The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/11.1/sys/x86/iommu/intel_fault.c 309882 2016-12-12 09:43:48Z kib $");
   32 
   33 #include "opt_acpi.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/bus.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/memdesc.h>
   40 #include <sys/module.h>
   41 #include <sys/rman.h>
   42 #include <sys/taskqueue.h>
   43 #include <sys/tree.h>
   44 #include <sys/vmem.h>
   45 #include <machine/bus.h>
   46 #include <contrib/dev/acpica/include/acpi.h>
   47 #include <contrib/dev/acpica/include/accommon.h>
   48 #include <dev/acpica/acpivar.h>
   49 #include <dev/pci/pcireg.h>
   50 #include <dev/pci/pcivar.h>
   51 #include <vm/vm.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_kern.h>
   54 #include <vm/vm_page.h>
   55 #include <vm/vm_map.h>
   56 #include <x86/include/busdma_impl.h>
   57 #include <x86/iommu/intel_reg.h>
   58 #include <x86/iommu/busdma_dmar.h>
   59 #include <x86/iommu/intel_dmar.h>
   60 
   61 /*
   62  * Fault interrupt handling for DMARs.  If advanced fault logging is
   63  * not implemented by hardware, the code emulates it.  Fast interrupt
   64  * handler flushes the fault registers into circular buffer at
   65  * unit->fault_log, and schedules a task.
   66  *
   67  * The fast handler is used since faults usually come in bursts, and
   68  * number of fault log registers is limited, e.g. down to one for 5400
   69  * MCH.  We are trying to reduce the latency for clearing the fault
   70  * register file.  The task is usually long-running, since printf() is
   71  * slow, but this is not problematic because bursts are rare.
   72  *
   73  * For the same reason, each translation unit task is executed in its
   74  * own thread.
   75  *
   76  * XXXKIB It seems there is no hardware available which implements
   77  * advanced fault logging, so the code to handle AFL is not written.
   78  */
   79 
   80 static int
   81 dmar_fault_next(struct dmar_unit *unit, int faultp)
   82 {
   83 
   84         faultp += 2;
   85         if (faultp == unit->fault_log_size)
   86                 faultp = 0;
   87         return (faultp);
   88 }
   89 
   90 static void
   91 dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
   92 {
   93         uint32_t clear;
   94 
   95         clear = 0;
   96         if ((fsts & DMAR_FSTS_ITE) != 0) {
   97                 printf("DMAR%d: Invalidation timed out\n", unit->unit);
   98                 clear |= DMAR_FSTS_ITE;
   99         }
  100         if ((fsts & DMAR_FSTS_ICE) != 0) {
  101                 printf("DMAR%d: Invalidation completion error\n",
  102                     unit->unit);
  103                 clear |= DMAR_FSTS_ICE;
  104         }
  105         if ((fsts & DMAR_FSTS_IQE) != 0) {
  106                 printf("DMAR%d: Invalidation queue error\n",
  107                     unit->unit);
  108                 clear |= DMAR_FSTS_IQE;
  109         }
  110         if ((fsts & DMAR_FSTS_APF) != 0) {
  111                 printf("DMAR%d: Advanced pending fault\n", unit->unit);
  112                 clear |= DMAR_FSTS_APF;
  113         }
  114         if ((fsts & DMAR_FSTS_AFO) != 0) {
  115                 printf("DMAR%d: Advanced fault overflow\n", unit->unit);
  116                 clear |= DMAR_FSTS_AFO;
  117         }
  118         if (clear != 0)
  119                 dmar_write4(unit, DMAR_FSTS_REG, clear);
  120 }
  121 
  122 int
  123 dmar_fault_intr(void *arg)
  124 {
  125         struct dmar_unit *unit;
  126         uint64_t fault_rec[2];
  127         uint32_t fsts;
  128         int fri, frir, faultp;
  129         bool enqueue;
  130 
  131         unit = arg;
  132         enqueue = false;
