1 /*-
2 * Copyright (c) 2013 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_acpi.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/memdesc.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/taskqueue.h>
43 #include <sys/tree.h>
44 #include <sys/vmem.h>
45 #include <machine/bus.h>
46 #include <contrib/dev/acpica/include/acpi.h>
47 #include <contrib/dev/acpica/include/accommon.h>
48 #include <dev/acpica/acpivar.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_map.h>
56 #include <x86/include/busdma_impl.h>
57 #include <x86/iommu/intel_reg.h>
58 #include <x86/iommu/busdma_dmar.h>
59 #include <x86/iommu/intel_dmar.h>
60
61 /*
62 * Fault interrupt handling for DMARs. If advanced fault logging is
63 * not implemented by hardware, the code emulates it. Fast interrupt
64 * handler flushes the fault registers into circular buffer at
65 * unit->fault_log, and schedules a task.
66 *
67 * The fast handler is used since faults usually come in bursts, and
68 * number of fault log registers is limited, e.g. down to one for 5400
69 * MCH. We are trying to reduce the latency for clearing the fault
70 * register file. The task is usually long-running, since printf() is
71 * slow, but this is not problematic because bursts are rare.
72 *
73 * For the same reason, each translation unit task is executed in its
74 * own thread.
75 *
76 * XXXKIB It seems there is no hardware available which implements
77 * advanced fault logging, so the code to handle AFL is not written.
78 */
79
80 static int
81 dmar_fault_next(struct dmar_unit *unit, int faultp)
82 {
83
84 faultp += 2;
85 if (faultp == unit->fault_log_size)
86 faultp = 0;
87 return (faultp);
88 }
89
90 static void
91 dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
92 {
93 uint32_t clear;
94
95 clear = 0;
96 if ((fsts & DMAR_FSTS_ITE) != 0) {
97 printf("DMAR%d: Invalidation timed out\n", unit->unit);
98 clear |= DMAR_FSTS_ITE;
99 }
100 if ((fsts & DMAR_FSTS_ICE) != 0) {
101 printf("DMAR%d: Invalidation completion error\n",
102 unit->unit);
103 clear |= DMAR_FSTS_ICE;
104 }
105 if ((fsts & DMAR_FSTS_IQE) != 0) {
106 printf("DMAR%d: Invalidation queue error\n",
107 unit->unit);
108 clear |= DMAR_FSTS_IQE;
109 }
110 if ((fsts & DMAR_FSTS_APF) != 0) {
111 printf("DMAR%d: Advanced pending fault\n", unit->unit);
112 clear |= DMAR_FSTS_APF;
113 }
114 if ((fsts & DMAR_FSTS_AFO) != 0) {
115 printf("DMAR%d: Advanced fault overflow\n", unit->unit);
116 clear |= DMAR_FSTS_AFO;
117 }
118 if (clear != 0)
119 dmar_write4(unit, DMAR_FSTS_REG, clear);
120 }
121
122 int
123 dmar_fault_intr(void *arg)
124 {
125 struct dmar_unit *unit;
126 uint64_t fault_rec[2];
127 uint32_t fsts;
128 int fri, frir, faultp;
129 bool enqueue;
130
131 unit = arg;
132 enqueue = false;
133 fsts = dmar_read4(unit, DMAR_FSTS_REG);
134 dmar_fault_intr_clear(unit, fsts);
135
136 if ((fsts & DMAR_FSTS_PPF) == 0)
137 goto done;
138
139 fri = DMAR_FSTS_FRI(fsts);
140 for (;;) {
141 frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
142 fault_rec[1] = dmar_read8(unit, frir + 8);
143 if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
144 break;
145 fault_rec[0] = dmar_read8(unit, frir);
146 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
147 DMAR_FAULT_LOCK(unit);
148 faultp = unit->fault_log_head;
149 if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
150 /* XXXKIB log overflow */
151 } else {
152 unit->fault_log[faultp] = fault_rec[0];
153 unit->fault_log[faultp + 1] = fault_rec[1];
154 unit->fault_log_head = dmar_fault_next(unit, faultp);
155 enqueue = true;
156 }
157 DMAR_FAULT_UNLOCK(unit);
158 fri += 1;
159 if (fri >= DMAR_CAP_NFR(unit->hw_cap))
160 fri = 0;
161 }
162
163 done:
164 /*
165 * On SandyBridge, due to errata BJ124, IvyBridge errata
166 * BV100, and Haswell errata HSD40, "Spurious Intel VT-d
167 * Interrupts May Occur When the PFO Bit is Set". Handle the
168 * cases by clearing overflow bit even if no fault is
169 * reported.
170 *
171 * On IvyBridge, errata BV30 states that clearing clear
172 * DMAR_FRCD2_F bit in the fault register causes spurious
173 * interrupt. Do nothing.
