1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/bus.h>
39 #include <sys/interrupt.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/memdesc.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/rwlock.h>
47 #include <sys/rman.h>
48 #include <sys/sf_buf.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/tree.h>
52 #include <sys/uio.h>
53 #include <sys/vmem.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_pager.h>
60 #include <vm/vm_map.h>
61 #include <dev/pci/pcireg.h>
62 #include <machine/atomic.h>
63 #include <machine/bus.h>
64 #include <machine/cpu.h>
65 #include <machine/md_var.h>
66 #include <machine/specialreg.h>
67 #include <x86/include/busdma_impl.h>
68 #include <dev/iommu/busdma_iommu.h>
69 #include <x86/iommu/intel_reg.h>
70 #include <x86/iommu/intel_dmar.h>
71
72 static int domain_unmap_buf_locked(struct dmar_domain *domain,
73 iommu_gaddr_t base, iommu_gaddr_t size, int flags);
74
75 /*
76 * The cache of the identity mapping page tables for the DMARs. Using
77 * the cache saves significant amount of memory for page tables by
78 * reusing the page tables, since usually DMARs are identical and have
79 * the same capabilities. Still, cache records the information needed
80 * to match DMAR capabilities and page table format, to correctly
81 * handle different DMARs.
82 */
83
84 struct idpgtbl {
85 iommu_gaddr_t maxaddr; /* Page table covers the guest address
86 range [0..maxaddr) */
87 int pglvl; /* Total page table levels ignoring
88 superpages */
89 int leaf; /* The last materialized page table
90 level, it is non-zero if superpages
91 are supported */
92 vm_object_t pgtbl_obj; /* The page table pages */
93 LIST_ENTRY(idpgtbl) link;
94 };
95
96 static struct sx idpgtbl_lock;
97 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
98 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
99 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
100 "Intel DMAR Identity mappings cache elements");
101
102 /*
103 * Build the next level of the page tables for the identity mapping.
104 * - lvl is the level to build;
105 * - idx is the index of the page table page in the pgtbl_obj, which is
106 * being allocated filled now;
107 * - addr is the starting address in the bus address space which is
108 * mapped by the page table page.
109 */
110 static void
111 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
112 iommu_gaddr_t addr)
113 {
114 vm_page_t m1;
115 dmar_pte_t *pte;
116 struct sf_buf *sf;
117 iommu_gaddr_t f, pg_sz;
118 vm_pindex_t base;
119 int i;
120
121 VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
122 if (addr >= tbl->maxaddr)
123 return;
124 (void)dmar_pgalloc(tbl->pgtbl_obj, idx, IOMMU_PGF_OBJL |
125 IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO);
126 base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
127 pg_sz = pglvl_page_size(tbl->pglvl, lvl);
128 if (lvl != tbl->leaf) {
129 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
130 domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
131 }
132 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
133 pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, IOMMU_PGF_WAITOK, &sf);
134 if (lvl == tbl->leaf) {
135 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
136 if (f >= tbl->maxaddr)
137 break;
138 pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
139 DMAR_PTE_R | DMAR_PTE_W;
140 }
141 } else {
142 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
143 if (f >= tbl->maxaddr)
144 break;
145 m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
146 IOMMU_PGF_NOALLOC);
147 KASSERT(m1 != NULL, ("lost page table page"));
148 pte[i].pte = (DMAR_PTE_ADDR_MASK &
149 VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
150 }
151 }
152 /* domain_get_idmap_pgtbl flushes CPU cache if needed. */
153 dmar_unmap_pgtbl(sf);
154 VM_OBJECT_WLOCK(tbl->pgtbl_obj);
155 }
156
157 /*
158 * Find a ready and compatible identity-mapping page table in the
159 * cache. If not found, populate the identity-mapping page table for
160 * the context, up to the maxaddr. The maxaddr byte is allowed to be
161 * not mapped, which is aligned with the definition of Maxmem as the
162 * highest usable physical address + 1. If superpages are used, the
163 * maxaddr is typically mapped.
164 */
165 vm_object_t
166 domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr)
167 {
168 struct dmar_unit *unit;
169 struct idpgtbl *tbl;
170 vm_object_t res;
171 vm_page_t m;
172 int leaf, i;
173
174 leaf = 0; /* silence gcc */
175
176 /*
177 * First, determine where to stop the paging structures.
