1 /*-
2 * Copyright (c) 2013 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/memdesc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/rman.h>
46 #include <sys/sf_buf.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 #include <sys/tree.h>
50 #include <sys/uio.h>
51 #include <sys/vmem.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vm_map.h>
59 #include <machine/atomic.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/md_var.h>
63 #include <machine/specialreg.h>
64 #include <x86/include/busdma_impl.h>
65 #include <x86/iommu/intel_reg.h>
66 #include <x86/iommu/busdma_dmar.h>
67 #include <x86/iommu/intel_dmar.h>
68
69 static int domain_unmap_buf_locked(struct dmar_domain *domain,
70 dmar_gaddr_t base, dmar_gaddr_t size, int flags);
71
72 /*
73 * The cache of the identity mapping page tables for the DMARs. Using
74 * the cache saves significant amount of memory for page tables by
75 * reusing the page tables, since usually DMARs are identical and have
76 * the same capabilities. Still, cache records the information needed
77 * to match DMAR capabilities and page table format, to correctly
78 * handle different DMARs.
79 */
80
81 struct idpgtbl {
82 dmar_gaddr_t maxaddr; /* Page table covers the guest address
83 range [0..maxaddr) */
84 int pglvl; /* Total page table levels ignoring
85 superpages */
86 int leaf; /* The last materialized page table
87 level, it is non-zero if superpages
88 are supported */
89 vm_object_t pgtbl_obj; /* The page table pages */
90 LIST_ENTRY(idpgtbl) link;
91 };
92
93 static struct sx idpgtbl_lock;
94 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
95 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
96 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
97 "Intel DMAR Identity mappings cache elements");
98
99 /*
100 * Build the next level of the page tables for the identity mapping.
101 * - lvl is the level to build;
102 * - idx is the index of the page table page in the pgtbl_obj, which is
103 * being allocated filled now;
104 * - addr is the starting address in the bus address space which is
105 * mapped by the page table page.
106 */
107 static void
108 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
109 dmar_gaddr_t addr)
110 {
111 vm_page_t m1;
112 dmar_pte_t *pte;
113 struct sf_buf *sf;
114 dmar_gaddr_t f, pg_sz;
115 vm_pindex_t base;
116 int i;
117
118 VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
119 if (addr >= tbl->maxaddr)
120 return;
121 (void)dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
122 DMAR_PGF_ZERO);
123 base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
124 pg_sz = pglvl_page_size(tbl->pglvl, lvl);
125 if (lvl != tbl->leaf) {
126 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
127 domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
128 }
129 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
130 pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
131 if (lvl == tbl->leaf) {
132 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
133 if (f >= tbl->maxaddr)
134 break;
135 pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
136 DMAR_PTE_R | DMAR_PTE_W;
137 }
138 } else {
139 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
140 if (f >= tbl->maxaddr)
141 break;
142 m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
143 DMAR_PGF_NOALLOC);
144 KASSERT(m1 != NULL, ("lost page table page"));
145 pte[i].pte = (DMAR_PTE_ADDR_MASK &
146 VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
147 }
148 }
149 /* domain_get_idmap_pgtbl flushes CPU cache if needed. */
150 dmar_unmap_pgtbl(sf);
151 VM_OBJECT_WLOCK(tbl->pgtbl_obj);
152 }
153
154 /*
155 * Find a ready and compatible identity-mapping page table in the
156 * cache. If not found, populate the identity-mapping page table for
157 * the context, up to the maxaddr. The maxaddr byte is allowed to be
158 * not mapped, which is aligned with the definition of Maxmem as the
159 * highest usable physical address + 1. If superpages are used, the
160 * maxaddr is typically mapped.
161 */
162 vm_object_t
163 domain_get_idmap_pgtbl(struct dmar_domain *domain, dmar_gaddr_t maxaddr)
164 {
165 struct dmar_unit *unit;
166 struct idpgtbl *tbl;
167 vm_object_t res;
168 vm_page_t m;
169 int leaf, i;
170
171 leaf = 0; /* silence gcc */
172
173 /*
174 * First, determine where to stop the paging structures.
