The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vnode_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 University of Utah.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  * Copyright (c) 1993, 1994 John S. Dyson
    6  * Copyright (c) 1995, David Greenman
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *      from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
   41  */
   42 
   43 /*
   44  * Page to/from files (vnodes).
   45  */
   46 
   47 /*
   48  * TODO:
   49  *      Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
   50  *      greatly re-simplify the vnode_pager.
   51  */
   52 
   53 #include <sys/cdefs.h>
   54 __FBSDID("$FreeBSD: releng/5.4/sys/vm/vnode_pager.c 142370 2005-02-24 07:39:42Z alc $");
   55 
   56 #include <sys/param.h>
   57 #include <sys/systm.h>
   58 #include <sys/proc.h>
   59 #include <sys/vnode.h>
   60 #include <sys/mount.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/conf.h>
   65 #include <sys/sf_buf.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_object.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_pager.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vnode_pager.h>
   73 #include <vm/vm_extern.h>
   74 
   75 static void vnode_pager_init(void);
   76 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
   77                                          int *run);
   78 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
   79 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
   80 static void vnode_pager_dealloc(vm_object_t);
   81 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
   82 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
   83 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
   84 
   85 struct pagerops vnodepagerops = {
   86         .pgo_init =     vnode_pager_init,
   87         .pgo_alloc =    vnode_pager_alloc,
   88         .pgo_dealloc =  vnode_pager_dealloc,
   89         .pgo_getpages = vnode_pager_getpages,
   90         .pgo_putpages = vnode_pager_putpages,
   91         .pgo_haspage =  vnode_pager_haspage,
   92 };
   93 
   94 int vnode_pbuf_freecnt;
   95 
   96 static void
   97 vnode_pager_init(void)
   98 {
   99 
  100         vnode_pbuf_freecnt = nswbuf / 2 + 1;
  101 }
  102 
  103 /*
  104  * Allocate (or lookup) pager for a vnode.
  105  * Handle is a vnode pointer.
  106  *
  107  * MPSAFE
  108  */
  109 vm_object_t
  110 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  111                   vm_ooffset_t offset)
  112 {
  113         vm_object_t object;
  114         struct vnode *vp;
  115 
  116         /*
  117          * Pageout to vnode, no can do yet.
  118          */
  119         if (handle == NULL)
  120                 return (NULL);
  121 
  122         vp = (struct vnode *) handle;
  123 
  124         ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
  125 
  126         /*
  127          * Prevent race condition when allocating the object. This
  128          * can happen with NFS vnodes since the nfsnode isn't locked.
  129          */
  130         VI_LOCK(vp);
  131         while (vp->v_iflag & VI_OLOCK) {
  132                 vp->v_iflag |= VI_OWANT;
  133                 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
  134         }
  135         vp->v_iflag |= VI_OLOCK;
  136         VI_UNLOCK(vp);
  137 
  138         /*
  139          * If the object is being terminated, wait for it to
  140          * go away.
  141          */
  142         while ((object = vp->v_object) != NULL) {
  143                 VM_OBJECT_LOCK(object);
  144                 if ((object->flags & OBJ_DEAD) == 0)
  145                         break;
  146                 vm_object_set_flag(object, OBJ_DISCONNECTWNT);
  147                 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
  148         }
  149 
  150         if (vp->v_usecount == 0)
  151                 panic("vnode_pager_alloc: no vnode reference");
  152 
  153         if (object == NULL) {
  154                 /*
  155                  * And an object of the appropriate size
  156                  */
  157                 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
  158 
  159                 object->un_pager.vnp.vnp_size = size;
  160 
  161                 object->handle = handle;
  162                 vp->v_object = object;
  163         } else {
  164                 object->ref_count++;
  165                 VM_OBJECT_UNLOCK(object);
  166         }
  167         VI_LOCK(vp);
  168         vp->v_usecount++;
  169         vp->v_iflag &= ~VI_OLOCK;
  170         if (vp->v_iflag & VI_OWANT) {
  171                 vp->v_iflag &= ~VI_OWANT;
  172                 wakeup(vp);
  173         }
  174         VI_UNLOCK(vp);
  175         return (object);
  176 }
  177 
  178 /*
  179  *      The object must be locked.