178 */
179 for (i = 0; i < domain->pglvl; i++) {
180 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
181 leaf = i;
182 break;
183 }
184 }
185
186 /*
187 * Search the cache for a compatible page table. Qualified
188 * page table must map up to maxaddr, its level must be
189 * supported by the DMAR and leaf should be equal to the
190 * calculated value. The later restriction could be lifted
191 * but I believe it is currently impossible to have any
192 * deviations for existing hardware.
193 */
194 sx_slock(&idpgtbl_lock);
195 LIST_FOREACH(tbl, &idpgtbls, link) {
196 if (tbl->maxaddr >= maxaddr &&
197 dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
198 tbl->leaf == leaf) {
199 res = tbl->pgtbl_obj;
200 vm_object_reference(res);
201 sx_sunlock(&idpgtbl_lock);
202 domain->pglvl = tbl->pglvl; /* XXXKIB ? */
203 goto end;
204 }
205 }
206
207 /*
208 * Not found in cache, relock the cache into exclusive mode to
209 * be able to add element, and recheck cache again after the
210 * relock.
211 */
212 sx_sunlock(&idpgtbl_lock);
213 sx_xlock(&idpgtbl_lock);
214 LIST_FOREACH(tbl, &idpgtbls, link) {
215 if (tbl->maxaddr >= maxaddr &&
216 dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
217 tbl->leaf == leaf) {
218 res = tbl->pgtbl_obj;
219 vm_object_reference(res);
220 sx_xunlock(&idpgtbl_lock);
221 domain->pglvl = tbl->pglvl; /* XXXKIB ? */
222 return (res);
223 }
224 }
225
226 /*
227 * Still not found, create new page table.
228 */
229 tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
230 tbl->pglvl = domain->pglvl;
231 tbl->leaf = leaf;
232 tbl->maxaddr = maxaddr;
233 tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
234 IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
235 VM_OBJECT_WLOCK(tbl->pgtbl_obj);
236 domain_idmap_nextlvl(tbl, 0, 0, 0);
237 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
238 LIST_INSERT_HEAD(&idpgtbls, tbl, link);
239 res = tbl->pgtbl_obj;
240 vm_object_reference(res);
241 sx_xunlock(&idpgtbl_lock);
242
243 end:
244 /*
245 * Table was found or created.
246 *
247 * If DMAR does not snoop paging structures accesses, flush
248 * CPU cache to memory. Note that dmar_unmap_pgtbl() coherent
249 * argument was possibly invalid at the time of the identity
250 * page table creation, since DMAR which was passed at the
251 * time of creation could be coherent, while current DMAR is
252 * not.
253 *
254 * If DMAR cannot look into the chipset write buffer, flush it
255 * as well.
256 */
257 unit = domain->dmar;
258 if (!DMAR_IS_COHERENT(unit)) {
259 VM_OBJECT_WLOCK(res);
260 for (m = vm_page_lookup(res, 0); m != NULL;
261 m = vm_page_next(m))
262 pmap_invalidate_cache_pages(&m, 1);
263 VM_OBJECT_WUNLOCK(res);
264 }
265 if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
266 DMAR_LOCK(unit);
267 dmar_flush_write_bufs(unit);
268 DMAR_UNLOCK(unit);
269 }
270
271 return (res);
272 }
273
274 /*
275 * Return a reference to the identity mapping page table to the cache.
276 */
277 void
278 put_idmap_pgtbl(vm_object_t obj)
279 {
280 struct idpgtbl *tbl, *tbl1;
281 vm_object_t rmobj;
282
283 sx_slock(&idpgtbl_lock);
284 KASSERT(obj->ref_count >= 2, ("lost cache reference"));
285 vm_object_deallocate(obj);
286
287 /*
288 * Cache always owns one last reference on the page table object.
289 * If there is an additional reference, object must stay.
290 */
291 if (obj->ref_count > 1) {
292 sx_sunlock(&idpgtbl_lock);
293 return;
294 }
295
296 /*
297 * Cache reference is the last, remove cache element and free
298 * page table object, returning the page table pages to the
299 * system.
