The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_idpgtbl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/malloc.h>
   38 #include <sys/bus.h>
   39 #include <sys/interrupt.h>
   40 #include <sys/kernel.h>
   41 #include <sys/ktr.h>
   42 #include <sys/lock.h>
   43 #include <sys/memdesc.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/rwlock.h>
   47 #include <sys/rman.h>
   48 #include <sys/sf_buf.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/taskqueue.h>
   51 #include <sys/tree.h>
   52 #include <sys/uio.h>
   53 #include <sys/vmem.h>
   54 #include <vm/vm.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/vm_object.h>
   58 #include <vm/vm_page.h>
   59 #include <vm/vm_pager.h>
   60 #include <vm/vm_map.h>
   61 #include <machine/atomic.h>
   62 #include <machine/bus.h>
   63 #include <machine/cpu.h>
   64 #include <machine/md_var.h>
   65 #include <machine/specialreg.h>
   66 #include <x86/include/busdma_impl.h>
   67 #include <x86/iommu/intel_reg.h>
   68 #include <x86/iommu/busdma_dmar.h>
   69 #include <dev/pci/pcireg.h>
   70 #include <x86/iommu/intel_dmar.h>
   71 
   72 static int domain_unmap_buf_locked(struct dmar_domain *domain,
   73     dmar_gaddr_t base, dmar_gaddr_t size, int flags);
   74 
   75 /*
   76  * The cache of the identity mapping page tables for the DMARs.  Using
   77  * the cache saves significant amount of memory for page tables by
   78  * reusing the page tables, since usually DMARs are identical and have
   79  * the same capabilities.  Still, cache records the information needed
   80  * to match DMAR capabilities and page table format, to correctly
   81  * handle different DMARs.
   82  */
   83 
   84 struct idpgtbl {
   85         dmar_gaddr_t maxaddr;   /* Page table covers the guest address
   86                                    range [0..maxaddr) */
   87         int pglvl;              /* Total page table levels ignoring
   88                                    superpages */
   89         int leaf;               /* The last materialized page table
   90                                    level, it is non-zero if superpages
   91                                    are supported */
   92         vm_object_t pgtbl_obj;  /* The page table pages */
   93         LIST_ENTRY(idpgtbl) link;
   94 };
   95 
   96 static struct sx idpgtbl_lock;
   97 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
   98 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
   99 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
  100     "Intel DMAR Identity mappings cache elements");
  101 
  102 /*
  103  * Build the next level of the page tables for the identity mapping.
  104  * - lvl is the level to build;
  105  * - idx is the index of the page table page in the pgtbl_obj, which is
  106  *   being allocated filled now;
  107  * - addr is the starting address in the bus address space which is
  108  *   mapped by the page table page.
  109  */
  110 static void
  111 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
  112     dmar_gaddr_t addr)
  113 {
  114         vm_page_t m1;
  115         dmar_pte_t *pte;
  116         struct sf_buf *sf;
  117         dmar_gaddr_t f, pg_sz;
  118         vm_pindex_t base;
  119         int i;
  120 
  121         VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
  122         if (addr >= tbl->maxaddr)
  123                 return;
  124         (void)dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
  125             DMAR_PGF_ZERO);
  126         base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
  127         pg_sz = pglvl_page_size(tbl->pglvl, lvl);
  128         if (lvl != tbl->leaf) {
  129                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
  130                         domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
  131         }
  132         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  133         pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
  134         if (lvl == tbl->leaf) {
  135                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  136                         if (f >= tbl->maxaddr)
  137                                 break;
  138                         pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
  139                             DMAR_PTE_R | DMAR_PTE_W;
  140                 }
  141         } else {
  142                 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
  143                         if (f >= tbl->maxaddr)
  144                                 break;
  145                         m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
  146                             DMAR_PGF_NOALLOC);
  147                         KASSERT(m1 != NULL, ("lost page table page"));
  148                         pte[i].pte = (DMAR_PTE_ADDR_MASK &
  149                             VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
  150                 }
  151         }
  152         /* domain_get_idmap_pgtbl flushes CPU cache if needed. */
  153         dmar_unmap_pgtbl(sf);
  154         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  155 }
  156 
  157 /*
  158  * Find a ready and compatible identity-mapping page table in the
  159  * cache. If not found, populate the identity-mapping page table for
  160  * the context, up to the maxaddr. The maxaddr byte is allowed to be
  161  * not mapped, which is aligned with the definition of Maxmem as the
  162  * highest usable physical address + 1.  If superpages are used, the
  163  * maxaddr is typically mapped.