175 */
176 for (i = 0; i < domain->pglvl; i++) {
177 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
178 leaf = i;
179 break;
180 }
181 }
182
183 /*
184 * Search the cache for a compatible page table. Qualified
185 * page table must map up to maxaddr, its level must be
186 * supported by the DMAR and leaf should be equal to the
187 * calculated value. The later restriction could be lifted
188 * but I believe it is currently impossible to have any
189 * deviations for existing hardware.
190 */
191 sx_slock(&idpgtbl_lock);
192 LIST_FOREACH(tbl, &idpgtbls, link) {
193 if (tbl->maxaddr >= maxaddr &&
194 dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
195 tbl->leaf == leaf) {
196 res = tbl->pgtbl_obj;
197 vm_object_reference(res);
198 sx_sunlock(&idpgtbl_lock);
199 domain->pglvl = tbl->pglvl; /* XXXKIB ? */
200 goto end;
201 }
202 }
203
204 /*
205 * Not found in cache, relock the cache into exclusive mode to
206 * be able to add element, and recheck cache again after the
207 * relock.
208 */
209 sx_sunlock(&idpgtbl_lock);
210 sx_xlock(&idpgtbl_lock);
211 LIST_FOREACH(tbl, &idpgtbls, link) {
212 if (tbl->maxaddr >= maxaddr &&
213 dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
214 tbl->leaf == leaf) {
215 res = tbl->pgtbl_obj;
216 vm_object_reference(res);
217 sx_xunlock(&idpgtbl_lock);
218 domain->pglvl = tbl->pglvl; /* XXXKIB ? */
219 return (res);
220 }
221 }
222
223 /*
224 * Still not found, create new page table.
225 */
226 tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
227 tbl->pglvl = domain->pglvl;
228 tbl->leaf = leaf;
229 tbl->maxaddr = maxaddr;
230 tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
231 IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
232 VM_OBJECT_WLOCK(tbl->pgtbl_obj);
233 domain_idmap_nextlvl(tbl, 0, 0, 0);
234 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
235 LIST_INSERT_HEAD(&idpgtbls, tbl, link);
236 res = tbl->pgtbl_obj;
237 vm_object_reference(res);
238 sx_xunlock(&idpgtbl_lock);
239
240 end:
241 /*
242 * Table was found or created.
243 *
244 * If DMAR does not snoop paging structures accesses, flush
245 * CPU cache to memory. Note that dmar_unmap_pgtbl() coherent
246 * argument was possibly invalid at the time of the identity
247 * page table creation, since DMAR which was passed at the
248 * time of creation could be coherent, while current DMAR is
249 * not.
250 *
251 * If DMAR cannot look into the chipset write buffer, flush it
252 * as well.
253 */
254 unit = domain->dmar;
255 if (!DMAR_IS_COHERENT(unit)) {
256 VM_OBJECT_WLOCK(res);
257 for (m = vm_page_lookup(res, 0); m != NULL;
258 m = vm_page_next(m))
259 pmap_invalidate_cache_pages(&m, 1);
260 VM_OBJECT_WUNLOCK(res);
261 }
262 if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
263 DMAR_LOCK(unit);
264 dmar_flush_write_bufs(unit);
265 DMAR_UNLOCK(unit);
266 }
267
268 return (res);
269 }
270
271 /*
272 * Return a reference to the identity mapping page table to the cache.
273 */
274 void
275 put_idmap_pgtbl(vm_object_t obj)
276 {
277 struct idpgtbl *tbl, *tbl1;
278 vm_object_t rmobj;
279
280 sx_slock(&idpgtbl_lock);
281 KASSERT(obj->ref_count >= 2, ("lost cache reference"));
282 vm_object_deallocate(obj);
283
284 /*
285 * Cache always owns one last reference on the page table object.
286 * If there is an additional reference, object must stay.
287 */
288 if (obj->ref_count > 1) {
289 sx_sunlock(&idpgtbl_lock);
290 return;
291 }
292
293 /*
294 * Cache reference is the last, remove cache element and free
295 * page table object, returning the page table pages to the
296 * system.
