The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  *
    6  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    7  * under sponsorship from the FreeBSD Foundation.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_acpi.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/bus.h>
   38 #include <sys/kernel.h>
   39 #include <sys/malloc.h>
   40 #include <sys/memdesc.h>
   41 #include <sys/module.h>
   42 #include <sys/rman.h>
   43 #include <sys/taskqueue.h>
   44 #include <sys/tree.h>
   45 #include <sys/vmem.h>
   46 #include <machine/bus.h>
   47 #include <contrib/dev/acpica/include/acpi.h>
   48 #include <contrib/dev/acpica/include/accommon.h>
   49 #include <dev/acpica/acpivar.h>
   50 #include <dev/pci/pcireg.h>
   51 #include <dev/pci/pcivar.h>
   52 #include <vm/vm.h>
   53 #include <vm/vm_extern.h>
   54 #include <vm/vm_kern.h>
   55 #include <vm/vm_page.h>
   56 #include <vm/vm_map.h>
   57 #include <x86/include/busdma_impl.h>
   58 #include <x86/iommu/intel_reg.h>
   59 #include <dev/iommu/busdma_iommu.h>
   60 #include <x86/iommu/intel_dmar.h>
   61 
   62 /*
   63  * Fault interrupt handling for DMARs.  If advanced fault logging is
   64  * not implemented by hardware, the code emulates it.  Fast interrupt
   65  * handler flushes the fault registers into circular buffer at
   66  * unit->fault_log, and schedules a task.
   67  *
   68  * The fast handler is used since faults usually come in bursts, and
   69  * number of fault log registers is limited, e.g. down to one for 5400
   70  * MCH.  We are trying to reduce the latency for clearing the fault
   71  * register file.  The task is usually long-running, since printf() is
   72  * slow, but this is not problematic because bursts are rare.
   73  *
   74  * For the same reason, each translation unit task is executed in its
   75  * own thread.
   76  *
   77  * XXXKIB It seems there is no hardware available which implements
   78  * advanced fault logging, so the code to handle AFL is not written.
   79  */
   80 
   81 static int
   82 dmar_fault_next(struct dmar_unit *unit, int faultp)
   83 {
   84 
   85         faultp += 2;
   86         if (faultp == unit->fault_log_size)
   87                 faultp = 0;
   88         return (faultp);
   89 }
   90 
   91 static void
   92 dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
   93 {
   94         uint32_t clear;
   95 
   96         clear = 0;
   97         if ((fsts & DMAR_FSTS_ITE) != 0) {
   98                 printf("DMAR%d: Invalidation timed out\n", unit->iommu.unit);
   99                 clear |= DMAR_FSTS_ITE;
  100         }
  101         if ((fsts & DMAR_FSTS_ICE) != 0) {
  102                 printf("DMAR%d: Invalidation completion error\n",
  103                     unit->iommu.unit);
  104                 clear |= DMAR_FSTS_ICE;
  105         }
  106         if ((fsts & DMAR_FSTS_IQE) != 0) {
  107                 printf("DMAR%d: Invalidation queue error\n",
  108                     unit->iommu.unit);
  109                 clear |= DMAR_FSTS_IQE;
  110         }
  111         if ((fsts & DMAR_FSTS_APF) != 0) {
  112                 printf("DMAR%d: Advanced pending fault\n", unit->iommu.unit);
  113                 clear |= DMAR_FSTS_APF;
  114         }
  115         if ((fsts & DMAR_FSTS_AFO) != 0) {
  116                 printf("DMAR%d: Advanced fault overflow\n", unit->iommu.unit);
  117                 clear |= DMAR_FSTS_AFO;
  118         }
  119         if (clear != 0)
  120                 dmar_write4(unit, DMAR_FSTS_REG, clear);
  121 }
  122 
  123 int
  124 dmar_fault_intr(void *arg)
  125 {
  126         struct dmar_unit *unit;
  127         uint64_t fault_rec[2];
  128         uint32_t fsts;
  129         int fri, frir, faultp;
  130         bool enqueue;
  131 
  132         unit = arg;
