The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_idpgtbl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/11.1/sys/x86/iommu/intel_idpgtbl.c 286777 2015-08-14 13:51:59Z kib $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/malloc.h>
   36 #include <sys/bus.h>
   37 #include <sys/interrupt.h>
   38 #include <sys/kernel.h>
   39 #include <sys/ktr.h>
   40 #include <sys/lock.h>
   41 #include <sys/memdesc.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 #include <sys/rwlock.h>
   45 #include <sys/rman.h>
   46 #include <sys/sf_buf.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/taskqueue.h>
   49 #include <sys/tree.h>
   50 #include <sys/uio.h>
   51 #include <sys/vmem.h>
   52 #include <vm/vm.h>
   53 #include <vm/vm_extern.h>
   54 #include <vm/vm_kern.h>
   55 #include <vm/vm_object.h>
   56 #include <vm/vm_page.h>
   57 #include <vm/vm_pager.h>
   58 #include <vm/vm_map.h>
   59 #include <machine/atomic.h>
   60 #include <machine/bus.h>
   61 #include <machine/cpu.h>
   62 #include <machine/md_var.h>
   63 #include <machine/specialreg.h>
   64 #include <x86/include/busdma_impl.h>
   65 #include <x86/iommu/intel_reg.h>
   66 #include <x86/iommu/busdma_dmar.h>
   67 #include <x86/iommu/intel_dmar.h>
   68 
   69 static int domain_unmap_buf_locked(struct dmar_domain *domain,
   70     dmar_gaddr_t base, dmar_gaddr_t size, int flags);
   71 
   72 /*
   73  * The cache of the identity mapping page tables for the DMARs.  Using
   74  * the cache saves significant amount of memory for page tables by
   75  * reusing the page tables, since usually DMARs are identical and have
   76  * the same capabilities.  Still, cache records the information needed
   77  * to match DMAR capabilities and page table format, to correctly
   78  * handle different DMARs.
   79  */
   80 
   81 struct idpgtbl {
   82         dmar_gaddr_t maxaddr;   /* Page table covers the guest address
   83                                    range [0..maxaddr) */
   84         int pglvl;              /* Total page table levels ignoring
   85                                    superpages */
   86         int leaf;               /* The last materialized page table
   87                                    level, it is non-zero if superpages
   88                                    are supported */
   89         vm_object_t pgtbl_obj;  /* The page table pages */
   90         LIST_ENTRY(idpgtbl) link;
   91 };
   92 
   93 static struct sx idpgtbl_lock;
   94 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
   95 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
   96 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
   97     "Intel DMAR Identity mappings cache elements");
   98 
   99 /*
  100  * Build the next level of the page tables for the identity mapping.
  101  * - lvl is the level to build;
  102  * - idx is the index of the page table page in the pgtbl_obj, which is
  103  *   being allocated filled now;
  104  * - addr is the starting address in the bus address space which is
  105  *   mapped by the page table page.
  106  */
  107 static void
  108 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
  109     dmar_gaddr_t addr)
  110 {
  111         vm_page_t m1;
  112         dmar_pte_t *pte;
  113         struct sf_buf *sf;
  114         dmar_gaddr_t f, pg_sz;
  115         vm_pindex_t base;
  116         int i;
  117 
  118         VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
  119         if (addr >= tbl->maxaddr)
  120                 return;
  121         (void)dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
  122             DMAR_PGF_ZERO);
  123         base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
  124         pg_sz = pglvl_page_size(tbl->pglvl, lvl);
  125         if (lvl != tbl->leaf) {
  126                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
  127                         domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
  128         }
  129         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  130         pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
  131         if (lvl == tbl->leaf) {
  132                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  133                         if (f >= tbl->maxaddr)
  134                                 break;
  135                         pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
  136                             DMAR_PTE_R | DMAR_PTE_W;
  137                 }
  138         } else {
  139                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  140                         if (f >= tbl->maxaddr)
  141                                 break;
  142                         m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
  143                             DMAR_PGF_NOALLOC);
  144                         KASSERT(m1 != NULL, ("lost page table page"));
  145                         pte[i].pte = (DMAR_PTE_ADDR_MASK &
  146                             VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
  147                 }
  148         }
  149         /* domain_get_idmap_pgtbl flushes CPU cache if needed. */
  150         dmar_unmap_pgtbl(sf);
  151         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  152 }
  153 
  154 /*
  155  * Find a ready and compatible identity-mapping page table in the
  156  * cache. If not found, populate the identity-mapping page table for
  157  * the context, up to the maxaddr. The maxaddr byte is allowed to be
  158  * not mapped, which is aligned with the definition of Maxmem as the
  159  * highest usable physical address + 1.  If superpages are used, the
  160  * maxaddr is typically mapped.