  133         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  134         dmar_fault_intr_clear(unit, fsts);
  135 
  136         if ((fsts & DMAR_FSTS_PPF) == 0)
  137                 goto done;
  138 
  139         fri = DMAR_FSTS_FRI(fsts);
  140         for (;;) {
  141                 frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
  142                 fault_rec[1] = dmar_read8(unit, frir + 8);
  143                 if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
  144                         break;
  145                 fault_rec[0] = dmar_read8(unit, frir);
  146                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  147                 DMAR_FAULT_LOCK(unit);
  148                 faultp = unit->fault_log_head;
  149                 if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
  150                         /* XXXKIB log overflow */
  151                 } else {
  152                         unit->fault_log[faultp] = fault_rec[0];
  153                         unit->fault_log[faultp + 1] = fault_rec[1];
  154                         unit->fault_log_head = dmar_fault_next(unit, faultp);
  155                         enqueue = true;
  156                 }
  157                 DMAR_FAULT_UNLOCK(unit);
  158                 fri += 1;
  159                 if (fri >= DMAR_CAP_NFR(unit->hw_cap))
  160                         fri = 0;
  161         }
  162 
  163 done:
  164         /*
  165          * On SandyBridge, due to errata BJ124, IvyBridge errata
  166          * BV100, and Haswell errata HSD40, "Spurious Intel VT-d
  167          * Interrupts May Occur When the PFO Bit is Set".  Handle the
  168          * cases by clearing overflow bit even if no fault is
  169          * reported.
  170          *
  171          * On IvyBridge, errata BV30 states that clearing clear
  172          * DMAR_FRCD2_F bit in the fault register causes spurious
  173          * interrupt.  Do nothing.
  174          *
  175          */
  176         if ((fsts & DMAR_FSTS_PFO) != 0) {
  177                 printf("DMAR%d: Fault Overflow\n", unit->unit);
  178                 dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
  179         }
  180 
  181         if (enqueue) {
  182                 taskqueue_enqueue(unit->fault_taskqueue,
  183                     &unit->fault_task);
  184         }
  185         return (FILTER_HANDLED);
  186 }
  187 
  188 static void
  189 dmar_fault_task(void *arg, int pending __unused)
  190 {
  191         struct dmar_unit *unit;
  192         struct dmar_ctx *ctx;
  193         uint64_t fault_rec[2];
  194         int sid, bus, slot, func, faultp;
  195 
  196         unit = arg;
  197         DMAR_FAULT_LOCK(unit);
  198         for (;;) {
  199                 faultp = unit->fault_log_tail;
  200                 if (faultp == unit->fault_log_head)
  201                         break;
  202 
  203                 fault_rec[0] = unit->fault_log[faultp];
  204                 fault_rec[1] = unit->fault_log[faultp + 1];
  205                 unit->fault_log_tail = dmar_fault_next(unit, faultp);
  206                 DMAR_FAULT_UNLOCK(unit);
  207 
  208                 sid = DMAR_FRCD2_SID(fault_rec[1]);
  209                 printf("DMAR%d: ", unit->unit);
  210                 DMAR_LOCK(unit);
  211                 ctx = dmar_find_ctx_locked(unit, sid);
  212                 if (ctx == NULL) {
  213                         printf("<unknown dev>:");
  214 
  215                         /*
  216                          * Note that the slot and function will not be correct
  217                          * if ARI is in use, but without a ctx entry we have
  218                          * no way of knowing whether ARI is in use or not.