  180  */
  181 static void
  182 vnode_pager_dealloc(object)
  183         vm_object_t object;
  184 {
  185         struct vnode *vp = object->handle;
  186 
  187         if (vp == NULL)
  188                 panic("vnode_pager_dealloc: pager already dealloced");
  189 
  190         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  191         vm_object_pip_wait(object, "vnpdea");
  192 
  193         object->handle = NULL;
  194         object->type = OBJT_DEAD;
  195         if (object->flags & OBJ_DISCONNECTWNT) {
  196                 vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
  197                 wakeup(object);
  198         }
  199         ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
  200         vp->v_object = NULL;
  201         vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF);
  202 }
  203 
  204 static boolean_t
  205 vnode_pager_haspage(object, pindex, before, after)
  206         vm_object_t object;
  207         vm_pindex_t pindex;
  208         int *before;
  209         int *after;
  210 {
  211         struct vnode *vp = object->handle;
  212         daddr_t bn;
  213         int err;
  214         daddr_t reqblock;
  215         int poff;
  216         int bsize;
  217         int pagesperblock, blocksperpage;
  218 
  219         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  220         /*
  221          * If no vp or vp is doomed or marked transparent to VM, we do not
  222          * have the page.
  223          */
  224         if (vp == NULL)
  225                 return FALSE;
  226 
  227         VI_LOCK(vp);
  228         if (vp->v_iflag & VI_DOOMED) {
  229                 VI_UNLOCK(vp);
  230                 return FALSE;
  231         }
  232         VI_UNLOCK(vp);
  233         /*
  234          * If filesystem no longer mounted or offset beyond end of file we do
  235          * not have the page.
  236          */
  237         if ((vp->v_mount == NULL) ||
  238             (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
  239                 return FALSE;
  240 
  241         bsize = vp->v_mount->mnt_stat.f_iosize;
  242         pagesperblock = bsize / PAGE_SIZE;
  243         blocksperpage = 0;
  244         if (pagesperblock > 0) {
  245                 reqblock = pindex / pagesperblock;
  246         } else {
  247                 blocksperpage = (PAGE_SIZE / bsize);
  248                 reqblock = pindex * blocksperpage;
  249         }
  250         VM_OBJECT_UNLOCK(object);
  251         mtx_lock(&Giant);
  252         err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
  253         mtx_unlock(&Giant);
  254         VM_OBJECT_LOCK(object);
  255         if (err)
  256                 return TRUE;
  257         if (bn == -1)
  258                 return FALSE;
  259         if (pagesperblock > 0) {
  260                 poff = pindex - (reqblock * pagesperblock);
  261                 if (before) {
  262                         *before *= pagesperblock;
  263                         *before += poff;
  264                 }
  265                 if (after) {
  266                         int numafter;
  267                         *after *= pagesperblock;
  268                         numafter = pagesperblock - (poff + 1);
  269                         if (IDX_TO_OFF(pindex + numafter) >
  270                             object->un_pager.vnp.vnp_size) {
  271                                 numafter =
  272                                     OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
  273                                     pindex;
  274                         }
  275                         *after += numafter;
  276                 }
  277         } else {
  278                 if (before) {
  279                         *before /= blocksperpage;
  280                 }
  281 
  282                 if (after) {
  283                         *after /= blocksperpage;
  284                 }
  285         }
  286         return TRUE;
  287 }
  288 
  289 /*
  290  * Lets the VM system know about a change in size for a file.
  291  * We adjust our own internal size and flush any cached pages in
  292  * the associated object that are affected by the size change.
  293  *
  294  * Note: this routine may be invoked as a result of a pager put
  295  * operation (possibly at object termination time), so we must be careful.
  296  */
  297 void
  298 vnode_pager_setsize(vp, nsize)
  299         struct vnode *vp;
  300         vm_ooffset_t nsize;
  301 {
  302         vm_object_t object;
  303         vm_page_t m;
  304         vm_pindex_t nobjsize;
  305 
  306         if ((object = vp->v_object) == NULL)
  307                 return;
  308         VM_OBJECT_LOCK(object);
  309         if (nsize == object->un_pager.vnp.vnp_size) {
  310                 /*
  311                  * Hasn't changed size
  312                  */
  313                 VM_OBJECT_UNLOCK(object);
  314                 return;
  315         }
  316         nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
  317         if (nsize < object->un_pager.vnp.vnp_size) {
  318                 /*
  319                  * File has shrunk. Toss any cached pages beyond the new EOF.
  320                  */
  321                 if (nobjsize < object->size)
  322                         vm_object_page_remove(object, nobjsize, object->size,
  323                             FALSE);
  324                 /*
  325                  * this gets rid of garbage at the end of a page that is now
  326                  * only partially backed by the vnode.
  327                  *
  328                  * XXX for some reason (I don't know yet), if we take a
  329                  * completely invalid page and mark it partially valid
  330                  * it can screw up NFS reads, so we don't allow the case.
  331                  */
  332                 if ((nsize & PAGE_MASK) &&
  333                     (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
  334                     m->valid != 0) {
  335                         int base = (int)nsize & PAGE_MASK;
  336                         int size = PAGE_SIZE - base;
  337 
  338                         /*
  339                          * Clear out partial-page garbage in case
  340                          * the page has been mapped.
