The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_idpgtbl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  *
    6  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    7  * under sponsorship from the FreeBSD Foundation.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/malloc.h>
   37 #include <sys/bus.h>
   38 #include <sys/interrupt.h>
   39 #include <sys/kernel.h>
   40 #include <sys/ktr.h>
   41 #include <sys/lock.h>
   42 #include <sys/memdesc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/proc.h>
   45 #include <sys/rwlock.h>
   46 #include <sys/rman.h>
   47 #include <sys/sf_buf.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/taskqueue.h>
   50 #include <sys/tree.h>
   51 #include <sys/uio.h>
   52 #include <sys/vmem.h>
   53 #include <vm/vm.h>
   54 #include <vm/vm_extern.h>
   55 #include <vm/vm_kern.h>
   56 #include <vm/vm_object.h>
   57 #include <vm/vm_page.h>
   58 #include <vm/vm_pager.h>
   59 #include <vm/vm_map.h>
   60 #include <dev/pci/pcireg.h>
   61 #include <machine/atomic.h>
   62 #include <machine/bus.h>
   63 #include <machine/cpu.h>
   64 #include <machine/md_var.h>
   65 #include <machine/specialreg.h>
   66 #include <x86/include/busdma_impl.h>
   67 #include <dev/iommu/busdma_iommu.h>
   68 #include <x86/iommu/intel_reg.h>
   69 #include <x86/iommu/intel_dmar.h>
   70 
   71 static int domain_unmap_buf_locked(struct dmar_domain *domain,
   72     iommu_gaddr_t base, iommu_gaddr_t size, int flags);
   73 
   74 /*
   75  * The cache of the identity mapping page tables for the DMARs.  Using
   76  * the cache saves significant amount of memory for page tables by
   77  * reusing the page tables, since usually DMARs are identical and have
   78  * the same capabilities.  Still, cache records the information needed
   79  * to match DMAR capabilities and page table format, to correctly
   80  * handle different DMARs.
   81  */
   82 
   83 struct idpgtbl {
   84         iommu_gaddr_t maxaddr;  /* Page table covers the guest address
   85                                    range [0..maxaddr) */
   86         int pglvl;              /* Total page table levels ignoring
   87                                    superpages */
   88         int leaf;               /* The last materialized page table
   89                                    level, it is non-zero if superpages
   90                                    are supported */
   91         vm_object_t pgtbl_obj;  /* The page table pages */
   92         LIST_ENTRY(idpgtbl) link;
   93 };
   94 
   95 static struct sx idpgtbl_lock;
   96 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
   97 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
   98 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
   99     "Intel DMAR Identity mappings cache elements");
  100 
  101 /*
  102  * Build the next level of the page tables for the identity mapping.
  103  * - lvl is the level to build;
  104  * - idx is the index of the page table page in the pgtbl_obj, which is
  105  *   being allocated filled now;
  106  * - addr is the starting address in the bus address space which is
  107  *   mapped by the page table page.
  108  */
  109 static void
  110 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
  111     iommu_gaddr_t addr)
  112 {
  113         vm_page_t m1;
  114         dmar_pte_t *pte;
  115         struct sf_buf *sf;
  116         iommu_gaddr_t f, pg_sz;
  117         vm_pindex_t base;
  118         int i;
  119 
  120         VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
  121         if (addr >= tbl->maxaddr)
  122                 return;
  123         (void)dmar_pgalloc(tbl->pgtbl_obj, idx, IOMMU_PGF_OBJL |
  124             IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO);
  125         base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
  126         pg_sz = pglvl_page_size(tbl->pglvl, lvl);
  127         if (lvl != tbl->leaf) {
  128                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
  129                         domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
  130         }
  131         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  132         pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, IOMMU_PGF_WAITOK, &sf);
  133         if (lvl == tbl->leaf) {
  134                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  135                         if (f >= tbl->maxaddr)
  136                                 break;
  137                         pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
  138                             DMAR_PTE_R | DMAR_PTE_W;
  139                 }
  140         } else {
  141                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  142                         if (f >= tbl->maxaddr)
  143                                 break;
  144                         m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
  145                             IOMMU_PGF_NOALLOC);
  146                         KASSERT(m1 != NULL, ("lost page table page"));
  147                         pte[i].pte = (DMAR_PTE_ADDR_MASK &
  148                             VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
  149                 }
  150         }
  151         /* domain_get_idmap_pgtbl flushes CPU cache if needed. */
  152         dmar_unmap_pgtbl(sf);
  153         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  154 }
  155 
  156 /*
  157  * Find a ready and compatible identity-mapping page table in the
  158  * cache. If not found, populate the identity-mapping page table for
  159  * the context, up to the maxaddr. The maxaddr byte is allowed to be
  160  * not mapped, which is aligned with the definition of Maxmem as the
  161  * highest usable physical address + 1.  If superpages are used, the
  162  * maxaddr is typically mapped.