  161  */
  162 vm_object_t
  163 domain_get_idmap_pgtbl(struct dmar_domain *domain, dmar_gaddr_t maxaddr)
  164 {
  165         struct dmar_unit *unit;
  166         struct idpgtbl *tbl;
  167         vm_object_t res;
  168         vm_page_t m;
  169         int leaf, i;
  170 
  171         leaf = 0; /* silence gcc */
  172 
  173         /*
  174          * First, determine where to stop the paging structures.
  175          */
  176         for (i = 0; i < domain->pglvl; i++) {
  177                 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
  178                         leaf = i;
  179                         break;
  180                 }
  181         }
  182 
  183         /*
  184          * Search the cache for a compatible page table.  Qualified
  185          * page table must map up to maxaddr, its level must be
  186          * supported by the DMAR and leaf should be equal to the
  187          * calculated value.  The later restriction could be lifted
  188          * but I believe it is currently impossible to have any
  189          * deviations for existing hardware.
  190          */
  191         sx_slock(&idpgtbl_lock);
  192         LIST_FOREACH(tbl, &idpgtbls, link) {
  193                 if (tbl->maxaddr >= maxaddr &&
  194                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  195                     tbl->leaf == leaf) {
  196                         res = tbl->pgtbl_obj;
  197                         vm_object_reference(res);
  198                         sx_sunlock(&idpgtbl_lock);
  199                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  200                         goto end;
  201                 }
  202         }
  203 
  204         /*
  205          * Not found in cache, relock the cache into exclusive mode to
  206          * be able to add element, and recheck cache again after the
  207          * relock.
  208          */
  209         sx_sunlock(&idpgtbl_lock);
  210         sx_xlock(&idpgtbl_lock);
  211         LIST_FOREACH(tbl, &idpgtbls, link) {
  212                 if (tbl->maxaddr >= maxaddr &&
  213                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  214                     tbl->leaf == leaf) {
  215                         res = tbl->pgtbl_obj;
  216                         vm_object_reference(res);
  217                         sx_xunlock(&idpgtbl_lock);
  218                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  219                         return (res);
  220                 }
  221         }
  222 
  223         /*
  224          * Still not found, create new page table.
  225          */
  226         tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
  227         tbl->pglvl = domain->pglvl;
  228         tbl->leaf = leaf;
  229         tbl->maxaddr = maxaddr;
  230         tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  231             IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
  232         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  233         domain_idmap_nextlvl(tbl, 0, 0, 0);
  234         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  235         LIST_INSERT_HEAD(&idpgtbls, tbl, link);
  236         res = tbl->pgtbl_obj;
  237         vm_object_reference(res);
  238         sx_xunlock(&idpgtbl_lock);
  239 
  240 end:
  241         /*
  242          * Table was found or created.
  243          *
  244          * If DMAR does not snoop paging structures accesses, flush
  245          * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
  246          * argument was possibly invalid at the time of the identity
  247          * page table creation, since DMAR which was passed at the
  248          * time of creation could be coherent, while current DMAR is
  249          * not.
  250          *
  251          * If DMAR cannot look into the chipset write buffer, flush it
  252          * as well.
