1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013-2015 The FreeBSD Foundation
5 *
6 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD$
31 */
32
33 #ifndef __X86_IOMMU_INTEL_DMAR_H
34 #define __X86_IOMMU_INTEL_DMAR_H
35
36 #include <dev/iommu/iommu.h>
37
38 struct dmar_unit;
39
40 /*
41 * Locking annotations:
42 * (u) - Protected by iommu unit lock
43 * (d) - Protected by domain lock
44 * (c) - Immutable after initialization
45 */
46
47 /*
48 * The domain abstraction. Most non-constant members of the domain
49 * are protected by owning dmar unit lock, not by the domain lock.
50 * Most important, the dmar lock protects the contexts list.
51 *
52 * The domain lock protects the address map for the domain, and list
53 * of unload entries delayed.
54 *
55 * Page tables pages and pages content is protected by the vm object
56 * lock pgtbl_obj, which contains the page tables pages.
57 */
58 struct dmar_domain {
59 struct iommu_domain iodom;
60 int domain; /* (c) DID, written in context entry */
61 int mgaw; /* (c) Real max address width */
62 int agaw; /* (c) Adjusted guest address width */
63 int pglvl; /* (c) The pagelevel */
64 int awlvl; /* (c) The pagelevel as the bitmask,
65 to set in context entry */
66 u_int ctx_cnt; /* (u) Number of contexts owned */
67 u_int refs; /* (u) Refs, including ctx */
68 struct dmar_unit *dmar; /* (c) */
69 LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */
70 LIST_HEAD(, dmar_ctx) contexts; /* (u) */
71 vm_object_t pgtbl_obj; /* (c) Page table pages */
72 u_int batch_no;
73 };
74
75 struct dmar_ctx {
76 struct iommu_ctx context;
77 uint64_t last_fault_rec[2]; /* Last fault reported */
78 LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */
79 u_int refs; /* (u) References from tags */
80 };
81
82 #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj)
83 #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj)
84 #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj)
85 #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \
86 VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj)
87
88 #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock)
89 #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock)
90 #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED)
91
92 #define DMAR2IOMMU(dmar) &((dmar)->iommu)
93 #define IOMMU2DMAR(dmar) \
94 __containerof((dmar), struct dmar_unit, iommu)
95
96 #define DOM2IODOM(domain) &((domain)->iodom)
97 #define IODOM2DOM(domain) \
98 __containerof((domain), struct dmar_domain, iodom)
99
100 #define CTX2IOCTX(ctx) &((ctx)->context)
101 #define IOCTX2CTX(ctx) \
102 __containerof((ctx), struct dmar_ctx, context)
103
104 #define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain)
105 #define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar)
106 #define DOM2DMAR(domain) ((domain)->dmar)
107
108 struct dmar_msi_data {
109 int irq;
110 int irq_rid;
111 struct resource *irq_res;
112 void *intr_handle;
113 int (*handler)(void *);
114 int msi_data_reg;
115 int msi_addr_reg;
116 int msi_uaddr_reg;
117 void (*enable_intr)(struct dmar_unit *);
118 void (*disable_intr)(struct dmar_unit *);
119 const char *name;
120 };
121
122 #define DMAR_INTR_FAULT 0
123 #define DMAR_INTR_QI 1
124 #define DMAR_INTR_TOTAL 2
125
126 struct dmar_unit {
127 struct iommu_unit iommu;
128 device_t dev;
129 uint16_t segment;
130 uint64_t base;
131
132 /* Resources */
133 int reg_rid;
134 struct resource *regs;
135
136 struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
137
138 /* Hardware registers cache */
139 uint32_t hw_ver;
140 uint64_t hw_cap;
141 uint64_t hw_ecap;
142 uint32_t hw_gcmd;
143
144 /* Data for being a dmar */
145 LIST_HEAD(, dmar_domain) domains;
146 struct unrhdr *domids;
147 vm_object_t ctx_obj;
148 u_int barrier_flags;
149
150 /* Fault handler data */
151 struct mtx fault_lock;
152 uint64_t *fault_log;
153 int fault_log_head;
154 int fault_log_tail;
155 int fault_log_size;
156 struct task fault_task;
157 struct taskqueue *fault_taskqueue;
158
159 /* QI */
160 int qi_enabled;
161 vm_offset_t inv_queue;
162 vm_size_t inv_queue_size;
163 uint32_t inv_queue_avail;
164 uint32_t inv_queue_tail;
165 volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
166 descr completion */
167 uint64_t inv_waitd_seq_hw_phys;
168 uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
169 u_int inv_waitd_gen; /* seq number generation AKA seq overflows */
170 u_int inv_seq_waiters; /* count of waiters for seq */
171 u_int inv_queue_full; /* informational counter */
172
173 /* IR */
174 int ir_enabled;
175 vm_paddr_t irt_phys;
176 dmar_irte_t *irt;
177 u_int irte_cnt;
178 vmem_t *irtids;
179
180 /*
181 * Delayed freeing of map entries queue processing:
182 *
183 * tlb_flush_head and tlb_flush_tail are used to implement a FIFO
184 * queue that supports concurrent dequeues and enqueues. However,
185 * there can only be a single dequeuer (accessing tlb_flush_head) and
186 * a single enqueuer (accessing tlb_flush_tail) at a time. Since the
187 * unit's qi_task is the only dequeuer, it can access tlb_flush_head
188 * without any locking. In contrast, there may be multiple enqueuers,
189 * so the enqueuers acquire the iommu unit lock to serialize their
190 * accesses to tlb_flush_tail.