  164  */
  165 vm_object_t
  166 domain_get_idmap_pgtbl(struct dmar_domain *domain, dmar_gaddr_t maxaddr)
  167 {
  168         struct dmar_unit *unit;
  169         struct idpgtbl *tbl;
  170         vm_object_t res;
  171         vm_page_t m;
  172         int leaf, i;
  173 
  174         leaf = 0; /* silence gcc */
  175 
  176         /*
  177          * First, determine where to stop the paging structures.
  178          */
  179         for (i = 0; i < domain->pglvl; i++) {
  180                 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
  181                         leaf = i;
  182                         break;
  183                 }
  184         }
  185 
  186         /*
  187          * Search the cache for a compatible page table.  Qualified
  188          * page table must map up to maxaddr, its level must be
  189          * supported by the DMAR and leaf should be equal to the
  190          * calculated value.  The later restriction could be lifted
  191          * but I believe it is currently impossible to have any
  192          * deviations for existing hardware.
  193          */
  194         sx_slock(&idpgtbl_lock);
  195         LIST_FOREACH(tbl, &idpgtbls, link) {
  196                 if (tbl->maxaddr >= maxaddr &&
  197                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  198                     tbl->leaf == leaf) {
  199                         res = tbl->pgtbl_obj;
  200                         vm_object_reference(res);
  201                         sx_sunlock(&idpgtbl_lock);
  202                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  203                         goto end;
  204                 }
  205         }
  206 
  207         /*
  208          * Not found in cache, relock the cache into exclusive mode to
  209          * be able to add element, and recheck cache again after the
  210          * relock.
  211          */
  212         sx_sunlock(&idpgtbl_lock);
  213         sx_xlock(&idpgtbl_lock);
  214         LIST_FOREACH(tbl, &idpgtbls, link) {
  215                 if (tbl->maxaddr >= maxaddr &&
  216                     dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
  217                     tbl->leaf == leaf) {
  218                         res = tbl->pgtbl_obj;
  219                         vm_object_reference(res);
  220                         sx_xunlock(&idpgtbl_lock);
  221                         domain->pglvl = tbl->pglvl; /* XXXKIB ? */
  222                         return (res);
  223                 }
  224         }
  225 
  226         /*
  227          * Still not found, create new page table.
  228          */
  229         tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
  230         tbl->pglvl = domain->pglvl;
  231         tbl->leaf = leaf;
  232         tbl->maxaddr = maxaddr;
  233         tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  234             IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
  235         VM_OBJECT_WLOCK(tbl->pgtbl_obj);
  236         domain_idmap_nextlvl(tbl, 0, 0, 0);
  237         VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
  238         LIST_INSERT_HEAD(&idpgtbls, tbl, link);
  239         res = tbl->pgtbl_obj;
  240         vm_object_reference(res);
  241         sx_xunlock(&idpgtbl_lock);
  242 
  243 end:
  244         /*
  245          * Table was found or created.
  246          *
  247          * If DMAR does not snoop paging structures accesses, flush
  248          * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
  249          * argument was possibly invalid at the time of the identity
  250          * page table creation, since DMAR which was passed at the
  251          * time of creation could be coherent, while current DMAR is
  252          * not.
  253          *
  254          * If DMAR cannot look into the chipset write buffer, flush it
  255          * as well.