  253          */
  254         unit = domain->dmar;
  255         if (!DMAR_IS_COHERENT(unit)) {
  256                 VM_OBJECT_WLOCK(res);
  257                 for (m = vm_page_lookup(res, 0); m != NULL;
  258                      m = vm_page_next(m))
  259                         pmap_invalidate_cache_pages(&m, 1);
  260                 VM_OBJECT_WUNLOCK(res);
  261         }
  262         if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  263                 DMAR_LOCK(unit);
  264                 dmar_flush_write_bufs(unit);
  265                 DMAR_UNLOCK(unit);
  266         }
  267         
  268         return (res);
  269 }
  270 
  271 /*
  272  * Return a reference to the identity mapping page table to the cache.
  273  */
  274 void
  275 put_idmap_pgtbl(vm_object_t obj)
  276 {
  277         struct idpgtbl *tbl, *tbl1;
  278         vm_object_t rmobj;
  279 
  280         sx_slock(&idpgtbl_lock);
  281         KASSERT(obj->ref_count >= 2, ("lost cache reference"));
  282         vm_object_deallocate(obj);
  283 
  284         /*
  285          * Cache always owns one last reference on the page table object.
  286          * If there is an additional reference, object must stay.
  287          */
  288         if (obj->ref_count > 1) {
  289                 sx_sunlock(&idpgtbl_lock);
  290                 return;
  291         }
  292 
  293         /*
  294          * Cache reference is the last, remove cache element and free
  295          * page table object, returning the page table pages to the
  296          * system.
  297          */
  298         sx_sunlock(&idpgtbl_lock);
  299         sx_xlock(&idpgtbl_lock);
  300         LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
  301                 rmobj = tbl->pgtbl_obj;
  302                 if (rmobj->ref_count == 1) {
  303                         LIST_REMOVE(tbl, link);
  304                         atomic_subtract_int(&dmar_tbl_pagecnt,
  305                             rmobj->resident_page_count);
  306                         vm_object_deallocate(rmobj);
  307                         free(tbl, M_DMAR_IDPGTBL);
  308                 }
  309         }
  310         sx_xunlock(&idpgtbl_lock);
  311 }
  312 
  313 /*
  314  * The core routines to map and unmap host pages at the given guest
  315  * address.  Support superpages.
  316  */
  317 
  318 /*
  319  * Index of the pte for the guest address base in the page table at
  320  * the level lvl.
  321  */
  322 static int
  323 domain_pgtbl_pte_off(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
  324 {
  325 
  326         base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
  327             DMAR_NPTEPGSHIFT;
  328         return (base & DMAR_PTEMASK);
  329 }
  330 
  331 /*
  332  * Returns the page index of the page table page in the page table
  333  * object, which maps the given address base at the page table level
  334  * lvl.
  335  */
  336 static vm_pindex_t
  337 domain_pgtbl_get_pindex(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
  338 {
  339         vm_pindex_t idx, pidx;
  340         int i;
  341 
  342         KASSERT(lvl >= 0 && lvl < domain->pglvl,
  343             ("wrong lvl %p %d", domain, lvl));
  344 
  345         for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
  346                 idx = domain_pgtbl_pte_off(domain, base, i) +
  347                     pidx * DMAR_NPTEPG + 1;
  348         }
  349         return (idx);
  350 }
  351 
  352 static dmar_pte_t *
  353 domain_pgtbl_map_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
  354     int flags, vm_pindex_t *idxp, struct sf_buf **sf)
  355 {
  356         vm_page_t m;
  357         struct sf_buf *sfp;
  358         dmar_pte_t *pte, *ptep;
  359         vm_pindex_t idx, idx1;
  360 
  361         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  362         KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
  363 
  364         idx = domain_pgtbl_get_pindex(domain, base, lvl);
  365         if (*sf != NULL && idx == *idxp) {
  366                 pte = (dmar_pte_t *)sf_buf_kva(*sf);
  367         } else {
  368                 if (*sf != NULL)
  369                         dmar_unmap_pgtbl(*sf);
  370                 *idxp = idx;
  371 retry:
  372                 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
  373                 if (pte == NULL) {
  374                         KASSERT(lvl > 0,
  375                             ("lost root page table page %p", domain));
  376                         /*
  377                          * Page table page does not exist, allocate
  378                          * it and create a pte in the preceeding page level
  379                          * to reference the allocated page table page.