191 *
192 * In this FIFO queue implementation, the key to enabling concurrent
193 * dequeues and enqueues is that the dequeuer never needs to access
194 * tlb_flush_tail and the enqueuer never needs to access
195 * tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail
196 * are never NULL, so neither a dequeuer nor an enqueuer ever needs to
197 * update both. Instead, tlb_flush_head always points to a "zombie"
198 * struct, which previously held the last dequeued item. Thus, the
199 * zombie's next field actually points to the struct holding the first
200 * item in the queue. When an item is dequeued, the current zombie is
201 * finally freed, and the struct that held the just dequeued item
202 * becomes the new zombie. When the queue is empty, tlb_flush_tail
203 * also points to the zombie.
204 */
205 struct iommu_map_entry *tlb_flush_head;
206 struct iommu_map_entry *tlb_flush_tail;
207 struct task qi_task;
208 struct taskqueue *qi_taskqueue;
209 };
210
211 #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock)
212 #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock)
213 #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED)
214
215 #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock)
216 #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock)
217 #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
218
219 #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
220 #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
221 #define DMAR_X2APIC(dmar) \
222 (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
223
224 /* Barrier ids */
225 #define DMAR_BARRIER_RMRR 0
226 #define DMAR_BARRIER_USEQ 1
227
228 struct dmar_unit *dmar_find(device_t dev, bool verbose);
229 struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
230 struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
231
232 u_int dmar_nd2mask(u_int nd);
233 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
234 int domain_set_agaw(struct dmar_domain *domain, int mgaw);
235 int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr,
236 bool allow_less);
237 vm_pindex_t pglvl_max_pages(int pglvl);
238 int domain_is_sp_lvl(struct dmar_domain *domain, int lvl);
239 iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
240 iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl);
241 int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
242 iommu_gaddr_t *isizep);
243 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
244 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
245 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
246 struct sf_buf **sf);
247 void dmar_unmap_pgtbl(struct sf_buf *sf);
248 int dmar_load_root_entry_ptr(struct dmar_unit *unit);
249 int dmar_inv_ctx_glob(struct dmar_unit *unit);
250 int dmar_inv_iotlb_glob(struct dmar_unit *unit);
251 int dmar_flush_write_bufs(struct dmar_unit *unit);
252 void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
253 void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
254 void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
255 int dmar_enable_translation(struct dmar_unit *unit);
256 int dmar_disable_translation(struct dmar_unit *unit);
257 int dmar_load_irt_ptr(struct dmar_unit *unit);
258 int dmar_enable_ir(struct dmar_unit *unit);
259 int dmar_disable_ir(struct dmar_unit *unit);
260 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
261 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
262 uint64_t dmar_get_timeout(void);
263 void dmar_update_timeout(uint64_t newval);
264
265 int dmar_fault_intr(void *arg);
266 void dmar_enable_fault_intr(struct dmar_unit *unit);
267 void dmar_disable_fault_intr(struct dmar_unit *unit);
268 int dmar_init_fault_log(struct dmar_unit *unit);
269 void dmar_fini_fault_log(struct dmar_unit *unit);
270
271 int dmar_qi_intr(void *arg);
272 void dmar_enable_qi_intr(struct dmar_unit *unit);
273 void dmar_disable_qi_intr(struct dmar_unit *unit);
274 int dmar_init_qi(struct dmar_unit *unit);
275 void dmar_fini_qi(struct dmar_unit *unit);
276 void dmar_qi_invalidate_locked(struct dmar_domain *domain,
277 struct iommu_map_entry *entry, bool emit_wait);
278 void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start,
279 iommu_gaddr_t size, bool cansleep);
280 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
281 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
282 void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
283 void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
284
285 vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain,
286 iommu_gaddr_t maxaddr);
287 void put_idmap_pgtbl(vm_object_t obj);
288 void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
289 iommu_gaddr_t size);
290 int domain_alloc_pgtbl(struct dmar_domain *domain);
291 void domain_free_pgtbl(struct dmar_domain *domain);
292 extern const struct iommu_domain_map_ops dmar_domain_map_ops;
293
294 int dmar_dev_depth(device_t child);
295 void dmar_dev_path(device_t child, int *busno, void *path1, int depth);
296
297 struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev,
