
1379 }
1380 }
1381 start_write:
1382 if (next_offset > poffset + maxsize)
1383 next_offset = poffset + maxsize;
1384
1385 /*
1386 * Getting here requires finding a dirty block in the
1387 * 'skip clean blocks' loop.
1388 */
1389 MPASS(prev_offset < next_offset);
1390
1391 aiov.iov_base = NULL;
1392 auio.uio_iovcnt = 1;
1393 auio.uio_offset = prev_offset;
1394 prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1395 prev_offset;
1396 error = VOP_WRITE(vp, &auio,
1397 vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1398
1399 wrsz = prev_resid - auio.uio_resid;
1400 if (wrsz == 0) {
1401 if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1402 vn_printf(vp, "vnode_pager_putpages: "
1403 "zero-length write at %ju resid %zd\n",
1404 auio.uio_offset, auio.uio_resid);
1405 }
1406 break;
1407 }
1408
1409 /* Adjust the starting offset for next iteration. */
1410 prev_offset += wrsz;
1411 MPASS(auio.uio_offset == prev_offset);
1412
1413 ppscheck = 0;
1414 if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1415 &curfail, 1)) != 0)
1416 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1417 error);
1418 if (auio.uio_resid != 0 && (ppscheck != 0 ||
1419 ppsratecheck(&lastfail, &curfail, 1) != 0))
1420 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1421 "at %ju\n", auio.uio_resid,
1422 (uintmax_t)ma[0]->pindex);
1423 if (error != 0 || auio.uio_resid != 0)
1424 break;
1425 }
1426 write_done:
1427 /* Mark completely processed pages. */
1428 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1429 rtvals[i] = VM_PAGER_OK;
1430 /* Mark partial EOF page. */
1431 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1432 rtvals[i++] = VM_PAGER_OK;
1433 /* Unwritten pages in range, free bonus if the page is clean. */
1434 for (; i < ncount; i++)
1435 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1436 VM_CNT_ADD(v_vnodepgsout, i);
1437 VM_CNT_INC(v_vnodeout);
1438 return (rtvals[0]);
1439 }
1440
1441 int
1442 vnode_pager_putpages_ioflags(int pager_flags)
1443 {
1444 int ioflags;
1445
1446 /*
1447 * Pageouts are already clustered, use IO_ASYNC to force a
1448 * bawrite() rather then a bdwrite() to prevent paging I/O
1449 * from saturating the buffer cache. Dummy-up the sequential
1450 * heuristic to cause large ranges to cluster. If neither
1451 * IO_SYNC or IO_ASYNC is set, the system decides how to
1452 * cluster.
1453 */
1454 ioflags = IO_VMIO;
1455 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1456 ioflags |= IO_SYNC;
1457 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1458 ioflags |= IO_ASYNC;
1459 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1460 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1461 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1462 return (ioflags);
1463 }
1464
1465 /*
1466 * vnode_pager_undirty_pages().
1467 *
1468 * A helper to mark pages as clean after pageout that was possibly
1469 * done with a short write. The lpos argument specifies the page run
1470 * length in bytes, and the written argument specifies how many bytes
1471 * were actually written. eof is the offset past the last valid byte
1472 * in the vnode using the absolute file position of the first byte in
1473 * the run as the base from which it is computed.
1474 */
1475 void
1476 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1477 int lpos)
1478 {
1479 vm_object_t obj;
1480 int i, pos, pos_devb;
1481
1482 if (written == 0 && eof >= lpos)
1483 return;
1484 obj = ma[0]->object;
1485 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1486 if (pos < trunc_page(written)) {
1487 rtvals[i] = VM_PAGER_OK;
1488 vm_page_undirty(ma[i]);
1489 } else {
1490 /* Partially written page. */
1491 rtvals[i] = VM_PAGER_AGAIN;
1492 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1493 }
1494 }
1495 if (eof >= lpos) /* avoid truncation */
1496 return;
1497 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1498 if (pos != trunc_page(pos)) {
1499 /*
1500 * The page contains the last valid byte in
1501 * the vnode, mark the rest of the page as
1502 * clean, potentially making the whole page
1503 * clean.
1504 */
1505 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1506 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1507 pos_devb);
1508
1509 /*
1510 * If the page was cleaned, report the pageout
1511 * on it as successful. msync() no longer
1512 * needs to write out the page, endlessly
1513 * creating write requests and dirty buffers.
1514 */
1515 if (ma[i]->dirty == 0)
1516 rtvals[i] = VM_PAGER_OK;
1517
1518 pos = round_page(pos);
1519 } else {
1520 /* vm_pageout_flush() clears dirty */
1521 rtvals[i] = VM_PAGER_BAD;
1522 pos += PAGE_SIZE;
1523 }
1524 }
1525 }
1526
1527 static void
1528 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1529 vm_offset_t end)
1530 {
1531 struct vnode *vp;
1532 vm_ooffset_t old_wm;
1533
1534 VM_OBJECT_WLOCK(object);
1535 if (object->type != OBJT_VNODE) {
1536 VM_OBJECT_WUNLOCK(object);
1537 return;
1538 }
1539 old_wm = object->un_pager.vnp.writemappings;
1540 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1541 vp = object->handle;
1542 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1543 ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1544 VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1545 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1546 __func__, vp, vp->v_writecount);
1547 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1548 ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1549 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1550 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1551 __func__, vp, vp->v_writecount);
1552 }
1553 VM_OBJECT_WUNLOCK(object);
1554 }
1555
1556 static void
1557 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1558 vm_offset_t end)
1559 {
1560 struct vnode *vp;
1561 struct mount *mp;
1562 vm_offset_t inc;
1563
1564 VM_OBJECT_WLOCK(object);
1565
1566 /*
1567 * First, recheck the object type to account for the race when
1568 * the vnode is reclaimed.
1569 */
1570 if (object->type != OBJT_VNODE) {
1571 VM_OBJECT_WUNLOCK(object);
1572 return;
1573 }
1574
1575 /*
1576 * Optimize for the case when writemappings is not going to
1577 * zero.
1578 */
1579 inc = end - start;
1580 if (object->un_pager.vnp.writemappings != inc) {
1581 object->un_pager.vnp.writemappings -= inc;
1582 VM_OBJECT_WUNLOCK(object);
1583 return;
1584 }
1585
1586 vp = object->handle;
1587 vhold(vp);
1588 VM_OBJECT_WUNLOCK(object);
1589 mp = NULL;
1590 vn_start_write(vp, &mp, V_WAIT);
1591 vn_lock(vp, LK_SHARED | LK_RETRY);
1592
1593 /*
1594 * Decrement the object's writemappings, by swapping the start
1595 * and end arguments for vnode_pager_update_writecount(). If
1596 * there was not a race with vnode reclaimation, then the
1597 * vnode's v_writecount is decremented.
1598 */
1599 vnode_pager_update_writecount(object, end, start);
1600 VOP_UNLOCK(vp);
1601 vdrop(vp);
1602 if (mp != NULL)
1603 vn_finished_write(mp);
1604 }
Cache object: 063cf37c44c88729501cb98ca058a173
|