  380                          */
  381                         m = dmar_pgalloc(domain->pgtbl_obj, idx, flags |
  382                             DMAR_PGF_ZERO);
  383                         if (m == NULL)
  384                                 return (NULL);
  385 
  386                         /*
  387                          * Prevent potential free while pgtbl_obj is
  388                          * unlocked in the recursive call to
  389                          * domain_pgtbl_map_pte(), if other thread did
  390                          * pte write and clean while the lock is
  391                          * dropped.
  392                          */
  393                         m->wire_count++;
  394 
  395                         sfp = NULL;
  396                         ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
  397                             flags, &idx1, &sfp);
  398                         if (ptep == NULL) {
  399                                 KASSERT(m->pindex != 0,
  400                                     ("loosing root page %p", domain));
  401                                 m->wire_count--;
  402                                 dmar_pgfree(domain->pgtbl_obj, m->pindex,
  403                                     flags);
  404                                 return (NULL);
  405                         }
  406                         dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
  407                             VM_PAGE_TO_PHYS(m));
  408                         dmar_flush_pte_to_ram(domain->dmar, ptep);
  409                         sf_buf_page(sfp)->wire_count += 1;
  410                         m->wire_count--;
  411                         dmar_unmap_pgtbl(sfp);
  412                         /* Only executed once. */
  413                         goto retry;
  414                 }
  415         }
  416         pte += domain_pgtbl_pte_off(domain, base, lvl);
  417         return (pte);
  418 }
  419 
  420 static int
  421 domain_map_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
  422     dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
  423 {
  424         dmar_pte_t *pte;
  425         struct sf_buf *sf;
  426         dmar_gaddr_t pg_sz, base1, size1;
  427         vm_pindex_t pi, c, idx, run_sz;
  428         int lvl;
  429         bool superpage;
  430 
  431         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  432 
  433         base1 = base;
  434         size1 = size;
  435         flags |= DMAR_PGF_OBJL;
  436         TD_PREP_PINNED_ASSERT;
  437 
  438         for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
  439             pi += run_sz) {
  440                 for (lvl = 0, c = 0, superpage = false;; lvl++) {
  441                         pg_sz = domain_page_size(domain, lvl);
  442                         run_sz = pg_sz >> DMAR_PAGE_SHIFT;
  443                         if (lvl == domain->pglvl - 1)
  444                                 break;
  445                         /*
  446                          * Check if the current base suitable for the
  447                          * superpage mapping.  First, verify the level.
  448                          */
  449                         if (!domain_is_sp_lvl(domain, lvl))
  450                                 continue;
  451                         /*
  452                          * Next, look at the size of the mapping and
  453                          * alignment of both guest and host addresses.