  256          */
  257         unit = domain->dmar;
  258         if (!DMAR_IS_COHERENT(unit)) {
  259                 VM_OBJECT_WLOCK(res);
  260                 for (m = vm_page_lookup(res, 0); m != NULL;
  261                      m = vm_page_next(m))
  262                         pmap_invalidate_cache_pages(&m, 1);
  263                 VM_OBJECT_WUNLOCK(res);
  264         }
  265         if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  266                 DMAR_LOCK(unit);
  267                 dmar_flush_write_bufs(unit);
  268                 DMAR_UNLOCK(unit);
  269         }
  270         
  271         return (res);
  272 }
  273 
  274 /*
  275  * Return a reference to the identity mapping page table to the cache.
  276  */
  277 void
  278 put_idmap_pgtbl(vm_object_t obj)
  279 {
  280         struct idpgtbl *tbl, *tbl1;
  281         vm_object_t rmobj;
  282 
  283         sx_slock(&idpgtbl_lock);
  284         KASSERT(obj->ref_count >= 2, ("lost cache reference"));
  285         vm_object_deallocate(obj);
  286 
  287         /*
  288          * Cache always owns one last reference on the page table object.
  289          * If there is an additional reference, object must stay.
  290          */
  291         if (obj->ref_count > 1) {
  292                 sx_sunlock(&idpgtbl_lock);
  293                 return;
  294         }
  295 
  296         /*
  297          * Cache reference is the last, remove cache element and free
  298          * page table object, returning the page table pages to the
  299          * system.
  300          */
  301         sx_sunlock(&idpgtbl_lock);
  302         sx_xlock(&idpgtbl_lock);
  303         LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
  304                 rmobj = tbl->pgtbl_obj;
  305                 if (rmobj->ref_count == 1) {
  306                         LIST_REMOVE(tbl, link);
  307                         atomic_subtract_int(&dmar_tbl_pagecnt,
  308                             rmobj->resident_page_count);
  309                         vm_object_deallocate(rmobj);
  310                         free(tbl, M_DMAR_IDPGTBL);
  311                 }
  312         }
  313         sx_xunlock(&idpgtbl_lock);
  314 }
  315 
  316 /*
  317  * The core routines to map and unmap host pages at the given guest
  318  * address.  Support superpages.
  319  */
  320 
  321 /*
  322  * Index of the pte for the guest address base in the page table at
  323  * the level lvl.
  324  */
  325 static int
  326 domain_pgtbl_pte_off(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
  327 {
  328 
  329         base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
  330             DMAR_NPTEPGSHIFT;
  331         return (base & DMAR_PTEMASK);
  332 }
  333 
  334 /*
  335  * Returns the page index of the page table page in the page table
  336  * object, which maps the given address base at the page table level
  337  * lvl.
  338  */
  339 static vm_pindex_t
  340 domain_pgtbl_get_pindex(struct dmar_domain *domain, dmar_gaddr_t base, int lvl)
  341 {
  342         vm_pindex_t idx, pidx;
  343         int i;
  344 
  345         KASSERT(lvl >= 0 && lvl < domain->pglvl,
  346             ("wrong lvl %p %d", domain, lvl));
  347 
  348         for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
  349                 idx = domain_pgtbl_pte_off(domain, base, i) +
  350                     pidx * DMAR_NPTEPG + 1;
  351         }
  352         return (idx);
  353 }
  354 
  355 static dmar_pte_t *
  356 domain_pgtbl_map_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
  357     int flags, vm_pindex_t *idxp, struct sf_buf **sf)
  358 {
  359         vm_page_t m;
  360         struct sf_buf *sfp;
  361         dmar_pte_t *pte, *ptep;
  362         vm_pindex_t idx, idx1;
  363 
  364         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  365         KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
  366 
  367         idx = domain_pgtbl_get_pindex(domain, base, lvl);
  368         if (*sf != NULL && idx == *idxp) {
  369                 pte = (dmar_pte_t *)sf_buf_kva(*sf);
  370         } else {
  371                 if (*sf != NULL)
  372                         dmar_unmap_pgtbl(*sf);
  373                 *idxp = idx;
  374 retry:
  375                 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
  376                 if (pte == NULL) {
  377                         KASSERT(lvl > 0,
  378                             ("lost root page table page %p", domain));
  379                         /*
  380                          * Page table page does not exist, allocate
  381                          * it and create a pte in the preceeding page level
  382                          * to reference the allocated page table page.