297 */
298 sx_sunlock(&idpgtbl_lock);
299 sx_xlock(&idpgtbl_lock);
300 LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
301 rmobj = tbl->pgtbl_obj;
302 if (rmobj->ref_count == 1) {
303 LIST_REMOVE(tbl, link);
304 atomic_subtract_int(&dmar_tbl_pagecnt,
305 rmobj->resident_page_count);
306 vm_object_deallocate(rmobj);
307 free(tbl, M_DMAR_IDPGTBL);
308 }
309 }
310 sx_xunlock(&idpgtbl_lock);
311 }
312
313 /*
314 * The core routines to map and unmap host pages at the given guest
315 * address. Support superpages.
316 */
317
318 /*
319 * Index of the pte for the guest address base in the page table at
320 * the level lvl.
321 */
322 static int
323 domain_pgtbl_pte_off(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
324 {
325
326 base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
327 DMAR_NPTEPGSHIFT;
328 return (base & DMAR_PTEMASK);
329 }
330
331 /*
332 * Returns the page index of the page table page in the page table
333 * object, which maps the given address base at the page table level
334 * lvl.
335 */
336 static vm_pindex_t
337 domain_pgtbl_get_pindex(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
338 {
339 vm_pindex_t idx, pidx;
340 int i;
341
342 KASSERT(lvl >= 0 && lvl < domain->pglvl,
343 ("wrong lvl %p %d", domain, lvl));
344
345 for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
346 idx = domain_pgtbl_pte_off(domain, base, i) +
347 pidx * DMAR_NPTEPG + 1;
348 }
349 return (idx);
350 }
351
352 static dmar_pte_t *
353 domain_pgtbl_map_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
354 int flags, vm_pindex_t *idxp, struct sf_buf **sf)
355 {
356 vm_page_t m;
357 struct sf_buf *sfp;
358 dmar_pte_t *pte, *ptep;
359 vm_pindex_t idx, idx1;
360
361 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
362 KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
363
364 idx = domain_pgtbl_get_pindex(domain, base, lvl);
365 if (*sf != NULL && idx == *idxp) {
366 pte = (dmar_pte_t *)sf_buf_kva(*sf);
367 } else {
368 if (*sf != NULL)
369 dmar_unmap_pgtbl(*sf);
370 *idxp = idx;
371 retry:
372 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
373 if (pte == NULL) {
374 KASSERT(lvl > 0,
375 ("lost root page table page %p", domain));
376 /*
377 * Page table page does not exist, allocate
378 * it and create a pte in the preceeding page level
379 * to reference the allocated page table page.
380 */
381 m = dmar_pgalloc(domain->pgtbl_obj, idx, flags |
382 DMAR_PGF_ZERO);
383 if (m == NULL)
384 return (NULL);
385
386 /*
387 * Prevent potential free while pgtbl_obj is
388 * unlocked in the recursive call to
389 * domain_pgtbl_map_pte(), if other thread did
390 * pte write and clean while the lock is
391 * dropped.
392 */
393 m->wire_count++;
394
395 sfp = NULL;
396 ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
397 flags, &idx1, &sfp);
398 if (ptep == NULL) {
399 KASSERT(m->pindex != 0,
400 ("loosing root page %p", domain));
401 m->wire_count--;
402 dmar_pgfree(domain->pgtbl_obj, m->pindex,
403 flags);
404 return (NULL);
405 }
406 dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
407 VM_PAGE_TO_PHYS(m));
408 dmar_flush_pte_to_ram(domain->dmar, ptep);
409 sf_buf_page(sfp)->wire_count += 1;
410 m->wire_count--;
411 dmar_unmap_pgtbl(sfp);
412 /* Only executed once. */
413 goto retry;
414 }
415 }
416 pte += domain_pgtbl_pte_off(domain, base, lvl);
417 return (pte);
418 }
419
420 static int
421 domain_map_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
422 dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
423 {
424 dmar_pte_t *pte;
425 struct sf_buf *sf;
426 dmar_gaddr_t pg_sz, base1, size1;
427 vm_pindex_t pi, c, idx, run_sz;
428 int lvl;
429 bool superpage;
430
431 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
432
433 base1 = base;
434 size1 = size;
435 flags |= DMAR_PGF_OBJL;
436 TD_PREP_PINNED_ASSERT;
437
438 for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
439 pi += run_sz) {
440 for (lvl = 0, c = 0, superpage = false;; lvl++) {
441 pg_sz = domain_page_size(domain, lvl);
442 run_sz = pg_sz >> DMAR_PAGE_SHIFT;
443 if (lvl == domain->pglvl - 1)
444 break;
445 /*
446 * Check if the current base suitable for the
447 * superpage mapping. First, verify the level.