298 uint16_t rid, bool id_mapped, bool rmrr_init);
299 struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
300 int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
301 bool id_mapped, bool rmrr_init);
302 int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx);
303 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
304 void dmar_free_ctx(struct dmar_ctx *ctx);
305 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
306 void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free);
307
308 void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain,
309 int dev_busno, const void *dev_path, int dev_path_len,
310 struct iommu_map_entries_tailq *rmrr_entries);
311 int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar);
312
313 void dmar_quirks_post_ident(struct dmar_unit *dmar);
314 void dmar_quirks_pre_use(struct iommu_unit *dmar);
315
316 int dmar_init_irt(struct dmar_unit *unit);
317 void dmar_fini_irt(struct dmar_unit *unit);
318
319 extern iommu_haddr_t dmar_high;
320 extern int haw;
321 extern int dmar_tbl_pagecnt;
322 extern int dmar_batch_coalesce;
323
324 static inline uint32_t
325 dmar_read4(const struct dmar_unit *unit, int reg)
326 {
327
328 return (bus_read_4(unit->regs, reg));
329 }
330
331 static inline uint64_t
332 dmar_read8(const struct dmar_unit *unit, int reg)
333 {
334 #ifdef __i386__
335 uint32_t high, low;
336
337 low = bus_read_4(unit->regs, reg);
338 high = bus_read_4(unit->regs, reg + 4);
339 return (low | ((uint64_t)high << 32));
340 #else
341 return (bus_read_8(unit->regs, reg));
342 #endif
343 }
344
345 static inline void
346 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
347 {
348
349 KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
350 (unit->hw_gcmd & DMAR_GCMD_TE),
351 ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit,
352 unit->hw_gcmd, val));
353 bus_write_4(unit->regs, reg, val);
354 }
355
356 static inline void
357 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
358 {
359
360 KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
361 #ifdef __i386__
362 uint32_t high, low;
363
364 low = val;
365 high = val >> 32;
366 bus_write_4(unit->regs, reg, low);
367 bus_write_4(unit->regs, reg + 4, high);
368 #else
369 bus_write_8(unit->regs, reg, val);
370 #endif
371 }
372
373 /*
374 * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
375 * are issued in the correct order. For store, the lower word,
376 * containing the P or R and W bits, is set only after the high word
377 * is written. For clear, the P bit is cleared first, then the high
378 * word is cleared.
379 *
380 * dmar_pte_update updates the pte. For amd64, the update is atomic.
381 * For i386, it first disables the entry by clearing the word
382 * containing the P bit, and then defer to dmar_pte_store. The locked
383 * cmpxchg8b is probably available on any machine having DMAR support,
384 * but interrupt translation table may be mapped uncached.
385 */
386 static inline void
387 dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
388 {
389 #ifdef __i386__
390 volatile uint32_t *p;
391 uint32_t hi, lo;
392
393 hi = val >> 32;
394 lo = val;
395 p = (volatile uint32_t *)dst;
396 *(p + 1) = hi;
397 *p = lo;
398 #else
399 *dst = val;
400 #endif
401 }
402
403 static inline void
404 dmar_pte_store(volatile uint64_t *dst, uint64_t val)
405 {
406
407 KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
408 dst, (uintmax_t)*dst, (uintmax_t)val));
409 dmar_pte_store1(dst, val);
410 }
411
412 static inline void
413 dmar_pte_update(volatile uint64_t *dst, uint64_t val)
414 {
415
416 #ifdef __i386__
417 volatile uint32_t *p;
418
419 p = (volatile uint32_t *)dst;
420 *p = 0;
421 #endif
422 dmar_pte_store1(dst, val);
423 }
424
425 static inline void
426 dmar_pte_clear(volatile uint64_t *dst)
427 {
428 #ifdef __i386__
429 volatile uint32_t *p;
430
431 p = (volatile uint32_t *)dst;
432 *p = 0;
433 *(p + 1) = 0;
434 #else
435 *dst = 0;
436 #endif
437 }
438
439 extern struct timespec dmar_hw_timeout;
440
441 #define DMAR_WAIT_UNTIL(cond) \
442 { \
443 struct timespec last, curr; \
444 bool forever; \
445 \
446 if (dmar_hw_timeout.tv_sec == 0 && \
447 dmar_hw_timeout.tv_nsec == 0) { \
448 forever = true; \
449 } else { \
450 forever = false; \
451 nanouptime(&curr); \
452 timespecadd(&curr, &dmar_hw_timeout, &last); \
453 } \
454 for (;;) { \
455 if (cond) { \
456 error = 0; \
457 break; \
458 } \
459 nanouptime(&curr); \
460 if (!forever && timespeccmp(&last, &curr, <)) { \
461 error = ETIMEDOUT; \
462 break; \
463 } \
464 cpu_spinwait(); \
465 } \
466 }
467
468 #ifdef INVARIANTS
469 #define TD_PREP_PINNED_ASSERT \
470 int old_td_pinned; \
471 old_td_pinned = curthread->td_pinned
472 #define TD_PINNED_ASSERT \
473 KASSERT(curthread->td_pinned == old_td_pinned, \
474 ("pin count leak: %d %d %s:%d", curthread->td_pinned, \
475 old_td_pinned, __FILE__, __LINE__))
476 #else
477 #define TD_PREP_PINNED_ASSERT
478 #define TD_PINNED_ASSERT
479 #endif
480
481 #endif
Cache object: f472bca9d6a73e59319b9c128976508a
|