The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/10.4/sys/x86/iommu/intel_fault.c 279485 2015-03-01 10:35:54Z kib $");
   32 
   33 #include "opt_acpi.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/bus.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/memdesc.h>
   40 #include <sys/module.h>
   41 #include <sys/rman.h>
   42 #include <sys/taskqueue.h>
   43 #include <sys/tree.h>
   44 #include <machine/bus.h>
   45 #include <contrib/dev/acpica/include/acpi.h>
   46 #include <contrib/dev/acpica/include/accommon.h>
   47 #include <dev/acpica/acpivar.h>
   48 #include <dev/pci/pcireg.h>
   49 #include <dev/pci/pcivar.h>
   50 #include <vm/vm.h>
   51 #include <vm/vm_extern.h>
   52 #include <vm/vm_kern.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_map.h>
   55 #include <x86/include/busdma_impl.h>
   56 #include <x86/iommu/intel_reg.h>
   57 #include <x86/iommu/busdma_dmar.h>
   58 #include <x86/iommu/intel_dmar.h>
   59 
   60 /*
   61  * Fault interrupt handling for DMARs.  If advanced fault logging is
   62  * not implemented by hardware, the code emulates it.  Fast interrupt
   63  * handler flushes the fault registers into circular buffer at
   64  * unit->fault_log, and schedules a task.
   65  *
   66  * The fast handler is used since faults usually come in bursts, and
   67  * number of fault log registers is limited, e.g. down to one for 5400
   68  * MCH.  We are trying to reduce the latency for clearing the fault
   69  * register file.  The task is usually long-running, since printf() is
   70  * slow, but this is not problematic because bursts are rare.
   71  *
   72  * For the same reason, each translation unit task is executed in its
   73  * own thread.
   74  *
   75  * XXXKIB It seems there is no hardware available which implements
   76  * advanced fault logging, so the code to handle AFL is not written.
   77  */
   78 
   79 static int
   80 dmar_fault_next(struct dmar_unit *unit, int faultp)
   81 {
   82 
   83         faultp += 2;
   84         if (faultp == unit->fault_log_size)
   85                 faultp = 0;
   86         return (faultp);
   87 }
   88 
   89 static void
   90 dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
   91 {
   92         uint32_t clear;
   93 
   94         clear = 0;
   95         if ((fsts & DMAR_FSTS_ITE) != 0) {
   96                 printf("DMAR%d: Invalidation timed out\n", unit->unit);
   97                 clear |= DMAR_FSTS_ITE;
   98         }
   99         if ((fsts & DMAR_FSTS_ICE) != 0) {
  100                 printf("DMAR%d: Invalidation completion error\n",
  101                     unit->unit);
  102                 clear |= DMAR_FSTS_ICE;
  103         }
  104         if ((fsts & DMAR_FSTS_IQE) != 0) {
  105                 printf("DMAR%d: Invalidation queue error\n",
  106                     unit->unit);
  107                 clear |= DMAR_FSTS_IQE;
  108         }
  109         if ((fsts & DMAR_FSTS_APF) != 0) {
  110                 printf("DMAR%d: Advanced pending fault\n", unit->unit);
  111                 clear |= DMAR_FSTS_APF;
  112         }
  113         if ((fsts & DMAR_FSTS_AFO) != 0) {
  114                 printf("DMAR%d: Advanced fault overflow\n", unit->unit);
  115                 clear |= DMAR_FSTS_AFO;
  116         }
  117         if (clear != 0)
  118                 dmar_write4(unit, DMAR_FSTS_REG, clear);
  119 }
  120 
  121 int
  122 dmar_fault_intr(void *arg)
  123 {
  124         struct dmar_unit *unit;
  125         uint64_t fault_rec[2];
  126         uint32_t fsts;
  127         int fri, frir, faultp;
  128         bool enqueue;
  129 
  130         unit = arg;
  131         enqueue = false;
  132         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  133         dmar_fault_intr_clear(unit, fsts);
  134 
  135         if ((fsts & DMAR_FSTS_PPF) == 0)
  136                 goto done;
  137 
  138         fri = DMAR_FSTS_FRI(fsts);
  139         for (;;) {
  140                 frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
  141                 fault_rec[1] = dmar_read8(unit, frir + 8);
  142                 if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
  143                         break;
  144                 fault_rec[0] = dmar_read8(unit, frir);
  145                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  146                 DMAR_FAULT_LOCK(unit);
  147                 faultp = unit->fault_log_head;
  148                 if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
  149                         /* XXXKIB log overflow */
  150                 } else {
  151                         unit->fault_log[faultp] = fault_rec[0];
  152                         unit->fault_log[faultp + 1] = fault_rec[1];
  153                         unit->fault_log_head = dmar_fault_next(unit, faultp);
  154                         enqueue = true;
  155                 }
  156                 DMAR_FAULT_UNLOCK(unit);
  157                 fri += 1;
  158                 if (fri >= DMAR_CAP_NFR(unit->hw_cap))
  159                         fri = 0;
  160         }
  161 
  162 done:
  163         /*
  164          * On SandyBridge, due to errata BJ124, IvyBridge errata
  165          * BV100, and Haswell errata HSD40, "Spurious Intel VT-d
  166          * Interrupts May Occur When the PFO Bit is Set".  Handle the
  167          * cases by clearing overflow bit even if no fault is
  168          * reported.
  169          *
  170          * On IvyBridge, errata BV30 states that clearing clear
  171          * DMAR_FRCD2_F bit in the fault register causes spurious
  172          * interrupt.  Do nothing.