448 */
449 if (!domain_is_sp_lvl(domain, lvl))
450 continue;
451 /*
452 * Next, look at the size of the mapping and
453 * alignment of both guest and host addresses.
454 */
455 if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
456 (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
457 continue;
458 /* All passed, check host pages contiguouty. */
459 if (c == 0) {
460 for (c = 1; c < run_sz; c++) {
461 if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
462 VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
463 PAGE_SIZE)
464 break;
465 }
466 }
467 if (c >= run_sz) {
468 superpage = true;
469 break;
470 }
471 }
472 KASSERT(size >= pg_sz,
473 ("mapping loop overflow %p %jx %jx %jx", domain,
474 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
475 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
476 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
477 if (pte == NULL) {
478 KASSERT((flags & DMAR_PGF_WAITOK) == 0,
479 ("failed waitable pte alloc %p", domain));
480 if (sf != NULL)
481 dmar_unmap_pgtbl(sf);
482 domain_unmap_buf_locked(domain, base1, base - base1,
483 flags);
484 TD_PINNED_ASSERT;
485 return (ENOMEM);
486 }
487 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
488 (superpage ? DMAR_PTE_SP : 0));
489 dmar_flush_pte_to_ram(domain->dmar, pte);
490 sf_buf_page(sf)->wire_count += 1;
491 }
492 if (sf != NULL)
493 dmar_unmap_pgtbl(sf);
494 TD_PINNED_ASSERT;
495 return (0);
496 }
497
498 int
499 domain_map_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size,
500 vm_page_t *ma, uint64_t pflags, int flags)
501 {
502 struct dmar_unit *unit;
503 int error;
504
505 unit = domain->dmar;
506
507 KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
508 ("modifying idmap pagetable domain %p", domain));
509 KASSERT((base & DMAR_PAGE_MASK) == 0,
510 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
511 (uintmax_t)size));
512 KASSERT((size & DMAR_PAGE_MASK) == 0,
513 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
514 (uintmax_t)size));
515 KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
516 (uintmax_t)size));
517 KASSERT(base < (1ULL << domain->agaw),
518 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
519 (uintmax_t)size, domain->agaw));
520 KASSERT(base + size < (1ULL << domain->agaw),
521 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
522 (uintmax_t)size, domain->agaw));
523 KASSERT(base + size > base,
524 ("size overflow %p %jx %jx", domain, (uintmax_t)base,
525 (uintmax_t)size));
526 KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
527 ("neither read nor write %jx", (uintmax_t)pflags));
528 KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
529 DMAR_PTE_TM)) == 0,
530 ("invalid pte flags %jx", (uintmax_t)pflags));
531 KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
532 (unit->hw_ecap & DMAR_ECAP_SC) != 0,
533 ("PTE_SNP for dmar without snoop control %p %jx",
534 domain, (uintmax_t)pflags));
535 KASSERT((pflags & DMAR_PTE_TM) == 0 ||
536 (unit->hw_ecap & DMAR_ECAP_DI) != 0,
537 ("PTE_TM for dmar without DIOTLB %p %jx",
538 domain, (uintmax_t)pflags));
539 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
540
541 DMAR_DOMAIN_PGLOCK(domain);
542 error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
543 DMAR_DOMAIN_PGUNLOCK(domain);
544 if (error != 0)
545 return (error);
546
547 if ((unit->hw_cap & DMAR_CAP_CM) != 0)
548 domain_flush_iotlb_sync(domain, base, size);
549 else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
550 /* See 11.1 Write Buffer Flushing. */
551 DMAR_LOCK(unit);
552 dmar_flush_write_bufs(unit);