  341                          */
  342                         pmap_zero_page_area(m, base, size);
  343 
  344                         /*
  345                          * XXX work around SMP data integrity race
  346                          * by unmapping the page from user processes.
  347                          * The garbage we just cleared may be mapped
  348                          * to a user process running on another cpu
  349                          * and this code is not running through normal
  350                          * I/O channels which handle SMP issues for
  351                          * us, so unmap page to synchronize all cpus.
  352                          *
  353                          * XXX should vm_pager_unmap_page() have
  354                          * dealt with this?
  355                          */
  356                         vm_page_lock_queues();
  357                         pmap_remove_all(m);
  358 
  359                         /*
  360                          * Clear out partial-page dirty bits.  This
  361                          * has the side effect of setting the valid
  362                          * bits, but that is ok.  There are a bunch
  363                          * of places in the VM system where we expected
  364                          * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
  365                          * case is one of them.  If the page is still
  366                          * partially dirty, make it fully dirty.
  367                          *
  368                          * note that we do not clear out the valid
  369                          * bits.  This would prevent bogus_page
  370                          * replacement from working properly.
  371                          */
  372                         vm_page_set_validclean(m, base, size);
  373                         if (m->dirty != 0)
  374                                 m->dirty = VM_PAGE_BITS_ALL;
  375                         vm_page_unlock_queues();
  376                 }
  377         }
  378         object->un_pager.vnp.vnp_size = nsize;
  379         object->size = nobjsize;
  380         VM_OBJECT_UNLOCK(object);
  381 }
  382 
  383 /*
  384  * calculate the linear (byte) disk address of specified virtual
  385  * file address
  386  */
  387 static vm_offset_t
  388 vnode_pager_addr(vp, address, run)
  389         struct vnode *vp;
  390         vm_ooffset_t address;
  391         int *run;
  392 {
  393         int rtaddress;
  394         int bsize;
  395         daddr_t block;
  396         int err;
  397         daddr_t vblock;
  398         int voffset;
  399 
  400         GIANT_REQUIRED;
  401         if (address < 0)
  402                 return -1;
  403 
  404         if (vp->v_mount == NULL)
  405                 return -1;
  406 
  407         bsize = vp->v_mount->mnt_stat.f_iosize;
  408         vblock = address / bsize;
  409         voffset = address % bsize;
  410 
  411         err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
  412 
  413         if (err || (block == -1))
  414                 rtaddress = -1;
  415         else {
  416                 rtaddress = block + voffset / DEV_BSIZE;
  417                 if (run) {
  418                         *run += 1;
  419                         *run *= bsize/PAGE_SIZE;
  420                         *run -= voffset/PAGE_SIZE;
  421                 }
  422         }
  423 
  424         return rtaddress;
  425 }
  426 
  427 /*
  428  * small block filesystem vnode pager input
  429  */
  430 static int
  431 vnode_pager_input_smlfs(object, m)
  432         vm_object_t object;
  433         vm_page_t m;
  434 {
  435         int i;
  436         struct vnode *dp, *vp;
  437         struct buf *bp;
  438         struct sf_buf *sf;
  439         int fileaddr;
  440         vm_offset_t bsize;
  441         int error = 0;
  442 
  443         GIANT_REQUIRED;
  444 
  445         vp = object->handle;
  446         if (vp->v_mount == NULL)
  447                 return VM_PAGER_BAD;
  448 
  449         bsize = vp->v_mount->mnt_stat.f_iosize;
  450 
  451         VOP_BMAP(vp, 0, &dp, 0, NULL, NULL);
  452 
  453         sf = sf_buf_alloc(m, 0);
  454 
  455         for (i = 0; i < PAGE_SIZE / bsize; i++) {
  456                 vm_ooffset_t address;
  457 
  458                 if (vm_page_bits(i * bsize, bsize) & m->valid)
  459                         continue;
  460 
  461                 address = IDX_TO_OFF(m->pindex) + i * bsize;
  462                 if (address >= object->un_pager.vnp.vnp_size) {
  463                         fileaddr = -1;
  464                 } else {
  465                         fileaddr = vnode_pager_addr(vp, address, NULL);
  466                 }
  467                 if (fileaddr != -1) {
  468                         bp = getpbuf(&vnode_pbuf_freecnt);
  469 
  470                         /* build a minimal buffer header */
  471                         bp->b_iocmd = BIO_READ;
  472                         bp->b_iodone = bdone;
  473                         KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
  474                         KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
  475                         bp->b_rcred = crhold(curthread->td_ucred);
  476                         bp->b_wcred = crhold(curthread->td_ucred);
  477                         bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
  478                         bp->b_blkno = fileaddr;
  479                         pbgetvp(dp, bp);
  480                         bp->b_bcount = bsize;
  481                         bp->b_bufsize = bsize;
  482                         bp->b_runningbufspace = bp->b_bufsize;
  483                         runningbufspace += bp->b_runningbufspace;