  454                          */
  455                         if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
  456                             (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
  457                                 continue;
  458                         /* All passed, check host pages contiguouty. */
  459                         if (c == 0) {
  460                                 for (c = 1; c < run_sz; c++) {
  461                                         if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
  462                                             VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
  463                                             PAGE_SIZE)
  464                                                 break;
  465                                 }
  466                         }
  467                         if (c >= run_sz) {
  468                                 superpage = true;
  469                                 break;
  470                         }
  471                 }
  472                 KASSERT(size >= pg_sz,
  473                     ("mapping loop overflow %p %jx %jx %jx", domain,
  474                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  475                 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
  476                 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  477                 if (pte == NULL) {
  478                         KASSERT((flags & DMAR_PGF_WAITOK) == 0,
  479                             ("failed waitable pte alloc %p", domain));
  480                         if (sf != NULL)
  481                                 dmar_unmap_pgtbl(sf);
  482                         domain_unmap_buf_locked(domain, base1, base - base1,
  483                             flags);
  484                         TD_PINNED_ASSERT;
  485                         return (ENOMEM);
  486                 }
  487                 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
  488                     (superpage ? DMAR_PTE_SP : 0));
  489                 dmar_flush_pte_to_ram(domain->dmar, pte);
  490                 sf_buf_page(sf)->wire_count += 1;
  491         }
  492         if (sf != NULL)
  493                 dmar_unmap_pgtbl(sf);
  494         TD_PINNED_ASSERT;
  495         return (0);
  496 }
  497 
  498 int
  499 domain_map_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size,
  500     vm_page_t *ma, uint64_t pflags, int flags)
  501 {
  502         struct dmar_unit *unit;
  503         int error;
  504 
  505         unit = domain->dmar;
  506 
  507         KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
  508             ("modifying idmap pagetable domain %p", domain));
  509         KASSERT((base & DMAR_PAGE_MASK) == 0,
  510             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  511             (uintmax_t)size));
  512         KASSERT((size & DMAR_PAGE_MASK) == 0,
  513             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  514             (uintmax_t)size));
  515         KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
  516             (uintmax_t)size));
  517         KASSERT(base < (1ULL << domain->agaw),
  518             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  519             (uintmax_t)size, domain->agaw));
  520         KASSERT(base + size < (1ULL << domain->agaw),
  521             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  522             (uintmax_t)size, domain->agaw));
  523         KASSERT(base + size > base,
  524             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  525             (uintmax_t)size));
  526         KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
  527             ("neither read nor write %jx", (uintmax_t)pflags));
  528         KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
  529             DMAR_PTE_TM)) == 0,
  530             ("invalid pte flags %jx", (uintmax_t)pflags));
  531         KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
  532             (unit->hw_ecap & DMAR_ECAP_SC) != 0,
  533             ("PTE_SNP for dmar without snoop control %p %jx",
  534             domain, (uintmax_t)pflags));
  535         KASSERT((pflags & DMAR_PTE_TM) == 0 ||
  536             (unit->hw_ecap & DMAR_ECAP_DI) != 0,
  537             ("PTE_TM for dmar without DIOTLB %p %jx",
  538             domain, (uintmax_t)pflags));
  539         KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  540 
  541         DMAR_DOMAIN_PGLOCK(domain);
  542         error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
  543         DMAR_DOMAIN_PGUNLOCK(domain);
  544         if (error != 0)
  545                 return (error);
  546 
  547         if ((unit->hw_cap & DMAR_CAP_CM) != 0)
  548                 domain_flush_iotlb_sync(domain, base, size);
  549         else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  550                 /* See 11.1 Write Buffer Flushing. */
  551                 DMAR_LOCK(unit);
  552                 dmar_flush_write_bufs(unit);
  553                 DMAR_UNLOCK(unit);
  554         }
  555         return (0);
  556 }
  557 
  558 static void domain_unmap_clear_pte(struct dmar_domain *domain,
  559     dmar_gaddr_t base, int lvl, int flags, dmar_pte_t *pte,
  560     struct sf_buf **sf, bool free_fs);
  561 
  562 static void
  563 domain_free_pgtbl_pde(struct dmar_domain *domain, dmar_gaddr_t base,
  564     int lvl, int flags)
  565 {
  566         struct sf_buf *sf;
  567         dmar_pte_t *pde;
  568         vm_pindex_t idx;
  569 
  570         sf = NULL;
  571         pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  572         domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
  573 }
  574 
  575 static void
  576 domain_unmap_clear_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
  577     int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
  578 {
  579         vm_page_t m;
  580 
  581         dmar_pte_clear(&pte->pte);
  582         dmar_flush_pte_to_ram(domain->dmar, pte);
  583         m = sf_buf_page(*sf);
  584         if (free_sf) {
  585                 dmar_unmap_pgtbl(*sf);
  586                 *sf = NULL;
  587         }
  588         m->wire_count--;
  589         if (m->wire_count != 0)
  590                 return;
  591         KASSERT(lvl != 0,
  592             ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
  593             domain, (uintmax_t)base, lvl));
  594         KASSERT(m->pindex != 0,
  595             ("lost reference (idx) on root pg domain %p base %jx lvl %d",
  596             domain, (uintmax_t)base, lvl));
  597         dmar_pgfree(domain->pgtbl_obj, m->pindex, flags);
  598         domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
  599 }
  600 
  601 /*
  602  * Assumes that the unmap is never partial.