  163  */
  164 vm_object_t
  165 domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr)
  166 {
  167         struct dmar_unit *unit;
  168         struct idpgtbl *tbl;
  169         vm_object_t res;
  170         vm_page_t m;
  171         int leaf, i;
  172 
  173         leaf = 0; /* silence gcc */
  174 
  175         /*
  176          * First, determine where to stop the paging structures.
  177          */
  178         for (i = 0; i < domain->pglvl; i++) {
  179                 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
  180                         leaf = i;
  181                         break;
  182                 }
  183         }
  184 
  185         /*
  186          * Search the cache for a compatible page table.  Qualified
  187          * page table must map up to maxaddr, its level must be
  188          * supported by the DMAR and leaf should be equal to the
  189          * calculated value.  The later restriction could be lifted
  190          * but I believe it is currently impossible to have any
  191          * deviations for existing hardware.
  192          */
  193         sx_slock(&idpgtbl_lock);
  194         LIST_FOREACH(tbl, &idpgtbls, link) {
  195                 if (tbl->maxaddr >= maxaddr &&
  196                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  197                     tbl->leaf == leaf) {
  198                         res = tbl->pgtbl_obj;
  199                         vm_object_reference(res);
  200                         sx_sunlock(&idpgtbl_lock);
  201                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  202                         goto end;
  203                 }
  204         }
  205 
  206         /*
  207          * Not found in cache, relock the cache into exclusive mode to
  208          * be able to add element, and recheck cache again after the
  209          * relock.
  210          */
  211         sx_sunlock(&idpgtbl_lock);
  212         sx_xlock(&idpgtbl_lock);
  213         LIST_FOREACH(tbl, &idpgtbls, link) {
  214                 if (tbl->maxaddr >= maxaddr &&
  215                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  216                     tbl->leaf == leaf) {
  217                         res = tbl->pgtbl_obj;
  218                         vm_object_reference(res);
  219                         sx_xunlock(&idpgtbl_lock);
  220                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  221                         return (res);
  222                 }
  223         }
  224 
  225         /*
  226          * Still not found, create new page table.
  227          */
  228         tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
  229         tbl->pglvl = domain->pglvl;
  230         tbl->leaf = leaf;
  231         tbl->maxaddr = maxaddr;
  232         tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  233             IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
  234         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  235         domain_idmap_nextlvl(tbl, 0, 0, 0);
  236         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  237         LIST_INSERT_HEAD(&idpgtbls, tbl, link);
  238         res = tbl->pgtbl_obj;
  239         vm_object_reference(res);
  240         sx_xunlock(&idpgtbl_lock);
  241 
  242 end:
  243         /*
  244          * Table was found or created.
  245          *
  246          * If DMAR does not snoop paging structures accesses, flush
  247          * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
  248          * argument was possibly invalid at the time of the identity
  249          * page table creation, since DMAR which was passed at the
  250          * time of creation could be coherent, while current DMAR is
  251          * not.
  252          *
  253          * If DMAR cannot look into the chipset write buffer, flush it
  254          * as well.