  484 
  485                         /* do the input */
  486                         bp->b_iooffset = dbtob(bp->b_blkno);
  487                         if (dp->v_type == VCHR)
  488                                 VOP_SPECSTRATEGY(bp->b_vp, bp);
  489                         else
  490                                 VOP_STRATEGY(bp->b_vp, bp);
  491 
  492                         /* we definitely need to be at splvm here */
  493 
  494                         bwait(bp, PVM, "vnsrd");
  495 
  496                         if ((bp->b_ioflags & BIO_ERROR) != 0)
  497                                 error = EIO;
  498 
  499                         /*
  500                          * free the buffer header back to the swap buffer pool
  501                          */
  502                         relpbuf(bp, &vnode_pbuf_freecnt);
  503                         if (error)
  504                                 break;
  505 
  506                         VM_OBJECT_LOCK(object);
  507                         vm_page_lock_queues();
  508                         vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
  509                         vm_page_unlock_queues();
  510                         VM_OBJECT_UNLOCK(object);
  511                 } else {
  512                         VM_OBJECT_LOCK(object);
  513                         vm_page_lock_queues();
  514                         vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
  515                         vm_page_unlock_queues();
  516                         VM_OBJECT_UNLOCK(object);
  517                         bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
  518                 }
  519         }
  520         sf_buf_free(sf);
  521         vm_page_lock_queues();
  522         pmap_clear_modify(m);
  523         vm_page_unlock_queues();
  524         if (error) {
  525                 return VM_PAGER_ERROR;
  526         }
  527         return VM_PAGER_OK;
  528 
  529 }
  530 
  531 
  532 /*
  533  * old style vnode pager input routine
  534  */
  535 static int
  536 vnode_pager_input_old(object, m)
  537         vm_object_t object;
  538         vm_page_t m;
  539 {
  540         struct uio auio;
  541         struct iovec aiov;
  542         int error;
  543         int size;
  544         struct sf_buf *sf;
  545         struct vnode *vp;
  546 
  547         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  548         error = 0;
  549 
  550         /*
  551          * Return failure if beyond current EOF
  552          */
  553         if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
  554                 return VM_PAGER_BAD;
  555         } else {
  556                 size = PAGE_SIZE;
  557                 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
  558                         size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
  559                 vp = object->handle;
  560                 VM_OBJECT_UNLOCK(object);
  561 
  562                 /*
  563                  * Allocate a kernel virtual address and initialize so that
  564                  * we can use VOP_READ/WRITE routines.
  565                  */
  566                 sf = sf_buf_alloc(m, 0);
  567 
  568                 aiov.iov_base = (caddr_t)sf_buf_kva(sf);
  569                 aiov.iov_len = size;
  570                 auio.uio_iov = &aiov;
  571                 auio.uio_iovcnt = 1;
  572                 auio.uio_offset = IDX_TO_OFF(m->pindex);
  573                 auio.uio_segflg = UIO_SYSSPACE;
  574                 auio.uio_rw = UIO_READ;
  575                 auio.uio_resid = size;
  576                 auio.uio_td = curthread;
  577 
  578                 error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
  579                 if (!error) {
  580                         int count = size - auio.uio_resid;
  581 
  582                         if (count == 0)
  583                                 error = EINVAL;
  584                         else if (count != PAGE_SIZE)
  585                                 bzero((caddr_t)sf_buf_kva(sf) + count,
  586                                     PAGE_SIZE - count);
  587                 }
  588                 sf_buf_free(sf);
  589 
  590                 VM_OBJECT_LOCK(object);
  591         }
  592         vm_page_lock_queues();
  593         pmap_clear_modify(m);
  594         vm_page_undirty(m);
  595         vm_page_unlock_queues();
  596         if (!error)
  597                 m->valid = VM_PAGE_BITS_ALL;
  598         return error ? VM_PAGER_ERROR : VM_PAGER_OK;
  599 }
  600 
  601 /*
  602  * generic vnode pager input routine
  603  */
  604 
  605 /*
  606  * Local media VFS's that do not implement their own VOP_GETPAGES
  607  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
  608  * to implement the previous behaviour.
  609  *
  610  * All other FS's should use the bypass to get to the local media
  611  * backing vp's VOP_GETPAGES.
  612  */
  613 static int
  614 vnode_pager_getpages(object, m, count, reqpage)
  615         vm_object_t object;
  616         vm_page_t *m;
  617         int count;
  618         int reqpage;
  619 {
  620         int rtval;
  621         struct vnode *vp;
  622         int bytes = count * PAGE_SIZE;
  623 
  624         vp = object->handle;
  625         VM_OBJECT_UNLOCK(object);
  626         mtx_lock(&Giant);
  627         rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
  628         KASSERT(rtval != EOPNOTSUPP,
  629             ("vnode_pager: FS getpages not implemented\n"));
  630         mtx_unlock(&Giant);
  631         VM_OBJECT_LOCK(object);
  632         return rtval;
  633 }
  634 
  635 /*
  636  * This is now called from local media FS's to operate against their
  637  * own vnodes if they fail to implement VOP_GETPAGES.