  383                          */
  384                         m = dmar_pgalloc(domain->pgtbl_obj, idx, flags |
  385                             DMAR_PGF_ZERO);
  386                         if (m == NULL)
  387                                 return (NULL);
  388 
  389                         /*
  390                          * Prevent potential free while pgtbl_obj is
  391                          * unlocked in the recursive call to
  392                          * domain_pgtbl_map_pte(), if other thread did
  393                          * pte write and clean while the lock is
  394                          * dropped.
  395                          */
  396                         m->wire_count++;
  397 
  398                         sfp = NULL;
  399                         ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
  400                             flags, &idx1, &sfp);
  401                         if (ptep == NULL) {
  402                                 KASSERT(m->pindex != 0,
  403                                     ("loosing root page %p", domain));
  404                                 m->wire_count--;
  405                                 dmar_pgfree(domain->pgtbl_obj, m->pindex,
  406                                     flags);
  407                                 return (NULL);
  408                         }
  409                         dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
  410                             VM_PAGE_TO_PHYS(m));
  411                         dmar_flush_pte_to_ram(domain->dmar, ptep);
  412                         sf_buf_page(sfp)->wire_count += 1;
  413                         m->wire_count--;
  414                         dmar_unmap_pgtbl(sfp);
  415                         /* Only executed once. */
  416                         goto retry;
  417                 }
  418         }
  419         pte += domain_pgtbl_pte_off(domain, base, lvl);
  420         return (pte);
  421 }
  422 
  423 static int
  424 domain_map_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
  425     dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
  426 {
  427         dmar_pte_t *pte;
  428         struct sf_buf *sf;
  429         dmar_gaddr_t pg_sz, base1, size1;
  430         vm_pindex_t pi, c, idx, run_sz;
  431         int lvl;
  432         bool superpage;
  433 
  434         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  435 
  436         base1 = base;
  437         size1 = size;
  438         flags |= DMAR_PGF_OBJL;
  439         TD_PREP_PINNED_ASSERT;
  440 
  441         for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
  442             pi += run_sz) {
  443                 for (lvl = 0, c = 0, superpage = false;; lvl++) {
  444                         pg_sz = domain_page_size(domain, lvl);
  445                         run_sz = pg_sz >> DMAR_PAGE_SHIFT;
  446                         if (lvl == domain->pglvl - 1)
  447                                 break;
  448                         /*
  449                          * Check if the current base suitable for the
  450                          * superpage mapping.  First, verify the level.
  451                          */
  452                         if (!domain_is_sp_lvl(domain, lvl))
  453                                 continue;
  454                         /*
  455                          * Next, look at the size of the mapping and
  456                          * alignment of both guest and host addresses.