  255          */
  256         unit = domain->dmar;
  257         if (!DMAR_IS_COHERENT(unit)) {
  258                 VM_OBJECT_WLOCK(res);
  259                 for (m = vm_page_lookup(res, 0); m != NULL;
  260                      m = vm_page_next(m))
  261                         pmap_invalidate_cache_pages(&m, 1);
  262                 VM_OBJECT_WUNLOCK(res);
  263         }
  264         if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  265                 DMAR_LOCK(unit);
  266                 dmar_flush_write_bufs(unit);
  267                 DMAR_UNLOCK(unit);
  268         }
  269 
  270         return (res);
  271 }
  272 
  273 /*
  274  * Return a reference to the identity mapping page table to the cache.
  275  */
  276 void
  277 put_idmap_pgtbl(vm_object_t obj)
  278 {
  279         struct idpgtbl *tbl, *tbl1;
  280         vm_object_t rmobj;
  281 
  282         sx_slock(&idpgtbl_lock);
  283         KASSERT(obj->ref_count >= 2, ("lost cache reference"));
  284         vm_object_deallocate(obj);
  285 
  286         /*
  287          * Cache always owns one last reference on the page table object.
  288          * If there is an additional reference, object must stay.
  289          */
  290         if (obj->ref_count > 1) {
  291                 sx_sunlock(&idpgtbl_lock);
  292                 return;
  293         }
  294 
  295         /*
  296          * Cache reference is the last, remove cache element and free
  297          * page table object, returning the page table pages to the
  298          * system.
  299          */
  300         sx_sunlock(&idpgtbl_lock);
  301         sx_xlock(&idpgtbl_lock);
  302         LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
  303                 rmobj = tbl->pgtbl_obj;
  304                 if (rmobj->ref_count == 1) {
  305                         LIST_REMOVE(tbl, link);
  306                         atomic_subtract_int(&dmar_tbl_pagecnt,
  307                             rmobj->resident_page_count);
  308                         vm_object_deallocate(rmobj);
  309                         free(tbl, M_DMAR_IDPGTBL);
  310                 }
  311         }
  312         sx_xunlock(&idpgtbl_lock);
  313 }
  314 
  315 /*
  316  * The core routines to map and unmap host pages at the given guest
  317  * address.  Support superpages.
  318  */
  319 
  320 /*
  321  * Index of the pte for the guest address base in the page table at
  322  * the level lvl.
  323  */
  324 static int
  325 domain_pgtbl_pte_off(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
  326 {
  327 
  328         base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
  329             DMAR_NPTEPGSHIFT;
  330         return (base & DMAR_PTEMASK);
  331 }
  332 
  333 /*
  334  * Returns the page index of the page table page in the page table
  335  * object, which maps the given address base at the page table level
  336  * lvl.
  337  */
  338 static vm_pindex_t
  339 domain_pgtbl_get_pindex(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
  340 {
  341         vm_pindex_t idx, pidx;
  342         int i;
  343 
  344         KASSERT(lvl >= 0 && lvl < domain->pglvl,
  345             ("wrong lvl %p %d", domain, lvl));
  346 
  347         for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
  348                 idx = domain_pgtbl_pte_off(domain, base, i) +
  349                     pidx * DMAR_NPTEPG + 1;
  350         }
  351         return (idx);
  352 }
  353 
  354 static dmar_pte_t *
  355 domain_pgtbl_map_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
  356     int flags, vm_pindex_t *idxp, struct sf_buf **sf)
  357 {
  358         vm_page_t m;
  359         struct sf_buf *sfp;
  360         dmar_pte_t *pte, *ptep;
  361         vm_pindex_t idx, idx1;
  362 
  363         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  364         KASSERT((flags & IOMMU_PGF_OBJL) != 0, ("lost PGF_OBJL"));
  365 
  366         idx = domain_pgtbl_get_pindex(domain, base, lvl);
  367         if (*sf != NULL && idx == *idxp) {
  368                 pte = (dmar_pte_t *)sf_buf_kva(*sf);
  369         } else {
  370                 if (*sf != NULL)
  371                         dmar_unmap_pgtbl(*sf);
  372                 *idxp = idx;
  373 retry:
  374                 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
  375                 if (pte == NULL) {
  376                         KASSERT(lvl > 0,
  377                             ("lost root page table page %p", domain));
  378                         /*
  379                          * Page table page does not exist, allocate
  380                          * it and create a pte in the preceeding page level
  381                          * to reference the allocated page table page.