174 *
175 */
176 if ((fsts & DMAR_FSTS_PFO) != 0) {
177 printf("DMAR%d: Fault Overflow\n", unit->unit);
178 dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
179 }
180
181 if (enqueue) {
182 taskqueue_enqueue(unit->fault_taskqueue,
183 &unit->fault_task);
184 }
185 return (FILTER_HANDLED);
186 }
187
188 static void
189 dmar_fault_task(void *arg, int pending __unused)
190 {
191 struct dmar_unit *unit;
192 struct dmar_ctx *ctx;
193 uint64_t fault_rec[2];
194 int sid, bus, slot, func, faultp;
195
196 unit = arg;
197 DMAR_FAULT_LOCK(unit);
198 for (;;) {
199 faultp = unit->fault_log_tail;
200 if (faultp == unit->fault_log_head)
201 break;
202
203 fault_rec[0] = unit->fault_log[faultp];
204 fault_rec[1] = unit->fault_log[faultp + 1];
205 unit->fault_log_tail = dmar_fault_next(unit, faultp);
206 DMAR_FAULT_UNLOCK(unit);
207
208 sid = DMAR_FRCD2_SID(fault_rec[1]);
209 printf("DMAR%d: ", unit->unit);
210 DMAR_LOCK(unit);
211 ctx = dmar_find_ctx_locked(unit, sid);
212 if (ctx == NULL) {
213 printf("<unknown dev>:");
214
215 /*
216 * Note that the slot and function will not be correct
217 * if ARI is in use, but without a ctx entry we have
218 * no way of knowing whether ARI is in use or not.
219 */
220 bus = PCI_RID2BUS(sid);
221 slot = PCI_RID2SLOT(sid);
222 func = PCI_RID2FUNC(sid);
223 } else {
224 ctx->flags |= DMAR_CTX_FAULTED;
225 ctx->last_fault_rec[0] = fault_rec[0];
226 ctx->last_fault_rec[1] = fault_rec[1];
227 device_print_prettyname(ctx->ctx_tag.owner);
228 bus = pci_get_bus(ctx->ctx_tag.owner);
229 slot = pci_get_slot(ctx->ctx_tag.owner);
230 func = pci_get_function(ctx->ctx_tag.owner);
231 }
232 DMAR_UNLOCK(unit);
233 printf(
234 "pci%d:%d:%d sid %x fault acc %x adt 0x%x reason 0x%x "
235 "addr %jx\n",
236 bus, slot, func, sid, DMAR_FRCD2_T(fault_rec[1]),
237 DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
238 (uintmax_t)fault_rec[0]);
239 DMAR_FAULT_LOCK(unit);
240 }
241 DMAR_FAULT_UNLOCK(unit);
242 }
243
244 static void
245 dmar_clear_faults(struct dmar_unit *unit)
246 {
247 uint32_t frec, frir, fsts;
248 int i;
249
250 for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
251 frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
252 frec = dmar_read4(unit, frir + 12);
253 if ((frec & DMAR_FRCD2_F32) == 0)
254 continue;
255 dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
256 }
257 fsts = dmar_read4(unit, DMAR_FSTS_REG);
258 dmar_write4(unit, DMAR_FSTS_REG, fsts);
259 }
260
261 int
262 dmar_init_fault_log(struct dmar_unit *unit)
263 {
264
265 mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
266 unit->fault_log_size = 256; /* 128 fault log entries */
267 TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
268 if (unit->fault_log_size % 2 != 0)
269 panic("hw.dmar_fault_log_size must be even");
270 unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
271 M_DEVBUF, M_WAITOK | M_ZERO);
272
273 TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
274 unit->fault_taskqueue = taskqueue_create_fast("dmarff", M_WAITOK,
275 taskqueue_thread_enqueue, &unit->fault_taskqueue);
276 taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
277 "dmar%d fault taskq", unit->unit);
278
279 DMAR_LOCK(unit);
280 dmar_disable_fault_intr(unit);
281 dmar_clear_faults(unit);
282 dmar_enable_fault_intr(unit);
283 DMAR_UNLOCK(unit);
284
285 return (0);
286 }
287
288 void
289 dmar_fini_fault_log(struct dmar_unit *unit)
290 {
291
292 DMAR_LOCK(unit);
293 dmar_disable_fault_intr(unit);
294 DMAR_UNLOCK(unit);
295
296 if (unit->fault_taskqueue == NULL)
297 return;
298
299 taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
300 taskqueue_free(unit->fault_taskqueue);
301 unit->fault_taskqueue = NULL;
302 mtx_destroy(&unit->fault_lock);
303
304 free(unit->fault_log, M_DEVBUF);
305 unit->fault_log = NULL;
306 unit->fault_log_head = unit->fault_log_tail = 0;
307 }
308
309 void
310 dmar_enable_fault_intr(struct dmar_unit *unit)
311 {
312 uint32_t fectl;
313
314 DMAR_ASSERT_LOCKED(unit);
315 fectl = dmar_read4(unit, DMAR_FECTL_REG);
316 fectl &= ~DMAR_FECTL_IM;
317 dmar_write4(unit, DMAR_FECTL_REG, fectl);
318 }
319
320 void
321 dmar_disable_fault_intr(struct dmar_unit *unit)
322 {
323 uint32_t fectl;
324
325 DMAR_ASSERT_LOCKED(unit);
326 fectl = dmar_read4(unit, DMAR_FECTL_REG);
327 dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
328 }
Cache object: 8be98a7754ade9143e2b6fb8201f749b
|