  133         enqueue = false;
  134         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  135         dmar_fault_intr_clear(unit, fsts);
  136 
  137         if ((fsts & DMAR_FSTS_PPF) == 0)
  138                 goto done;
  139 
  140         fri = DMAR_FSTS_FRI(fsts);
  141         for (;;) {
  142                 frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
  143                 fault_rec[1] = dmar_read8(unit, frir + 8);
  144                 if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
  145                         break;
  146                 fault_rec[0] = dmar_read8(unit, frir);
  147                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  148                 DMAR_FAULT_LOCK(unit);
  149                 faultp = unit->fault_log_head;
  150                 if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
  151                         /* XXXKIB log overflow */
  152                 } else {
  153                         unit->fault_log[faultp] = fault_rec[0];
  154                         unit->fault_log[faultp + 1] = fault_rec[1];
  155                         unit->fault_log_head = dmar_fault_next(unit, faultp);
  156                         enqueue = true;
  157                 }
  158                 DMAR_FAULT_UNLOCK(unit);
  159                 fri += 1;
  160                 if (fri >= DMAR_CAP_NFR(unit->hw_cap))
  161                         fri = 0;
  162         }
  163 
  164 done:
  165         /*
  166          * On SandyBridge, due to errata BJ124, IvyBridge errata
  167          * BV100, and Haswell errata HSD40, "Spurious Intel VT-d
  168          * Interrupts May Occur When the PFO Bit is Set".  Handle the
  169          * cases by clearing overflow bit even if no fault is
  170          * reported.
  171          *
  172          * On IvyBridge, errata BV30 states that clearing clear
  173          * DMAR_FRCD2_F bit in the fault register causes spurious
  174          * interrupt.  Do nothing.
  175          *
  176          */
  177         if ((fsts & DMAR_FSTS_PFO) != 0) {
  178                 printf("DMAR%d: Fault Overflow\n", unit->iommu.unit);
  179                 dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
  180         }
  181 
  182         if (enqueue) {
  183                 taskqueue_enqueue(unit->fault_taskqueue,
  184                     &unit->fault_task);
  185         }
  186         return (FILTER_HANDLED);
  187 }
  188 
  189 static void
  190 dmar_fault_task(void *arg, int pending __unused)
  191 {
  192         struct dmar_unit *unit;
  193         struct dmar_ctx *ctx;
  194         uint64_t fault_rec[2];
  195         int sid, bus, slot, func, faultp;
  196 
  197         unit = arg;
  198         DMAR_FAULT_LOCK(unit);
  199         for (;;) {
  200                 faultp = unit->fault_log_tail;
  201                 if (faultp == unit->fault_log_head)
  202                         break;
  203 
  204                 fault_rec[0] = unit->fault_log[faultp];
  205                 fault_rec[1] = unit->fault_log[faultp + 1];
  206                 unit->fault_log_tail = dmar_fault_next(unit, faultp);
  207                 DMAR_FAULT_UNLOCK(unit);
  208 
  209                 sid = DMAR_FRCD2_SID(fault_rec[1]);
  210                 printf("DMAR%d: ", unit->iommu.unit);
  211                 DMAR_LOCK(unit);
  212                 ctx = dmar_find_ctx_locked(unit, sid);
  213                 if (ctx == NULL) {
  214                         printf("<unknown dev>:");
  215 
  216                         /*
  217                          * Note that the slot and function will not be correct
  218                          * if ARI is in use, but without a ctx entry we have
  219                          * no way of knowing whether ARI is in use or not.