  382                          */
  383                         m = dmar_pgalloc(domain->pgtbl_obj, idx, flags |
  384                             IOMMU_PGF_ZERO);
  385                         if (m == NULL)
  386                                 return (NULL);
  387 
  388                         /*
  389                          * Prevent potential free while pgtbl_obj is
  390                          * unlocked in the recursive call to
  391                          * domain_pgtbl_map_pte(), if other thread did
  392                          * pte write and clean while the lock is
  393                          * dropped.
  394                          */
  395                         m->ref_count++;
  396 
  397                         sfp = NULL;
  398                         ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
  399                             flags, &idx1, &sfp);
  400                         if (ptep == NULL) {
  401                                 KASSERT(m->pindex != 0,
  402                                     ("loosing root page %p", domain));
  403                                 m->ref_count--;
  404                                 dmar_pgfree(domain->pgtbl_obj, m->pindex,
  405                                     flags);
  406                                 return (NULL);
  407                         }
  408                         dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
  409                             VM_PAGE_TO_PHYS(m));
  410                         dmar_flush_pte_to_ram(domain->dmar, ptep);
  411                         sf_buf_page(sfp)->ref_count += 1;
  412                         m->ref_count--;
  413                         dmar_unmap_pgtbl(sfp);
  414                         /* Only executed once. */
  415                         goto retry;
  416                 }
  417         }
  418         pte += domain_pgtbl_pte_off(domain, base, lvl);
  419         return (pte);
  420 }
  421 
  422 static int
  423 domain_map_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
  424     iommu_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
  425 {
  426         dmar_pte_t *pte;
  427         struct sf_buf *sf;
  428         iommu_gaddr_t pg_sz, base1;
  429         vm_pindex_t pi, c, idx, run_sz;
  430         int lvl;
  431         bool superpage;
  432 
  433         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  434 
  435         base1 = base;
  436         flags |= IOMMU_PGF_OBJL;
  437         TD_PREP_PINNED_ASSERT;
  438 
  439         for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
  440             pi += run_sz) {
  441                 for (lvl = 0, c = 0, superpage = false;; lvl++) {
  442                         pg_sz = domain_page_size(domain, lvl);
  443                         run_sz = pg_sz >> DMAR_PAGE_SHIFT;
  444                         if (lvl == domain->pglvl - 1)
  445                                 break;
  446                         /*
  447                          * Check if the current base suitable for the
  448                          * superpage mapping.  First, verify the level.
  449                          */
  450                         if (!domain_is_sp_lvl(domain, lvl))
  451                                 continue;
  452                         /*
  453                          * Next, look at the size of the mapping and
  454                          * alignment of both guest and host addresses.