  219                          */
  220                         bus = PCI_RID2BUS(sid);
  221                         slot = PCI_RID2SLOT(sid);
  222                         func = PCI_RID2FUNC(sid);
  223                 } else {
  224                         ctx->flags |= DMAR_CTX_FAULTED;
  225                         ctx->last_fault_rec[0] = fault_rec[0];
  226                         ctx->last_fault_rec[1] = fault_rec[1];
  227                         device_print_prettyname(ctx->ctx_tag.owner);
  228                         bus = pci_get_bus(ctx->ctx_tag.owner);
  229                         slot = pci_get_slot(ctx->ctx_tag.owner);
  230                         func = pci_get_function(ctx->ctx_tag.owner);
  231                 }
  232                 DMAR_UNLOCK(unit);
  233                 printf(
  234                     "pci%d:%d:%d sid %x fault acc %x adt 0x%x reason 0x%x "
  235                     "addr %jx\n",
  236                     bus, slot, func, sid, DMAR_FRCD2_T(fault_rec[1]),
  237                     DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
  238                     (uintmax_t)fault_rec[0]);
  239                 DMAR_FAULT_LOCK(unit);
  240         }
  241         DMAR_FAULT_UNLOCK(unit);
  242 }
  243 
  244 static void
  245 dmar_clear_faults(struct dmar_unit *unit)
  246 {
  247         uint32_t frec, frir, fsts;
  248         int i;
  249 
  250         for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
  251                 frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
  252                 frec = dmar_read4(unit, frir + 12);
  253                 if ((frec & DMAR_FRCD2_F32) == 0)
  254                         continue;
  255                 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
  256         }
  257         fsts = dmar_read4(unit, DMAR_FSTS_REG);
  258         dmar_write4(unit, DMAR_FSTS_REG, fsts);
  259 }
  260 
  261 int
  262 dmar_init_fault_log(struct dmar_unit *unit)
  263 {
  264 
  265         mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
  266         unit->fault_log_size = 256; /* 128 fault log entries */
  267         TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
  268         if (unit->fault_log_size % 2 != 0)
  269                 panic("hw.dmar_fault_log_size must be even");
  270         unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
  271             M_DEVBUF, M_WAITOK | M_ZERO);
  272 
  273         TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
  274         unit->fault_taskqueue = taskqueue_create_fast("dmarff", M_WAITOK,
  275             taskqueue_thread_enqueue, &unit->fault_taskqueue);
  276         taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
  277             "dmar%d fault taskq", unit->unit);
  278 
  279         DMAR_LOCK(unit);
  280         dmar_disable_fault_intr(unit);
  281         dmar_clear_faults(unit);
  282         dmar_enable_fault_intr(unit);
  283         DMAR_UNLOCK(unit);
  284 
  285         return (0);
  286 }
  287 
  288 void
  289 dmar_fini_fault_log(struct dmar_unit *unit)
  290 {
  291 
  292         DMAR_LOCK(unit);
  293         dmar_disable_fault_intr(unit);
  294         DMAR_UNLOCK(unit);
  295 
  296         if (unit->fault_taskqueue == NULL)
  297                 return;
  298 
  299         taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
  300         taskqueue_free(unit->fault_taskqueue);
  301         unit->fault_taskqueue = NULL;
  302         mtx_destroy(&unit->fault_lock);
  303 
  304         free(unit->fault_log, M_DEVBUF);
  305         unit->fault_log = NULL;
  306         unit->fault_log_head = unit->fault_log_tail = 0;
  307 }
  308 
  309 void
  310 dmar_enable_fault_intr(struct dmar_unit *unit)
  311 {
  312         uint32_t fectl;
  313 
  314         DMAR_ASSERT_LOCKED(unit);
  315         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  316         fectl &= ~DMAR_FECTL_IM;
  317         dmar_write4(unit, DMAR_FECTL_REG, fectl);
  318 }
  319 
  320 void
  321 dmar_disable_fault_intr(struct dmar_unit *unit)
  322 {
  323         uint32_t fectl;
  324 
  325         DMAR_ASSERT_LOCKED(unit);
  326         fectl = dmar_read4(unit, DMAR_FECTL_REG);
  327         dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
  328 }

Cache object: 408d5a11d9ffa12e23dc9a2707dcac30


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.