  457                          */
  458                         if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
  459                             (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
  460                                 continue;
  461                         /* All passed, check host pages contiguouty. */
  462                         if (c == 0) {
  463                                 for (c = 1; c < run_sz; c++) {
  464                                         if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
  465                                             VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
  466                                             PAGE_SIZE)
  467                                                 break;
  468                                 }
  469                         }
  470                         if (c >= run_sz) {
  471                                 superpage = true;
  472                                 break;
  473                         }
  474                 }
  475                 KASSERT(size >= pg_sz,
  476                     ("mapping loop overflow %p %jx %jx %jx", domain,
  477                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  478                 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
  479                 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  480                 if (pte == NULL) {
  481                         KASSERT((flags & DMAR_PGF_WAITOK) == 0,
  482                             ("failed waitable pte alloc %p", domain));
  483                         if (sf != NULL)
  484                                 dmar_unmap_pgtbl(sf);
  485                         domain_unmap_buf_locked(domain, base1, base - base1,
  486                             flags);
  487                         TD_PINNED_ASSERT;
  488                         return (ENOMEM);
  489                 }
  490                 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
  491                     (superpage ? DMAR_PTE_SP : 0));
  492                 dmar_flush_pte_to_ram(domain->dmar, pte);
  493                 sf_buf_page(sf)->wire_count += 1;
  494         }
  495         if (sf != NULL)
  496                 dmar_unmap_pgtbl(sf);
  497         TD_PINNED_ASSERT;
  498         return (0);
  499 }
  500 
  501 int
  502 domain_map_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size,
  503     vm_page_t *ma, uint64_t pflags, int flags)
  504 {
  505         struct dmar_unit *unit;
  506         int error;
  507 
  508         unit = domain->dmar;
  509 
  510         KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
  511             ("modifying idmap pagetable domain %p", domain));
  512         KASSERT((base & DMAR_PAGE_MASK) == 0,
  513             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  514             (uintmax_t)size));
  515         KASSERT((size & DMAR_PAGE_MASK) == 0,
  516             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  517             (uintmax_t)size));
  518         KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
  519             (uintmax_t)size));
  520         KASSERT(base < (1ULL << domain->agaw),
  521             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  522             (uintmax_t)size, domain->agaw));
  523         KASSERT(base + size < (1ULL << domain->agaw),
  524             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  525             (uintmax_t)size, domain->agaw));
  526         KASSERT(base + size > base,
  527             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  528             (uintmax_t)size));
  529         KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
  530             ("neither read nor write %jx", (uintmax_t)pflags));
  531         KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
  532             DMAR_PTE_TM)) == 0,
  533             ("invalid pte flags %jx", (uintmax_t)pflags));
  534         KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
  535             (unit->hw_ecap & DMAR_ECAP_SC) != 0,
  536             ("PTE_SNP for dmar without snoop control %p %jx",
  537             domain, (uintmax_t)pflags));
  538         KASSERT((pflags & DMAR_PTE_TM) == 0 ||
  539             (unit->hw_ecap & DMAR_ECAP_DI) != 0,
  540             ("PTE_TM for dmar without DIOTLB %p %jx",
  541             domain, (uintmax_t)pflags));
  542         KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  543 
  544         DMAR_DOMAIN_PGLOCK(domain);
  545         error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
  546         DMAR_DOMAIN_PGUNLOCK(domain);
  547         if (error != 0)
  548                 return (error);
  549 
  550         if ((unit->hw_cap & DMAR_CAP_CM) != 0)
  551                 domain_flush_iotlb_sync(domain, base, size);
  552         else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
  553                 /* See 11.1 Write Buffer Flushing. */
  554                 DMAR_LOCK(unit);
  555                 dmar_flush_write_bufs(unit);
  556                 DMAR_UNLOCK(unit);
  557         }
  558         return (0);
  559 }
  560 
  561 static void domain_unmap_clear_pte(struct dmar_domain *domain,
  562     dmar_gaddr_t base, int lvl, int flags, dmar_pte_t *pte,
  563     struct sf_buf **sf, bool free_fs);
  564 
  565 static void
  566 domain_free_pgtbl_pde(struct dmar_domain *domain, dmar_gaddr_t base,
  567     int lvl, int flags)
  568 {
  569         struct sf_buf *sf;
  570         dmar_pte_t *pde;
  571         vm_pindex_t idx;
  572 
  573         sf = NULL;
  574         pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
  575         domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
  576 }
  577 
  578 static void
  579 domain_unmap_clear_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl,
  580     int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
  581 {
  582         vm_page_t m;
  583 
  584         dmar_pte_clear(&pte->pte);
  585         dmar_flush_pte_to_ram(domain->dmar, pte);
  586         m = sf_buf_page(*sf);
  587         if (free_sf) {
  588                 dmar_unmap_pgtbl(*sf);
  589                 *sf = NULL;
  590         }
  591         m->wire_count--;
  592         if (m->wire_count != 0)
  593                 return;
  594         KASSERT(lvl != 0,
  595             ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
  596             domain, (uintmax_t)base, lvl));
  597         KASSERT(m->pindex != 0,
  598             ("lost reference (idx) on root pg domain %p base %jx lvl %d",
  599             domain, (uintmax_t)base, lvl));
  600         dmar_pgfree(domain->pgtbl_obj, m->pindex, flags);
  601         domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
  602 }
  603 
  604 /*
  605  * Assumes that the unmap is never partial.