  603  */
  604 static int
  605 domain_unmap_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
  606     dmar_gaddr_t size, int flags)
  607 {
  608         dmar_pte_t *pte;
  609         struct sf_buf *sf;
  610         vm_pindex_t idx;
  611         dmar_gaddr_t pg_sz;
  612         int lvl;
  613 
  614         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  615         if (size == 0)
  616                 return (0);
  617 
  618         KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
  619             ("modifying idmap pagetable domain %p", domain));
  620         KASSERT((base & DMAR_PAGE_MASK) == 0,
  621             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  622             (uintmax_t)size));
  623         KASSERT((size & DMAR_PAGE_MASK) == 0,
  624             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  625             (uintmax_t)size));
  626         KASSERT(base < (1ULL << domain->agaw),
  627             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  628             (uintmax_t)size, domain->agaw));
  629         KASSERT(base + size < (1ULL << domain->agaw),
  630             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  631             (uintmax_t)size, domain->agaw));
  632         KASSERT(base + size > base,
  633             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  634             (uintmax_t)size));
  635         KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  636 
  637         pg_sz = 0; /* silence gcc */
  638         flags |= DMAR_PGF_OBJL;
  639         TD_PREP_PINNED_ASSERT;
  640 
  641         for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
  642                 for (lvl = 0; lvl < domain->pglvl; lvl++) {
  643                         if (lvl != domain->pglvl - 1 &&
  644                             !domain_is_sp_lvl(domain, lvl))
  645                                 continue;
  646                         pg_sz = domain_page_size(domain, lvl);
  647                         if (pg_sz > size)
  648                                 continue;
  649                         pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
  650                             &idx, &sf);
  651                         KASSERT(pte != NULL,
  652                             ("sleeping or page missed %p %jx %d 0x%x",
  653                             domain, (uintmax_t)base, lvl, flags));
  654                         if ((pte->pte & DMAR_PTE_SP) != 0 ||
  655                             lvl == domain->pglvl - 1) {
  656                                 domain_unmap_clear_pte(domain, base, lvl,
  657                                     flags, pte, &sf, false);
  658                                 break;
  659                         }
  660                 }
  661                 KASSERT(size >= pg_sz,
  662                     ("unmapping loop overflow %p %jx %jx %jx", domain,
  663                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  664         }
  665         if (sf != NULL)
  666                 dmar_unmap_pgtbl(sf);
  667         /*
  668          * See 11.1 Write Buffer Flushing for an explanation why RWBF
  669          * can be ignored there.