  638  */
  639 int
  640 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
  641         struct vnode *vp;
  642         vm_page_t *m;
  643         int bytecount;
  644         int reqpage;
  645 {
  646         vm_object_t object;
  647         vm_offset_t kva;
  648         off_t foff, tfoff, nextoff;
  649         int i, j, size, bsize, first, firstaddr;
  650         struct vnode *dp;
  651         int runpg;
  652         int runend;
  653         struct buf *bp;
  654         int count;
  655         int error = 0;
  656 
  657         GIANT_REQUIRED;
  658         object = vp->v_object;
  659         count = bytecount / PAGE_SIZE;
  660 
  661         if (vp->v_mount == NULL)
  662                 return VM_PAGER_BAD;
  663 
  664         bsize = vp->v_mount->mnt_stat.f_iosize;
  665 
  666         /* get the UNDERLYING device for the file with VOP_BMAP() */
  667 
  668         /*
  669          * originally, we did not check for an error return value -- assuming
  670          * an fs always has a bmap entry point -- that assumption is wrong!!!
  671          */
  672         foff = IDX_TO_OFF(m[reqpage]->pindex);
  673 
  674         /*
  675          * if we can't bmap, use old VOP code
  676          */
  677         if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) {
  678                 VM_OBJECT_LOCK(object);
  679                 vm_page_lock_queues();
  680                 for (i = 0; i < count; i++)
  681                         if (i != reqpage)
  682                                 vm_page_free(m[i]);
  683                 vm_page_unlock_queues();
  684                 cnt.v_vnodein++;
  685                 cnt.v_vnodepgsin++;
  686                 error = vnode_pager_input_old(object, m[reqpage]);
  687                 VM_OBJECT_UNLOCK(object);
  688                 return (error);
  689 
  690                 /*
  691                  * if the blocksize is smaller than a page size, then use
  692                  * special small filesystem code.  NFS sometimes has a small
  693                  * blocksize, but it can handle large reads itself.
  694                  */
  695         } else if ((PAGE_SIZE / bsize) > 1 &&
  696             (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
  697                 VM_OBJECT_LOCK(object);
  698                 vm_page_lock_queues();
  699                 for (i = 0; i < count; i++)
  700                         if (i != reqpage)
  701                                 vm_page_free(m[i]);
  702                 vm_page_unlock_queues();
  703                 VM_OBJECT_UNLOCK(object);
  704                 cnt.v_vnodein++;
  705                 cnt.v_vnodepgsin++;
  706                 return vnode_pager_input_smlfs(object, m[reqpage]);
  707         }
  708 
  709         /*
  710          * If we have a completely valid page available to us, we can
  711          * clean up and return.  Otherwise we have to re-read the
  712          * media.
  713          */
  714         VM_OBJECT_LOCK(object);
  715         if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
  716                 vm_page_lock_queues();
  717                 for (i = 0; i < count; i++)
  718                         if (i != reqpage)
  719                                 vm_page_free(m[i]);
  720                 vm_page_unlock_queues();
  721                 VM_OBJECT_UNLOCK(object);
  722                 return VM_PAGER_OK;
  723         }
  724         m[reqpage]->valid = 0;
  725         VM_OBJECT_UNLOCK(object);
  726 
  727         /*
  728          * here on direct device I/O
  729          */
  730         firstaddr = -1;
  731 
  732         /*
  733          * calculate the run that includes the required page
  734          */
  735         for (first = 0, i = 0; i < count; i = runend) {
  736                 firstaddr = vnode_pager_addr(vp,
  737                         IDX_TO_OFF(m[i]->pindex), &runpg);
  738                 if (firstaddr == -1) {
  739                         VM_OBJECT_LOCK(object);
  740                         if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
  741                                 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
  742                                     firstaddr, (uintmax_t)(foff >> 32),
  743                                     (uintmax_t)foff,
  744                                     (uintmax_t)
  745                                     (object->un_pager.vnp.vnp_size >> 32),
  746                                     (uintmax_t)object->un_pager.vnp.vnp_size);
  747                         }
  748                         vm_page_lock_queues();
  749                         vm_page_free(m[i]);
  750                         vm_page_unlock_queues();
  751                         VM_OBJECT_UNLOCK(object);
  752                         runend = i + 1;
  753                         first = runend;
  754                         continue;
  755                 }
  756                 runend = i + runpg;
  757                 if (runend <= reqpage) {
  758                         VM_OBJECT_LOCK(object);
  759                         vm_page_lock_queues();
  760                         for (j = i; j < runend; j++)
  761                                 vm_page_free(m[j]);
  762                         vm_page_unlock_queues();
  763                         VM_OBJECT_UNLOCK(object);
  764                 } else {
  765                         if (runpg < (count - first)) {
  766                                 VM_OBJECT_LOCK(object);
  767                                 vm_page_lock_queues();
  768                                 for (i = first + runpg; i < count; i++)
  769                                         vm_page_free(m[i]);
  770                                 vm_page_unlock_queues();
  771                                 VM_OBJECT_UNLOCK(object);
  772                                 count = first + runpg;
  773                         }
  774                         break;
  775                 }
  776                 first = runend;
  777         }
  778 
  779         /*
  780          * the first and last page have been calculated now, move input pages
  781          * to be zero based...