  606  */
  607 static int
  608 domain_unmap_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base,
  609     dmar_gaddr_t size, int flags)
  610 {
  611         dmar_pte_t *pte;
  612         struct sf_buf *sf;
  613         vm_pindex_t idx;
  614         dmar_gaddr_t pg_sz;
  615         int lvl;
  616 
  617         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  618         if (size == 0)
  619                 return (0);
  620 
  621         KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0,
  622             ("modifying idmap pagetable domain %p", domain));
  623         KASSERT((base & DMAR_PAGE_MASK) == 0,
  624             ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
  625             (uintmax_t)size));
  626         KASSERT((size & DMAR_PAGE_MASK) == 0,
  627             ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
  628             (uintmax_t)size));
  629         KASSERT(base < (1ULL << domain->agaw),
  630             ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  631             (uintmax_t)size, domain->agaw));
  632         KASSERT(base + size < (1ULL << domain->agaw),
  633             ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
  634             (uintmax_t)size, domain->agaw));
  635         KASSERT(base + size > base,
  636             ("size overflow %p %jx %jx", domain, (uintmax_t)base,
  637             (uintmax_t)size));
  638         KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
  639 
  640         pg_sz = 0; /* silence gcc */
  641         flags |= DMAR_PGF_OBJL;
  642         TD_PREP_PINNED_ASSERT;
  643 
  644         for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
  645                 for (lvl = 0; lvl < domain->pglvl; lvl++) {
  646                         if (lvl != domain->pglvl - 1 &&
  647                             !domain_is_sp_lvl(domain, lvl))
  648                                 continue;
  649                         pg_sz = domain_page_size(domain, lvl);
  650                         if (pg_sz > size)
  651                                 continue;
  652                         pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
  653                             &idx, &sf);
  654                         KASSERT(pte != NULL,
  655                             ("sleeping or page missed %p %jx %d 0x%x",
  656                             domain, (uintmax_t)base, lvl, flags));
  657                         if ((pte->pte & DMAR_PTE_SP) != 0 ||
  658                             lvl == domain->pglvl - 1) {
  659                                 domain_unmap_clear_pte(domain, base, lvl,
  660                                     flags, pte, &sf, false);
  661                                 break;
  662                         }
  663                 }
  664                 KASSERT(size >= pg_sz,
  665                     ("unmapping loop overflow %p %jx %jx %jx", domain,
  666                     (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
  667         }
  668         if (sf != NULL)
  669                 dmar_unmap_pgtbl(sf);
  670         /*
  671          * See 11.1 Write Buffer Flushing for an explanation why RWBF
  672          * can be ignored there.