300 */
301 sx_sunlock(&idpgtbl_lock);
302 sx_xlock(&idpgtbl_lock);
303 LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
304 rmobj = tbl->pgtbl_obj;
305 if (rmobj->ref_count == 1) {
306 LIST_REMOVE(tbl, link);
307 atomic_subtract_int(&dmar_tbl_pagecnt,
308 rmobj->resident_page_count);
309 vm_object_deallocate(rmobj);
310 free(tbl, M_DMAR_IDPGTBL);
311 }
312 }
313 sx_xunlock(&idpgtbl_lock);
314 }
315
316 /*
317 * The core routines to map and unmap host pages at the given guest
318 * address. Support superpages.
319 */
320
321 /*
322 * Index of the pte for the guest address base in the page table at
323 * the level lvl.
324 */
325 static int
326 domain_pgtbl_pte_off(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
327 {
328
329 base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
330 DMAR_NPTEPGSHIFT;
331 return (base & DMAR_PTEMASK);
332 }
333
334 /*
335 * Returns the page index of the page table page in the page table
336 * object, which maps the given address base at the page table level
337 * lvl.
338 */
339 static vm_pindex_t
340 domain_pgtbl_get_pindex(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
341 {
342 vm_pindex_t idx, pidx;
343 int i;
344
345 KASSERT(lvl >= 0 && lvl < domain->pglvl,
346 ("wrong lvl %p %d", domain, lvl));
347
348 for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
349 idx = domain_pgtbl_pte_off(domain, base, i) +
350 pidx * DMAR_NPTEPG + 1;
351 }
352 return (idx);
353 }
354
355 static dmar_pte_t *
356 domain_pgtbl_map_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
357 int flags, vm_pindex_t *idxp, struct sf_buf **sf)
358 {
359 vm_page_t m;
360 struct sf_buf *sfp;
361 dmar_pte_t *pte, *ptep;
362 vm_pindex_t idx, idx1;
363
364 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
365 KASSERT((flags & IOMMU_PGF_OBJL) != 0, ("lost PGF_OBJL"));
366
367 idx = domain_pgtbl_get_pindex(domain, base, lvl);
368 if (*sf != NULL && idx == *idxp) {
369 pte = (dmar_pte_t *)sf_buf_kva(*sf);
370 } else {
371 if (*sf != NULL)
372 dmar_unmap_pgtbl(*sf);
373 *idxp = idx;
374 retry:
375 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
376 if (pte == NULL) {
377 KASSERT(lvl > 0,
378 ("lost root page table page %p", domain));
379 /*
380 * Page table page does not exist, allocate
381 * it and create a pte in the preceeding page level
382 * to reference the allocated page table page.
383 */
384 m = dmar_pgalloc(domain->pgtbl_obj, idx, flags |
385 IOMMU_PGF_ZERO);
386 if (m == NULL)
387 return (NULL);
388
389 /*
390 * Prevent potential free while pgtbl_obj is
391 * unlocked in the recursive call to
392 * domain_pgtbl_map_pte(), if other thread did
393 * pte write and clean while the lock is
394 * dropped.
395 */
396 m->ref_count++;
397
398 sfp = NULL;
399 ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
400 flags, &idx1, &sfp);
401 if (ptep == NULL) {
402 KASSERT(m->pindex != 0,
403 ("loosing root page %p", domain));
404 m->ref_count--;
405 dmar_pgfree(domain->pgtbl_obj, m->pindex,
406 flags);
407 return (NULL);
408 }
409 dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
410 VM_PAGE_TO_PHYS(m));
411 dmar_flush_pte_to_ram(domain->dmar, ptep);
412 sf_buf_page(sfp)->ref_count += 1;
413 m->ref_count--;
414 dmar_unmap_pgtbl(sfp);
415 /* Only executed once. */
416 goto retry;
417 }
418 }
419 pte += domain_pgtbl_pte_off(domain, base, lvl);
420 return (pte);
421 }
422
423 static int
424 domain_map_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
425 iommu_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
426 {
427 dmar_pte_t *pte;
428 struct sf_buf *sf;
429 iommu_gaddr_t pg_sz, base1;
430 vm_pindex_t pi, c, idx, run_sz;
431 int lvl;
432 bool superpage;
433
434 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
435
436 base1 = base;
437 flags |= IOMMU_PGF_OBJL;
438 TD_PREP_PINNED_ASSERT;
439
440 for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
441 pi += run_sz) {
442 for (lvl = 0, c = 0, superpage = false;; lvl++) {
443 pg_sz = domain_page_size(domain, lvl);
444 run_sz = pg_sz >> DMAR_PAGE_SHIFT;
445 if (lvl == domain->pglvl - 1)
446 break;
447 /*
448 * Check if the current base suitable for the
449 * superpage mapping. First, verify the level.