  782          */
  783         if (first != 0) {
  784                 for (i = first; i < count; i++) {
  785                         m[i - first] = m[i];
  786                 }
  787                 count -= first;
  788                 reqpage -= first;
  789         }
  790 
  791         /*
  792          * calculate the file virtual address for the transfer
  793          */
  794         foff = IDX_TO_OFF(m[0]->pindex);
  795 
  796         /*
  797          * calculate the size of the transfer
  798          */
  799         size = count * PAGE_SIZE;
  800         if ((foff + size) > object->un_pager.vnp.vnp_size)
  801                 size = object->un_pager.vnp.vnp_size - foff;
  802 
  803         /*
  804          * round up physical size for real devices.
  805          */
  806         if (dp->v_type == VBLK || dp->v_type == VCHR) {
  807                 int secmask = dp->v_rdev->si_bsize_phys - 1;
  808                 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
  809                 size = (size + secmask) & ~secmask;
  810         }
  811 
  812         bp = getpbuf(&vnode_pbuf_freecnt);
  813         kva = (vm_offset_t) bp->b_data;
  814 
  815         /*
  816          * and map the pages to be read into the kva
  817          */
  818         pmap_qenter(kva, m, count);
  819 
  820         /* build a minimal buffer header */
  821         bp->b_iocmd = BIO_READ;
  822         bp->b_iodone = bdone;
  823         KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
  824         KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
  825         bp->b_rcred = crhold(curthread->td_ucred);
  826         bp->b_wcred = crhold(curthread->td_ucred);
  827         bp->b_blkno = firstaddr;
  828         pbgetvp(dp, bp);
  829         bp->b_bcount = size;
  830         bp->b_bufsize = size;
  831         bp->b_runningbufspace = bp->b_bufsize;
  832         runningbufspace += bp->b_runningbufspace;
  833 
  834         cnt.v_vnodein++;
  835         cnt.v_vnodepgsin += count;
  836 
  837         /* do the input */
  838         bp->b_iooffset = dbtob(bp->b_blkno);
  839         if (dp->v_type == VCHR)
  840                 VOP_SPECSTRATEGY(bp->b_vp, bp);
  841         else
  842                 VOP_STRATEGY(bp->b_vp, bp);
  843 
  844         bwait(bp, PVM, "vnread");
  845 
  846         if ((bp->b_ioflags & BIO_ERROR) != 0)
  847                 error = EIO;
  848 
  849         if (!error) {
  850                 if (size != count * PAGE_SIZE)
  851                         bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
  852         }
  853         pmap_qremove(kva, count);
  854 
  855         /*
  856          * free the buffer header back to the swap buffer pool
  857          */
  858         relpbuf(bp, &vnode_pbuf_freecnt);
  859 
  860         VM_OBJECT_LOCK(object);
  861         vm_page_lock_queues();
  862         for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
  863                 vm_page_t mt;
  864 
  865                 nextoff = tfoff + PAGE_SIZE;
  866                 mt = m[i];
  867 
  868                 if (nextoff <= object->un_pager.vnp.vnp_size) {
  869                         /*
  870                          * Read filled up entire page.
  871                          */
  872                         mt->valid = VM_PAGE_BITS_ALL;
  873                         vm_page_undirty(mt);    /* should be an assert? XXX */
  874                         pmap_clear_modify(mt);
  875                 } else {
  876                         /*
  877                          * Read did not fill up entire page.  Since this
  878                          * is getpages, the page may be mapped, so we have
  879                          * to zero the invalid portions of the page even
  880                          * though we aren't setting them valid.
  881                          *
  882                          * Currently we do not set the entire page valid,
  883                          * we just try to clear the piece that we couldn't
  884                          * read.