553 DMAR_UNLOCK(unit);
554 }
555 return (0);
556 }
557
558 static void domain_unmap_clear_pte(struct dmar_domain *domain,
559 dmar_gaddr_t base, int lvl, int flags, dmar_pte_t *pte,
560 struct sf_buf **sf, bool free_fs);
561
562 static void
563 domain_free_pgtbl_pde(struct dmar_domain *domain, dmar_gaddr_t base,
564 int lvl, int flags)
565 {
566 struct sf_buf *sf;
567 dmar_pte_t *pde;
568 vm_pindex_t idx;
569
570 sf = NULL;
571 pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
572 domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
573 }
574
575 static void
576 domain_unmap_clear_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
577 int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
578 {
579 vm_page_t m;
580
581 dmar_pte_clear(&pte->pte);
582 dmar_flush_pte_to_ram(domain->dmar, pte);
583 m = sf_buf_page(*sf);
584 if (free_sf) {
585 dmar_unmap_pgtbl(*sf);
586 *sf = NULL;
587 }
588 m->wire_count--;
589 if (m->wire_count != 0)
590 return;
591 KASSERT(lvl != 0,
592 ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
593 domain, (uintmax_t)base, lvl));
594 KASSERT(m->pindex != 0,
595 ("lost reference (idx) on root pg domain %p base %jx lvl %d",
596 domain, (uintmax_t)base, lvl));
597 dmar_pgfree(domain->pgtbl_obj, m->pindex, flags);
598 domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
599 }
600
601 /*
602 * Assumes that the unmap is never partial.
603 */
604 static int
605 domain_unmap_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
606 dmar_gaddr_t size, int flags)
607 {
608 dmar_pte_t *pte;
609 struct sf_buf *sf;
610 vm_pindex_t idx;
611 dmar_gaddr_t pg_sz;
612 int lvl;
613
614 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
615 if (size == 0)
616 return (0);
617
618 KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
619 ("modifying idmap pagetable domain %p", domain));
620 KASSERT((base & DMAR_PAGE_MASK) == 0,
621 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
622 (uintmax_t)size));
623 KASSERT((size & DMAR_PAGE_MASK) == 0,
624 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
625 (uintmax_t)size));
626 KASSERT(base < (1ULL << domain->agaw),
627 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
628 (uintmax_t)size, domain->agaw));
629 KASSERT(base + size < (1ULL << domain->agaw),
630 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
631 (uintmax_t)size, domain->agaw));
632 KASSERT(base + size > base,
633 ("size overflow %p %jx %jx", domain, (uintmax_t)base,
634 (uintmax_t)size));
635 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
636
637 pg_sz = 0; /* silence gcc */
638 flags |= DMAR_PGF_OBJL;
639 TD_PREP_PINNED_ASSERT;
640
641 for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
642 for (lvl = 0; lvl < domain->pglvl; lvl++) {
643 if (lvl != domain->pglvl - 1 &&
644 !domain_is_sp_lvl(domain, lvl))
645 continue;
646 pg_sz = domain_page_size(domain, lvl);
647 if (pg_sz > size)
648 continue;
649 pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
650 &idx, &sf);
651 KASSERT(pte != NULL,
652 ("sleeping or page missed %p %jx %d 0x%x",
653 domain, (uintmax_t)base, lvl, flags));
654 if ((pte->pte & DMAR_PTE_SP) != 0 ||
655 lvl == domain->pglvl - 1) {
656 domain_unmap_clear_pte(domain, base, lvl,
657 flags, pte, &sf, false);
658 break;
659 }
660 }
661 KASSERT(size >= pg_sz,
662 ("unmapping loop overflow %p %jx %jx %jx", domain,
663 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
664 }
665 if (sf != NULL)
666 dmar_unmap_pgtbl(sf);
667 /*
668 * See 11.1 Write Buffer Flushing for an explanation why RWBF
669 * can be ignored there.