  673          */
  674 
  675         TD_PINNED_ASSERT;
  676         return (0);
  677 }
  678 
  679 int
  680 domain_unmap_buf(struct dmar_domain *domain, dmar_gaddr_t base,
  681     dmar_gaddr_t size, int flags)
  682 {
  683         int error;
  684 
  685         DMAR_DOMAIN_PGLOCK(domain);
  686         error = domain_unmap_buf_locked(domain, base, size, flags);
  687         DMAR_DOMAIN_PGUNLOCK(domain);
  688         return (error);
  689 }
  690 
  691 int
  692 domain_alloc_pgtbl(struct dmar_domain *domain)
  693 {
  694         vm_page_t m;
  695 
  696         KASSERT(domain->pgtbl_obj == NULL,
  697             ("already initialized %p", domain));
  698 
  699         domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
  700             IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
  701         DMAR_DOMAIN_PGLOCK(domain);
  702         m = dmar_pgalloc(domain->pgtbl_obj, 0, DMAR_PGF_WAITOK |
  703             DMAR_PGF_ZERO | DMAR_PGF_OBJL);
  704         /* No implicit free of the top level page table page. */
  705         m->wire_count = 1;
  706         DMAR_DOMAIN_PGUNLOCK(domain);
  707         DMAR_LOCK(domain->dmar);
  708         domain->flags |= DMAR_DOMAIN_PGTBL_INITED;
  709         DMAR_UNLOCK(domain->dmar);
  710         return (0);
  711 }
  712 
  713 void
  714 domain_free_pgtbl(struct dmar_domain *domain)
  715 {
  716         vm_object_t obj;
  717         vm_page_t m;
  718 
  719         obj = domain->pgtbl_obj;
  720         if (obj == NULL) {
  721                 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
  722                     (domain->flags & DMAR_DOMAIN_IDMAP) != 0,
  723                     ("lost pagetable object domain %p", domain));
  724                 return;
  725         }
  726         DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
  727         domain->pgtbl_obj = NULL;
  728 
  729         if ((domain->flags & DMAR_DOMAIN_IDMAP) != 0) {
  730                 put_idmap_pgtbl(obj);
  731                 domain->flags &= ~DMAR_DOMAIN_IDMAP;
  732                 return;
  733         }
  734 
  735         /* Obliterate wire_counts */
  736         VM_OBJECT_ASSERT_WLOCKED(obj);
  737         for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
  738                 m->wire_count = 0;
  739         VM_OBJECT_WUNLOCK(obj);
  740         vm_object_deallocate(obj);
  741 }
  742 
  743 static inline uint64_t
  744 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
  745 {
  746         uint64_t iotlbr;
  747 
  748         dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  749             DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
  750         for (;;) {
  751                 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
  752                 if ((iotlbr & DMAR_IOTLB_IVT) == 0)
  753                         break;
  754                 cpu_spinwait();
  755         }
  756         return (iotlbr);
  757 }
  758 
  759 void
  760 domain_flush_iotlb_sync(struct dmar_domain *domain, dmar_gaddr_t base,
  761     dmar_gaddr_t size)
  762 {
  763         struct dmar_unit *unit;
  764         dmar_gaddr_t isize;
  765         uint64_t iotlbr;
  766         int am, iro;
  767 
  768         unit = domain->dmar;
  769         KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
  770             unit->unit));
  771         iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
  772         DMAR_LOCK(unit);
  773         if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
  774                 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
  775                     DMAR_IOTLB_DID(domain->domain), iro);
  776                 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  777                     DMAR_IOTLB_IAIG_INVLD,
  778                     ("dmar%d: invalidation failed %jx", unit->unit,
  779                     (uintmax_t)iotlbr));
  780         } else {
  781                 for (; size > 0; base += isize, size -= isize) {
  782                         am = calc_am(unit, base, size, &isize);
  783                         dmar_write8(unit, iro, base | am);
  784                         iotlbr = domain_wait_iotlb_flush(unit,
  785                             DMAR_IOTLB_IIRG_PAGE |
  786                             DMAR_IOTLB_DID(domain->domain), iro);
  787                         KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  788                             DMAR_IOTLB_IAIG_INVLD,
  789                             ("dmar%d: PSI invalidation failed "
  790                             "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
  791                             unit->unit, (uintmax_t)iotlbr,
  792                             (uintmax_t)base, (uintmax_t)size, am));
  793                         /*
  794                          * Any non-page granularity covers whole guest
  795                          * address space for the domain.
  796                          */
  797                         if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
  798                             DMAR_IOTLB_IAIG_PAGE)
  799                                 break;
  800                 }
  801         }
  802         DMAR_UNLOCK(unit);
  803 }

Cache object: 8d25044f7fc586bcf898fa92cad7fb8c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.