  885                          */
  886                         vm_page_set_validclean(mt, 0,
  887                             object->un_pager.vnp.vnp_size - tfoff);
  888                         /* handled by vm_fault now */
  889                         /* vm_page_zero_invalid(mt, FALSE); */
  890                 }
  891                 
  892                 if (i != reqpage) {
  893 
  894                         /*
  895                          * whether or not to leave the page activated is up in
  896                          * the air, but we should put the page on a page queue
  897                          * somewhere. (it already is in the object). Result:
  898                          * It appears that empirical results show that
  899                          * deactivating pages is best.
  900                          */
  901 
  902                         /*
  903                          * just in case someone was asking for this page we
  904                          * now tell them that it is ok to use
  905                          */
  906                         if (!error) {
  907                                 if (mt->flags & PG_WANTED)
  908                                         vm_page_activate(mt);
  909                                 else
  910                                         vm_page_deactivate(mt);
  911                                 vm_page_wakeup(mt);
  912                         } else {
  913                                 vm_page_free(mt);
  914                         }
  915                 }
  916         }
  917         vm_page_unlock_queues();
  918         VM_OBJECT_UNLOCK(object);
  919         if (error) {
  920                 printf("vnode_pager_getpages: I/O read error\n");
  921         }
  922         return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
  923 }
  924 
  925 /*
  926  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
  927  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
  928  * vnode_pager_generic_putpages() to implement the previous behaviour.
  929  *
  930  * All other FS's should use the bypass to get to the local media
  931  * backing vp's VOP_PUTPAGES.
  932  */
  933 static void
  934 vnode_pager_putpages(object, m, count, sync, rtvals)
  935         vm_object_t object;
  936         vm_page_t *m;
  937         int count;
  938         boolean_t sync;
  939         int *rtvals;
  940 {
  941         int rtval;
  942         struct vnode *vp;
  943         struct mount *mp;
  944         int bytes = count * PAGE_SIZE;
  945 
  946         GIANT_REQUIRED;
  947         /*
  948          * Force synchronous operation if we are extremely low on memory
  949          * to prevent a low-memory deadlock.  VOP operations often need to
  950          * allocate more memory to initiate the I/O ( i.e. do a BMAP 
  951          * operation ).  The swapper handles the case by limiting the amount
  952          * of asynchronous I/O, but that sort of solution doesn't scale well
  953          * for the vnode pager without a lot of work.
  954          *
  955          * Also, the backing vnode's iodone routine may not wake the pageout
  956          * daemon up.  This should be probably be addressed XXX.
  957          */
  958 
  959         if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
  960                 sync |= OBJPC_SYNC;
  961 
  962         /*
  963          * Call device-specific putpages function
  964          */
  965         vp = object->handle;
  966         VM_OBJECT_UNLOCK(object);
  967         if (vp->v_type != VREG)
  968                 mp = NULL;
  969         (void)vn_start_write(vp, &mp, V_WAIT);
  970         rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
  971         KASSERT(rtval != EOPNOTSUPP, 
  972             ("vnode_pager: stale FS putpages\n"));
  973         vn_finished_write(mp);
  974         VM_OBJECT_LOCK(object);
  975 }
  976 
  977 
  978 /*
  979  * This is now called from local media FS's to operate against their
  980  * own vnodes if they fail to implement VOP_PUTPAGES.
  981  *
  982  * This is typically called indirectly via the pageout daemon and
  983  * clustering has already typically occured, so in general we ask the
  984  * underlying filesystem to write the data out asynchronously rather
  985  * then delayed.
  986  */
  987 int
  988 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
  989         struct vnode *vp;
  990         vm_page_t *m;
  991         int bytecount;
  992         int flags;
  993         int *rtvals;
  994 {
  995         int i;
  996         vm_object_t object;
  997         int count;
  998 
  999         int maxsize, ncount;
 1000         vm_ooffset_t poffset;
 1001         struct uio auio;
 1002         struct iovec aiov;
 1003         int error;
 1004         int ioflags;
 1005 
 1006         GIANT_REQUIRED;
 1007         object = vp->v_object;
 1008         count = bytecount / PAGE_SIZE;
 1009 
 1010         for (i = 0; i < count; i++)
 1011                 rtvals[i] = VM_PAGER_AGAIN;
 1012 
 1013         if ((int64_t)m[0]->pindex < 0) {
 1014                 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
 1015                         (long)m[0]->pindex, (u_long)m[0]->dirty);
 1016                 rtvals[0] = VM_PAGER_BAD;
 1017                 return VM_PAGER_BAD;
 1018         }
 1019 
 1020         maxsize = count * PAGE_SIZE;
 1021         ncount = count;
 1022 
 1023         poffset = IDX_TO_OFF(m[0]->pindex);
 1024 
 1025         /*
 1026          * If the page-aligned write is larger then the actual file we
 1027          * have to invalidate pages occuring beyond the file EOF.  However,
 1028          * there is an edge case where a file may not be page-aligned where
 1029          * the last page is partially invalid.  In this case the filesystem
 1030          * may not properly clear the dirty bits for the entire page (which
 1031          * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
 1032          * With the page locked we are free to fix-up the dirty bits here.