670 */
671
672 TD_PINNED_ASSERT;
673 return (0);
674 }
675
676 int
677 domain_unmap_buf(struct dmar_domain *domain, dmar_gaddr_t base,
678 dmar_gaddr_t size, int flags)
679 {
680 int error;
681
682 DMAR_DOMAIN_PGLOCK(domain);
683 error = domain_unmap_buf_locked(domain, base, size, flags);
684 DMAR_DOMAIN_PGUNLOCK(domain);
685 return (error);
686 }
687
688 int
689 domain_alloc_pgtbl(struct dmar_domain *domain)
690 {
691 vm_page_t m;
692
693 KASSERT(domain->pgtbl_obj == NULL,
694 ("already initialized %p", domain));
695
696 domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
697 IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
698 DMAR_DOMAIN_PGLOCK(domain);
699 m = dmar_pgalloc(domain->pgtbl_obj, 0, DMAR_PGF_WAITOK |
700 DMAR_PGF_ZERO | DMAR_PGF_OBJL);
701 /* No implicit free of the top level page table page. */
702 m->wire_count = 1;
703 DMAR_DOMAIN_PGUNLOCK(domain);
704 DMAR_LOCK(domain->dmar);
705 domain->flags |= DMAR_DOMAIN_PGTBL_INITED;
706 DMAR_UNLOCK(domain->dmar);
707 return (0);
708 }
709
710 void
711 domain_free_pgtbl(struct dmar_domain *domain)
712 {
713 vm_object_t obj;
714 vm_page_t m;
715
716 obj = domain->pgtbl_obj;
717 if (obj == NULL) {
718 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
719 (domain->flags & DMAR_DOMAIN_IDMAP) != 0,
720 ("lost pagetable object domain %p", domain));
721 return;
722 }
723 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
724 domain->pgtbl_obj = NULL;
725
726 if ((domain->flags & DMAR_DOMAIN_IDMAP) != 0) {
727 put_idmap_pgtbl(obj);
728 domain->flags &= ~DMAR_DOMAIN_IDMAP;
729 return;
730 }
731
732 /* Obliterate wire_counts */
733 VM_OBJECT_ASSERT_WLOCKED(obj);
734 for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
735 m->wire_count = 0;
736 VM_OBJECT_WUNLOCK(obj);
737 vm_object_deallocate(obj);
738 }
739
740 static inline uint64_t
741 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
742 {
743 uint64_t iotlbr;
744
745 dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
746 DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
747 for (;;) {
748 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
749 if ((iotlbr & DMAR_IOTLB_IVT) == 0)
750 break;
751 cpu_spinwait();
752 }
753 return (iotlbr);
754 }
755
756 void
757 domain_flush_iotlb_sync(struct dmar_domain *domain, dmar_gaddr_t base,
758 dmar_gaddr_t size)
759 {
760 struct dmar_unit *unit;
761 dmar_gaddr_t isize;
762 uint64_t iotlbr;
763 int am, iro;
764
765 unit = domain->dmar;
766 KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
767 unit->unit));
768 iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
769 DMAR_LOCK(unit);
770 if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
771 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
772 DMAR_IOTLB_DID(domain->domain), iro);
773 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
774 DMAR_IOTLB_IAIG_INVLD,
775 ("dmar%d: invalidation failed %jx", unit->unit,
776 (uintmax_t)iotlbr));
777 } else {
778 for (; size > 0; base += isize, size -= isize) {
779 am = calc_am(unit, base, size, &isize);
780 dmar_write8(unit, iro, base | am);
781 iotlbr = domain_wait_iotlb_flush(unit,
782 DMAR_IOTLB_IIRG_PAGE |
783 DMAR_IOTLB_DID(domain->domain), iro);
784 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
785 DMAR_IOTLB_IAIG_INVLD,
786 ("dmar%d: PSI invalidation failed "
787 "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
788 unit->unit, (uintmax_t)iotlbr,
789 (uintmax_t)base, (uintmax_t)size, am));
790 /*
791 * Any non-page granularity covers whole guest
792 * address space for the domain.
793 */
794 if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
795 DMAR_IOTLB_IAIG_PAGE)
796 break;
797 }
798 }
799 DMAR_UNLOCK(unit);
800 }
Cache object: 5b9d4e9307fa33f68afcb8f38bd18821
|