450 */
451 if (!domain_is_sp_lvl(domain, lvl))
452 continue;
453 /*
454 * Next, look at the size of the mapping and
455 * alignment of both guest and host addresses.
456 */
457 if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
458 (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
459 continue;
460 /* All passed, check host pages contiguouty. */
461 if (c == 0) {
462 for (c = 1; c < run_sz; c++) {
463 if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
464 VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
465 PAGE_SIZE)
466 break;
467 }
468 }
469 if (c >= run_sz) {
470 superpage = true;
471 break;
472 }
473 }
474 KASSERT(size >= pg_sz,
475 ("mapping loop overflow %p %jx %jx %jx", domain,
476 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
477 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
478 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
479 if (pte == NULL) {
480 KASSERT((flags & IOMMU_PGF_WAITOK) == 0,
481 ("failed waitable pte alloc %p", domain));
482 if (sf != NULL)
483 dmar_unmap_pgtbl(sf);
484 domain_unmap_buf_locked(domain, base1, base - base1,
485 flags);
486 TD_PINNED_ASSERT;
487 return (ENOMEM);
488 }
489 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
490 (superpage ? DMAR_PTE_SP : 0));
491 dmar_flush_pte_to_ram(domain->dmar, pte);
492 sf_buf_page(sf)->ref_count += 1;
493 }
494 if (sf != NULL)
495 dmar_unmap_pgtbl(sf);
496 TD_PINNED_ASSERT;
497 return (0);
498 }
499
500 static int
501 domain_map_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
502 iommu_gaddr_t size, vm_page_t *ma, uint64_t eflags, int flags)
503 {
504 struct dmar_domain *domain;
505 struct dmar_unit *unit;
506 uint64_t pflags;
507 int error;
508
509 pflags = ((eflags & IOMMU_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) |
510 ((eflags & IOMMU_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) |
511 ((eflags & IOMMU_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) |
512 ((eflags & IOMMU_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0);
513
514 domain = IODOM2DOM(iodom);
515 unit = domain->dmar;
516
517 KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
518 ("modifying idmap pagetable domain %p", domain));
519 KASSERT((base & DMAR_PAGE_MASK) == 0,
520 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
521 (uintmax_t)size));
522 KASSERT((size & DMAR_PAGE_MASK) == 0,
523 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
524 (uintmax_t)size));
525 KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
526 (uintmax_t)size));
527 KASSERT(base < (1ULL << domain->agaw),
528 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
529 (uintmax_t)size, domain->agaw));
530 KASSERT(base + size < (1ULL << domain->agaw),
531 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
532 (uintmax_t)size, domain->agaw));
533 KASSERT(base + size > base,
534 ("size overflow %p %jx %jx", domain, (uintmax_t)base,
535 (uintmax_t)size));
536 KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
537 ("neither read nor write %jx", (uintmax_t)pflags));
538 KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
539 DMAR_PTE_TM)) == 0,
540 ("invalid pte flags %jx", (uintmax_t)pflags));
541 KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
542 (unit->hw_ecap & DMAR_ECAP_SC) != 0,
543 ("PTE_SNP for dmar without snoop control %p %jx",
544 domain, (uintmax_t)pflags));
545 KASSERT((pflags & DMAR_PTE_TM) == 0 ||
546 (unit->hw_ecap & DMAR_ECAP_DI) != 0,
547 ("PTE_TM for dmar without DIOTLB %p %jx",
548 domain, (uintmax_t)pflags));
549 KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
550
551 DMAR_DOMAIN_PGLOCK(domain);
552 error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
553 DMAR_DOMAIN_PGUNLOCK(domain);
554 if (error != 0)
555 return (error);
556
557 if ((unit->hw_cap & DMAR_CAP_CM) != 0)
558 domain_flush_iotlb_sync(domain, base, size);
559 else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
560 /* See 11.1 Write Buffer Flushing. */
561 DMAR_LOCK(unit);
562 dmar_flush_write_bufs(unit);
563 DMAR_UNLOCK(unit);
564 }
565 return (0);