  455                          */
  456                         if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
  457                             (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
  458                                 continue;
  459                         /* All passed, check host pages contiguouty. */
  460                         if (c == 0) {
  461                                 for (c = 1; c < run_sz; c++) {
  462                                         if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
  463                                             VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
  464                                             PAGE_SIZE)
  465                                                 break;
  466                                 }
  467                         }
  468                         if (c >= run_sz) {
  469                                 superpage = true;
  470                                 break;
  471                         }
  472                 }
  473                 KASSERT(size >= pg_sz,
  474                     ("mapping loop overflow %p %jx %jx %jx", domain,
  475                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  476                 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
  477                 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  478                 if (pte == NULL) {
  479                         KASSERT((flags & IOMMU_PGF_WAITOK) == 0,
  480                             ("failed waitable pte alloc %p", domain));
  481                         if (sf != NULL)
  482                                 dmar_unmap_pgtbl(sf);
  483                         domain_unmap_buf_locked(domain, base1, base - base1,
  484                             flags);
  485                         TD_PINNED_ASSERT;
  486                         return (ENOMEM);
  487                 }
  488                 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
  489                     (superpage ? DMAR_PTE_SP : 0));
  490                 dmar_flush_pte_to_ram(domain->dmar, pte);
  491                 sf_buf_page(sf)->ref_count += 1;
  492         }
  493         if (sf != NULL)
  494                 dmar_unmap_pgtbl(sf);
  495         TD_PINNED_ASSERT;
  496         return (0);
  497 }
  498 
  499 static int
  500 domain_map_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
  501     iommu_gaddr_t size, vm_page_t *ma, uint64_t eflags, int flags)
  502 {
  503         struct dmar_domain *domain;
  504         struct dmar_unit *unit;
  505         uint64_t pflags;
  506         int error;
  507 
  508         pflags = ((eflags & IOMMU_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) |
  509             ((eflags & IOMMU_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) |
  510             ((eflags & IOMMU_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) |
  511             ((eflags & IOMMU_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0);
  512 
  513         domain = IODOM2DOM(iodom);
  514         unit = domain->dmar;
  515 
  516         KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
  517             ("modifying idmap pagetable domain %p", domain));
  518         KASSERT((base & DMAR_PAGE_MASK) == 0,
  519             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  520             (uintmax_t)size));
  521         KASSERT((size & DMAR_PAGE_MASK) == 0,
  522             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  523             (uintmax_t)size));
  524         KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
  525             (uintmax_t)size));
  526         KASSERT(base < (1ULL << domain->agaw),
  527             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  528             (uintmax_t)size, domain->agaw));
  529         KASSERT(base + size < (1ULL << domain->agaw),
  530             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  531             (uintmax_t)size, domain->agaw));
  532         KASSERT(base + size > base,
  533             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  534             (uintmax_t)size));
  535         KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
  536             ("neither read nor write %jx", (uintmax_t)pflags));
  537         KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
  538             DMAR_PTE_TM)) == 0,
  539             ("invalid pte flags %jx", (uintmax_t)pflags));
  540         KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
  541             (unit->hw_ecap & DMAR_ECAP_SC) != 0,
  542             ("PTE_SNP for dmar without snoop control %p %jx",
  543             domain, (uintmax_t)pflags));
  544         KASSERT((pflags & DMAR_PTE_TM) == 0 ||
  545             (unit->hw_ecap & DMAR_ECAP_DI) != 0,
  546             ("PTE_TM for dmar without DIOTLB %p %jx",
  547             domain, (uintmax_t)pflags));
  548         KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  549 
  550         DMAR_DOMAIN_PGLOCK(domain);
  551         error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
  552         DMAR_DOMAIN_PGUNLOCK(domain);
  553         if (error != 0)
  554                 return (error);
  555 
  556         if ((unit->hw_cap & DMAR_CAP_CM) != 0)
  557                 domain_flush_iotlb_sync(domain, base, size);
  558         else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  559                 /* See 11.1 Write Buffer Flushing. */
  560                 DMAR_LOCK(unit);
  561                 dmar_flush_write_bufs(unit);
  562                 DMAR_UNLOCK(unit);
  563         }
  564         return (0);
  565 }
  566 
  567 static void domain_unmap_clear_pte(struct dmar_domain *domain,
  568     iommu_gaddr_t base, int lvl, int flags, dmar_pte_t *pte,
  569     struct sf_buf **sf, bool free_fs);
  570 
  571 static void
  572 domain_free_pgtbl_pde(struct dmar_domain *domain, iommu_gaddr_t base,
  573     int lvl, int flags)
  574 {
  575         struct sf_buf *sf;
  576         dmar_pte_t *pde;
  577         vm_pindex_t idx;
  578 
  579         sf = NULL;
  580         pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  581         domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
  582 }
  583 
  584 static void
  585 domain_unmap_clear_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
  586     int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
  587 {
  588         vm_page_t m;
  589 
  590         dmar_pte_clear(&pte->pte);
  591         dmar_flush_pte_to_ram(domain->dmar, pte);
  592         m = sf_buf_page(*sf);
  593         if (free_sf) {
  594                 dmar_unmap_pgtbl(*sf);
  595                 *sf = NULL;
  596         }
  597         m->ref_count--;
  598         if (m->ref_count != 0)
  599                 return;
  600         KASSERT(lvl != 0,
  601             ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
  602             domain, (uintmax_t)base, lvl));
  603         KASSERT(m->pindex != 0,
  604             ("lost reference (idx) on root pg domain %p base %jx lvl %d",
  605             domain, (uintmax_t)base, lvl));
  606         dmar_pgfree(domain->pgtbl_obj, m->pindex, flags);
  607         domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
  608 }
  609 
  610 /*
  611  * Assumes that the unmap is never partial.