  173          *
  174          */
  175         if ((fsts & DMAR_FSTS_PFO) != 0) {
  176                 printf("DMAR%d: Fault Overflow\n", unit->unit);
  177                 dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
  178         }
  179 
  180         if (enqueue) {
  181                 taskqueue_enqueue_fast(unit->fault_taskqueue,
  182                     &unit->fault_task);
  183         }
  184         return (FILTER_HANDLED);
  185 }
  186 
  187 static void
  188 dmar_fault_task(void *arg, int pending __unused)
  189 {
  190         struct dmar_unit *unit;
  191         struct dmar_ctx *ctx;
  192         uint64_t fault_rec[2];
  193         int sid, bus, slot, func, faultp;
  194 
  195         unit = arg;
  196         DMAR_FAULT_LOCK(unit);
  197         for (;;) {
  198                 faultp = unit->fault_log_tail;
  199                 if (faultp == unit->fault_log_head)
  200                         break;
  201 
  202                 fault_rec[0] = unit->fault_log[faultp];
  203                 fault_rec[1] = unit->fault_log[faultp + 1];
  204                 unit->fault_log_tail = dmar_fault_next(unit, faultp);
  205                 DMAR_FAULT_UNLOCK(unit);
  206 
  207                 sid = DMAR_FRCD2_SID(fault_rec[1]);
  208                 printf("DMAR%d: ", unit->unit);
  209                 DMAR_LOCK(unit);
  210                 ctx = dmar_find_ctx_locked(unit, sid);
  211                 if (ctx == NULL) {
  212                         printf("<unknown dev>:");
  213 
  214                         /*
  215                          * Note that the slot and function will not be correct
  216                          * if ARI is in use, but without a ctx entry we have
  217                          * no way of knowing whether ARI is in use or not.
  218                          */
  219                         bus = PCI_RID2BUS(sid);
  220                         slot = PCI_RID2SLOT(sid);
  221                         func = PCI_RID2FUNC(sid);
  222                 } else {
  223                         ctx->flags |= DMAR_CTX_FAULTED;
  224                         ctx->last_fault_rec[0] = fault_rec[0];
  225                         ctx->last_fault_rec[1] = fault_rec[1];
  226                         device_print_prettyname(ctx->ctx_tag.owner);
  227                         bus = pci_get_bus(ctx->ctx_tag.owner);
  228                         slot = pci_get_slot(ctx->ctx_tag.owner);
  229                         func = pci_get_function(ctx->ctx_tag.owner);
  230                 }
  231                 DMAR_UNLOCK(unit);
  232                 printf(
  233                     "pci%d:%d:%d sid %x fault acc %x adt 0x%x reason 0x%x "
  234                     "addr %jx\n",
  235                     bus, slot, func, sid, DMAR_FRCD2_T(fault_rec[1]),
  236                     DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
  237                     (uintmax_t)fault_rec[0]);
  238                 DMAR_FAULT_LOCK(unit);
  239         }
  240         DMAR_FAULT_UNLOCK(unit);
  241 }
  242 
  243 static void
  244 dmar_clear_faults(struct dmar_unit *unit)
  245 {
  246         uint32_t frec, frir, fsts;
  247         int i;
  248 
  249         for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
  250                 frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
  251                 frec = dmar_read4(unit, frir + 12);
  252                 if ((frec & DMAR_FRCD2_F32) == 0)
  253                         continue;
  254                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  255         }
  256         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  257         dmar_write4(unit, DMAR_FSTS_REG, fsts);
  258 }
  259 
  260 int
  261 dmar_init_fault_log(struct dmar_unit *unit)
  262 {
  263 
  264         mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
  265         unit->fault_log_size = 256; /* 128 fault log entries */
  266         TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
  267         if (unit->fault_log_size % 2 != 0)
  268                 panic("hw.dmar_fault_log_size must be even");
  269         unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
  270             M_DEVBUF, M_WAITOK | M_ZERO);
  271 
  272         TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
  273         unit->fault_taskqueue = taskqueue_create_fast("dmar", M_WAITOK,
  274             taskqueue_thread_enqueue, &unit->fault_taskqueue);
  275         taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
  276             "dmar%d fault taskq", unit->unit);
  277 
  278         DMAR_LOCK(unit);
  279         dmar_disable_fault_intr(unit);
  280         dmar_clear_faults(unit);
  281         dmar_enable_fault_intr(unit);
  282         DMAR_UNLOCK(unit);
  283 
  284         return (0);
  285 }
  286 
  287 void
  288 dmar_fini_fault_log(struct dmar_unit *unit)
  289 {
  290 
  291         DMAR_LOCK(unit);
  292         dmar_disable_fault_intr(unit);
  293         DMAR_UNLOCK(unit);
  294 
  295         if (unit->fault_taskqueue == NULL)
  296                 return;
  297 
  298         taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
  299         taskqueue_free(unit->fault_taskqueue);
  300         unit->fault_taskqueue = NULL;
  301         mtx_destroy(&unit->fault_lock);
  302 
  303         free(unit->fault_log, M_DEVBUF);
  304         unit->fault_log = NULL;
  305         unit->fault_log_head = unit->fault_log_tail = 0;
  306 }
  307 
  308 void
  309 dmar_enable_fault_intr(struct dmar_unit *unit)
  310 {
  311         uint32_t fectl;
  312 
  313         DMAR_ASSERT_LOCKED(unit);
  314         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  315         fectl &= ~DMAR_FECTL_IM;
  316         dmar_write4(unit, DMAR_FECTL_REG, fectl);
  317 }
  318 
  319 void
  320 dmar_disable_fault_intr(struct dmar_unit *unit)
  321 {
  322         uint32_t fectl;
  323 
  324         DMAR_ASSERT_LOCKED(unit);
  325         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  326         dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
  327 }

Cache object: f3484d564bc59e4f399a19ad060726d8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.