  220                          */
  221                         bus = PCI_RID2BUS(sid);
  222                         slot = PCI_RID2SLOT(sid);
  223                         func = PCI_RID2FUNC(sid);
  224                 } else {
  225                         ctx->context.flags |= IOMMU_CTX_FAULTED;
  226                         ctx->last_fault_rec[0] = fault_rec[0];
  227                         ctx->last_fault_rec[1] = fault_rec[1];
  228                         device_print_prettyname(ctx->context.tag->owner);
  229                         bus = pci_get_bus(ctx->context.tag->owner);
  230                         slot = pci_get_slot(ctx->context.tag->owner);
  231                         func = pci_get_function(ctx->context.tag->owner);
  232                 }
  233                 DMAR_UNLOCK(unit);
  234                 printf(
  235                     "pci%d:%d:%d sid %x fault acc %x adt 0x%x reason 0x%x "
  236                     "addr %jx\n",
  237                     bus, slot, func, sid, DMAR_FRCD2_T(fault_rec[1]),
  238                     DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
  239                     (uintmax_t)fault_rec[0]);
  240                 DMAR_FAULT_LOCK(unit);
  241         }
  242         DMAR_FAULT_UNLOCK(unit);
  243 }
  244 
  245 static void
  246 dmar_clear_faults(struct dmar_unit *unit)
  247 {
  248         uint32_t frec, frir, fsts;
  249         int i;
  250 
  251         for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
  252                 frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
  253                 frec = dmar_read4(unit, frir + 12);
  254                 if ((frec & DMAR_FRCD2_F32) == 0)
  255                         continue;
  256                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  257         }
  258         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  259         dmar_write4(unit, DMAR_FSTS_REG, fsts);
  260 }
  261 
  262 int
  263 dmar_init_fault_log(struct dmar_unit *unit)
  264 {
  265 
  266         mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
  267         unit->fault_log_size = 256; /* 128 fault log entries */
  268         TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
  269         if (unit->fault_log_size % 2 != 0)
  270                 panic("hw.dmar_fault_log_size must be even");
  271         unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
  272             M_DEVBUF, M_WAITOK | M_ZERO);
  273 
  274         TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
  275         unit->fault_taskqueue = taskqueue_create_fast("dmarff", M_WAITOK,
  276             taskqueue_thread_enqueue, &unit->fault_taskqueue);
  277         taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
  278             "dmar%d fault taskq", unit->iommu.unit);
  279 
  280         DMAR_LOCK(unit);
  281         dmar_disable_fault_intr(unit);
  282         dmar_clear_faults(unit);
  283         dmar_enable_fault_intr(unit);
  284         DMAR_UNLOCK(unit);
  285 
  286         return (0);
  287 }
  288 
  289 void
  290 dmar_fini_fault_log(struct dmar_unit *unit)
  291 {
  292 
  293         if (unit->fault_taskqueue == NULL)
  294                 return;
  295 
  296         DMAR_LOCK(unit);
  297         dmar_disable_fault_intr(unit);
  298         DMAR_UNLOCK(unit);
  299 
  300         taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
  301         taskqueue_free(unit->fault_taskqueue);
  302         unit->fault_taskqueue = NULL;
  303         mtx_destroy(&unit->fault_lock);
  304 
  305         free(unit->fault_log, M_DEVBUF);
  306         unit->fault_log = NULL;
  307         unit->fault_log_head = unit->fault_log_tail = 0;
  308 }
  309 
  310 void
  311 dmar_enable_fault_intr(struct dmar_unit *unit)
  312 {
  313         uint32_t fectl;
  314 
  315         DMAR_ASSERT_LOCKED(unit);
  316         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  317         fectl &= ~DMAR_FECTL_IM;
  318         dmar_write4(unit, DMAR_FECTL_REG, fectl);
  319 }
  320 
  321 void
  322 dmar_disable_fault_intr(struct dmar_unit *unit)
  323 {
  324         uint32_t fectl;
  325 
  326         DMAR_ASSERT_LOCKED(unit);
  327         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  328         dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
  329 }

Cache object: 300e43b854f4e0c963881cac34f8d54d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.