  612  */
  613 static int
  614 domain_unmap_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
  615     iommu_gaddr_t size, int flags)
  616 {
  617         dmar_pte_t *pte;
  618         struct sf_buf *sf;
  619         vm_pindex_t idx;
  620         iommu_gaddr_t pg_sz;
  621         int lvl;
  622 
  623         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  624         if (size == 0)
  625                 return (0);
  626 
  627         KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
  628             ("modifying idmap pagetable domain %p", domain));
  629         KASSERT((base & DMAR_PAGE_MASK) == 0,
  630             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  631             (uintmax_t)size));
  632         KASSERT((size & DMAR_PAGE_MASK) == 0,
  633             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  634             (uintmax_t)size));
  635         KASSERT(base < (1ULL << domain->agaw),
  636             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  637             (uintmax_t)size, domain->agaw));
  638         KASSERT(base + size < (1ULL << domain->agaw),
  639             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  640             (uintmax_t)size, domain->agaw));
  641         KASSERT(base + size > base,
  642             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  643             (uintmax_t)size));
  644         KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  645 
  646         pg_sz = 0; /* silence gcc */
  647         flags |= IOMMU_PGF_OBJL;
  648         TD_PREP_PINNED_ASSERT;
  649 
  650         for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
  651                 for (lvl = 0; lvl < domain->pglvl; lvl++) {
  652                         if (lvl != domain->pglvl - 1 &&
  653                             !domain_is_sp_lvl(domain, lvl))
  654                                 continue;
  655                         pg_sz = domain_page_size(domain, lvl);
  656                         if (pg_sz > size)
  657                                 continue;
  658                         pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
  659                             &idx, &sf);
  660                         KASSERT(pte != NULL,
  661                             ("sleeping or page missed %p %jx %d 0x%x",
  662                             domain, (uintmax_t)base, lvl, flags));
  663                         if ((pte->pte & DMAR_PTE_SP) != 0 ||
  664                             lvl == domain->pglvl - 1) {
  665                                 domain_unmap_clear_pte(domain, base, lvl,
  666                                     flags, pte, &sf, false);
  667                                 break;
  668                         }
  669                 }
  670                 KASSERT(size >= pg_sz,
  671                     ("unmapping loop overflow %p %jx %jx %jx", domain,
  672                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  673         }
  674         if (sf != NULL)
  675                 dmar_unmap_pgtbl(sf);
  676         /*
  677          * See 11.1 Write Buffer Flushing for an explanation why RWBF
  678          * can be ignored there.