  670          */
  671 
  672         TD_PINNED_ASSERT;
  673         return (0);
  674 }
  675 
  676 int
  677 domain_unmap_buf(struct dmar_domain *domain, dmar_gaddr_t base,
  678     dmar_gaddr_t size, int flags)
  679 {
  680         int error;
  681 
  682         DMAR_DOMAIN_PGLOCK(domain);
  683         error = domain_unmap_buf_locked(domain, base, size, flags);
  684         DMAR_DOMAIN_PGUNLOCK(domain);
  685         return (error);
  686 }
  687 
  688 int
  689 domain_alloc_pgtbl(struct dmar_domain *domain)
  690 {
  691         vm_page_t m;
  692 
  693         KASSERT(domain->pgtbl_obj == NULL,
  694             ("already initialized %p", domain));
  695 
  696         domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  697             IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
  698         DMAR_DOMAIN_PGLOCK(domain);
  699         m = dmar_pgalloc(domain->pgtbl_obj, 0, DMAR_PGF_WAITOK |
  700             DMAR_PGF_ZERO | DMAR_PGF_OBJL);
  701         /* No implicit free of the top level page table page. */
  702         m->wire_count = 1;
  703         DMAR_DOMAIN_PGUNLOCK(domain);
  704         DMAR_LOCK(domain->dmar);
  705         domain->flags |= DMAR_DOMAIN_PGTBL_INITED;
  706         DMAR_UNLOCK(domain->dmar);
  707         return (0);
  708 }
  709 
  710 void
  711 domain_free_pgtbl(struct dmar_domain *domain)
  712 {
  713         vm_object_t obj;
  714         vm_page_t m;
  715 
  716         obj = domain->pgtbl_obj;
  717         if (obj == NULL) {
  718                 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
  719                     (domain->flags & DMAR_DOMAIN_IDMAP) != 0,
  720                     ("lost pagetable object domain %p", domain));
  721                 return;
  722         }
  723         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  724         domain->pgtbl_obj = NULL;
  725 
  726         if ((domain->flags & DMAR_DOMAIN_IDMAP) != 0) {
  727                 put_idmap_pgtbl(obj);
  728                 domain->flags &= ~DMAR_DOMAIN_IDMAP;
  729                 return;
  730         }
  731 
  732         /* Obliterate wire_counts */
  733         VM_OBJECT_ASSERT_WLOCKED(obj);
  734         for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
  735                 m->wire_count = 0;
  736         VM_OBJECT_WUNLOCK(obj);
  737         vm_object_deallocate(obj);
  738 }
  739 
  740 static inline uint64_t
  741 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
  742 {
  743         uint64_t iotlbr;
  744 
  745         dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  746             DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
  747         for (;;) {
  748                 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
  749                 if ((iotlbr & DMAR_IOTLB_IVT) == 0)
  750                         break;
  751                 cpu_spinwait();
  752         }
  753         return (iotlbr);
  754 }
  755 
  756 void
  757 domain_flush_iotlb_sync(struct dmar_domain *domain, dmar_gaddr_t base,
  758     dmar_gaddr_t size)
  759 {
  760         struct dmar_unit *unit;
  761         dmar_gaddr_t isize;
  762         uint64_t iotlbr;
  763         int am, iro;
  764 
  765         unit = domain->dmar;
  766         KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
  767             unit->unit));
  768         iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
  769         DMAR_LOCK(unit);
  770         if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
  771                 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
  772                     DMAR_IOTLB_DID(domain->domain), iro);
  773                 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  774                     DMAR_IOTLB_IAIG_INVLD,
  775                     ("dmar%d: invalidation failed %jx", unit->unit,
  776                     (uintmax_t)iotlbr));
  777         } else {
  778                 for (; size > 0; base += isize, size -= isize) {
  779                         am = calc_am(unit, base, size, &isize);
  780                         dmar_write8(unit, iro, base | am);
  781                         iotlbr = domain_wait_iotlb_flush(unit,
  782                             DMAR_IOTLB_IIRG_PAGE |
  783                             DMAR_IOTLB_DID(domain->domain), iro);
  784                         KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  785                             DMAR_IOTLB_IAIG_INVLD,
  786                             ("dmar%d: PSI invalidation failed "
  787                             "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
  788                             unit->unit, (uintmax_t)iotlbr,
  789                             (uintmax_t)base, (uintmax_t)size, am));
  790                         /*
  791                          * Any non-page granularity covers whole guest
  792                          * address space for the domain.
  793                          */
  794                         if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  795                             DMAR_IOTLB_IAIG_PAGE)
  796                                 break;
  797                 }
  798         }
  799         DMAR_UNLOCK(unit);
  800 }

Cache object: 8b41ee796269bd00efa419a0443adf50


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.