 1033          *
 1034          * We do not under any circumstances truncate the valid bits, as
 1035          * this will screw up bogus page replacement.
 1036          */
 1037         if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
 1038                 if (object->un_pager.vnp.vnp_size > poffset) {
 1039                         int pgoff;
 1040 
 1041                         maxsize = object->un_pager.vnp.vnp_size - poffset;
 1042                         ncount = btoc(maxsize);
 1043                         if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
 1044                                 vm_page_lock_queues();
 1045                                 vm_page_clear_dirty(m[ncount - 1], pgoff,
 1046                                         PAGE_SIZE - pgoff);
 1047                                 vm_page_unlock_queues();
 1048                         }
 1049                 } else {
 1050                         maxsize = 0;
 1051                         ncount = 0;
 1052                 }
 1053                 if (ncount < count) {
 1054                         for (i = ncount; i < count; i++) {
 1055                                 rtvals[i] = VM_PAGER_BAD;
 1056                         }
 1057                 }
 1058         }
 1059 
 1060         /*
 1061          * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
 1062          * rather then a bdwrite() to prevent paging I/O from saturating 
 1063          * the buffer cache.  Dummy-up the sequential heuristic to cause
 1064          * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
 1065          * the system decides how to cluster.
 1066          */
 1067         ioflags = IO_VMIO;
 1068         if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
 1069                 ioflags |= IO_SYNC;
 1070         else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
 1071                 ioflags |= IO_ASYNC;
 1072         ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
 1073         ioflags |= IO_SEQMAX << IO_SEQSHIFT;
 1074 
 1075         aiov.iov_base = (caddr_t) 0;
 1076         aiov.iov_len = maxsize;
 1077         auio.uio_iov = &aiov;
 1078         auio.uio_iovcnt = 1;
 1079         auio.uio_offset = poffset;
 1080         auio.uio_segflg = UIO_NOCOPY;
 1081         auio.uio_rw = UIO_WRITE;
 1082         auio.uio_resid = maxsize;
 1083         auio.uio_td = (struct thread *) 0;
 1084         error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
 1085         cnt.v_vnodeout++;
 1086         cnt.v_vnodepgsout += ncount;
 1087 
 1088         if (error) {
 1089                 printf("vnode_pager_putpages: I/O error %d\n", error);
 1090         }
 1091         if (auio.uio_resid) {
 1092                 printf("vnode_pager_putpages: residual I/O %d at %lu\n",
 1093                     auio.uio_resid, (u_long)m[0]->pindex);
 1094         }
 1095         for (i = 0; i < ncount; i++) {
 1096                 rtvals[i] = VM_PAGER_OK;
 1097         }
 1098         return rtvals[0];
 1099 }
 1100 
 1101 struct vnode *
 1102 vnode_pager_lock(vm_object_t first_object)
 1103 {
 1104         struct vnode *vp;
 1105         vm_object_t backing_object, object;
 1106 
 1107         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
 1108         for (object = first_object; object != NULL; object = backing_object) {
 1109                 if (object->type != OBJT_VNODE) {
 1110                         if ((backing_object = object->backing_object) != NULL)
 1111                                 VM_OBJECT_LOCK(backing_object);
 1112                         if (object != first_object)
 1113                                 VM_OBJECT_UNLOCK(object);
 1114                         continue;
 1115                 }
 1116         retry:
 1117                 if (object->flags & OBJ_DEAD) {
 1118                         if (object != first_object)
 1119                                 VM_OBJECT_UNLOCK(object);
 1120                         return NULL;
 1121                 }
 1122                 vp = object->handle;
 1123                 VI_LOCK(vp);
 1124                 VM_OBJECT_UNLOCK(object);
 1125                 if (first_object != object)
 1126                         VM_OBJECT_UNLOCK(first_object);
 1127                 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
 1128                     LK_RETRY | LK_SHARED, curthread)) {
 1129                         VM_OBJECT_LOCK(first_object);
 1130                         if (object != first_object)
 1131                                 VM_OBJECT_LOCK(object);
 1132                         if (object->type != OBJT_VNODE) {
 1133                                 if (object != first_object)
 1134                                         VM_OBJECT_UNLOCK(object);
 1135                                 return NULL;
 1136                         }
 1137                         printf("vnode_pager_lock: retrying\n");
 1138                         goto retry;
 1139                 }
 1140                 VM_OBJECT_LOCK(first_object);
 1141                 return (vp);
 1142         }
 1143         return NULL;
 1144 }

Cache object: c10d96f71f91145354ce49cf4e41b29e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.