  679          */
  680 
  681         TD_PINNED_ASSERT;
  682         return (0);
  683 }
  684 
  685 static int
  686 domain_unmap_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
  687     iommu_gaddr_t size, int flags)
  688 {
  689         struct dmar_domain *domain;
  690         int error;
  691 
  692         domain = IODOM2DOM(iodom);
  693 
  694         DMAR_DOMAIN_PGLOCK(domain);
  695         error = domain_unmap_buf_locked(domain, base, size, flags);
  696         DMAR_DOMAIN_PGUNLOCK(domain);
  697         return (error);
  698 }
  699 
  700 int
  701 domain_alloc_pgtbl(struct dmar_domain *domain)
  702 {
  703         vm_page_t m;
  704 
  705         KASSERT(domain->pgtbl_obj == NULL,
  706             ("already initialized %p", domain));
  707 
  708         domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  709             IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
  710         DMAR_DOMAIN_PGLOCK(domain);
  711         m = dmar_pgalloc(domain->pgtbl_obj, 0, IOMMU_PGF_WAITOK |
  712             IOMMU_PGF_ZERO | IOMMU_PGF_OBJL);
  713         /* No implicit free of the top level page table page. */
  714         m->ref_count = 1;
  715         DMAR_DOMAIN_PGUNLOCK(domain);
  716         DMAR_LOCK(domain->dmar);
  717         domain->iodom.flags |= IOMMU_DOMAIN_PGTBL_INITED;
  718         DMAR_UNLOCK(domain->dmar);
  719         return (0);
  720 }
  721 
  722 void
  723 domain_free_pgtbl(struct dmar_domain *domain)
  724 {
  725         vm_object_t obj;
  726         vm_page_t m;
  727 
  728         obj = domain->pgtbl_obj;
  729         if (obj == NULL) {
  730                 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
  731                     (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0,
  732                     ("lost pagetable object domain %p", domain));
  733                 return;
  734         }
  735         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  736         domain->pgtbl_obj = NULL;
  737 
  738         if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0) {
  739                 put_idmap_pgtbl(obj);
  740                 domain->iodom.flags &= ~IOMMU_DOMAIN_IDMAP;
  741                 return;
  742         }
  743 
  744         /* Obliterate ref_counts */
  745         VM_OBJECT_ASSERT_WLOCKED(obj);
  746         for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
  747                 m->ref_count = 0;
  748         VM_OBJECT_WUNLOCK(obj);
  749         vm_object_deallocate(obj);
  750 }
  751 
  752 static inline uint64_t
  753 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
  754 {
  755         uint64_t iotlbr;
  756 
  757         dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  758             DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
  759         for (;;) {
  760                 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
  761                 if ((iotlbr & DMAR_IOTLB_IVT) == 0)
  762                         break;
  763                 cpu_spinwait();
  764         }
  765         return (iotlbr);
  766 }
  767 
  768 void
  769 domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
  770     iommu_gaddr_t size)
  771 {
  772         struct dmar_unit *unit;
  773         iommu_gaddr_t isize;
  774         uint64_t iotlbr;
  775         int am, iro;
  776 
  777         unit = domain->dmar;
  778         KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
  779             unit->iommu.unit));
  780         iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
  781         DMAR_LOCK(unit);
  782         if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
  783                 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
  784                     DMAR_IOTLB_DID(domain->domain), iro);
  785                 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  786                     DMAR_IOTLB_IAIG_INVLD,
  787                     ("dmar%d: invalidation failed %jx", unit->iommu.unit,
  788                     (uintmax_t)iotlbr));
  789         } else {
  790                 for (; size > 0; base += isize, size -= isize) {
  791                         am = calc_am(unit, base, size, &isize);
  792                         dmar_write8(unit, iro, base | am);
  793                         iotlbr = domain_wait_iotlb_flush(unit,
  794                             DMAR_IOTLB_IIRG_PAGE |
  795                             DMAR_IOTLB_DID(domain->domain), iro);
  796                         KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  797                             DMAR_IOTLB_IAIG_INVLD,
  798                             ("dmar%d: PSI invalidation failed "
  799                             "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
  800                             unit->iommu.unit, (uintmax_t)iotlbr,
  801                             (uintmax_t)base, (uintmax_t)size, am));
  802                         /*
  803                          * Any non-page granularity covers whole guest
  804                          * address space for the domain.
  805                          */
  806                         if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  807                             DMAR_IOTLB_IAIG_PAGE)
  808                                 break;
  809                 }
  810         }
  811         DMAR_UNLOCK(unit);
  812 }
  813 
  814 const struct iommu_domain_map_ops dmar_domain_map_ops = {
  815         .map = domain_map_buf,
  816         .unmap = domain_unmap_buf,
  817 };

Cache object: 83b70ee59162d8988b8222d6f6d817fe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.