566 }
567
568 static void domain_unmap_clear_pte(struct dmar_domain *domain,
569 iommu_gaddr_t base, int lvl, int flags, dmar_pte_t *pte,
570 struct sf_buf **sf, bool free_fs);
571
572 static void
573 domain_free_pgtbl_pde(struct dmar_domain *domain, iommu_gaddr_t base,
574 int lvl, int flags)
575 {
576 struct sf_buf *sf;
577 dmar_pte_t *pde;
578 vm_pindex_t idx;
579
580 sf = NULL;
581 pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
582 domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
583 }
584
585 static void
586 domain_unmap_clear_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
587 int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
588 {
589 vm_page_t m;
590
591 dmar_pte_clear(&pte->pte);
592 dmar_flush_pte_to_ram(domain->dmar, pte);
593 m = sf_buf_page(*sf);
594 if (free_sf) {
595 dmar_unmap_pgtbl(*sf);
596 *sf = NULL;
597 }
598 m->ref_count--;
599 if (m->ref_count != 0)
600 return;
601 KASSERT(lvl != 0,
602 ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
603 domain, (uintmax_t)base, lvl));
604 KASSERT(m->pindex != 0,
605 ("lost reference (idx) on root pg domain %p base %jx lvl %d",
606 domain, (uintmax_t)base, lvl));
607 dmar_pgfree(domain->pgtbl_obj, m->pindex, flags);
608 domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
609 }
610
611 /*
612 * Assumes that the unmap is never partial.
613 */
614 static int
615 domain_unmap_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
616 iommu_gaddr_t size, int flags)
617 {
618 dmar_pte_t *pte;
619 struct sf_buf *sf;
620 vm_pindex_t idx;
621 iommu_gaddr_t pg_sz;
622 int lvl;
623
624 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
625 if (size == 0)
626 return (0);
627
628 KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
629 ("modifying idmap pagetable domain %p", domain));
630 KASSERT((base & DMAR_PAGE_MASK) == 0,
631 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
632 (uintmax_t)size));
633 KASSERT((size & DMAR_PAGE_MASK) == 0,
634 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
635 (uintmax_t)size));
636 KASSERT(base < (1ULL << domain->agaw),
637 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
638 (uintmax_t)size, domain->agaw));
639 KASSERT(base + size < (1ULL << domain->agaw),
640 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
641 (uintmax_t)size, domain->agaw));
642 KASSERT(base + size > base,
643 ("size overflow %p %jx %jx", domain, (uintmax_t)base,
644 (uintmax_t)size));
645 KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
646
647 pg_sz = 0; /* silence gcc */
648 flags |= IOMMU_PGF_OBJL;
649 TD_PREP_PINNED_ASSERT;
650
651 for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
652 for (lvl = 0; lvl < domain->pglvl; lvl++) {
653 if (lvl != domain->pglvl - 1 &&
654 !domain_is_sp_lvl(domain, lvl))
655 continue;
656 pg_sz = domain_page_size(domain, lvl);
657 if (pg_sz > size)
658 continue;
659 pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
660 &idx, &sf);
661 KASSERT(pte != NULL,
662 ("sleeping or page missed %p %jx %d 0x%x",
663 domain, (uintmax_t)base, lvl, flags));
664 if ((pte->pte & DMAR_PTE_SP) != 0 ||
665 lvl == domain->pglvl - 1) {
666 domain_unmap_clear_pte(domain, base, lvl,
667 flags, pte, &sf, false);
668 break;
669 }
670 }
671 KASSERT(size >= pg_sz,
672 ("unmapping loop overflow %p %jx %jx %jx", domain,
673 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
674 }
675 if (sf != NULL)
676 dmar_unmap_pgtbl(sf);
677 /*
678 * See 11.1 Write Buffer Flushing for an explanation why RWBF
679 * can be ignored there.
680 */
681
682 TD_PINNED_ASSERT;
683 return (0);
684 }
685
686 static int
687 domain_unmap_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
688 iommu_gaddr_t size, int flags)
689 {
690 struct dmar_domain *domain;
691 int error;
692
693 domain = IODOM2DOM(iodom);
694
695 DMAR_DOMAIN_PGLOCK(domain);
696 error = domain_unmap_buf_locked(domain, base, size, flags);
697 DMAR_DOMAIN_PGUNLOCK(domain);
698 return (error);
699 }
700
701 int
702 domain_alloc_pgtbl(struct dmar_domain *domain)
703 {
704 vm_page_t m;
705
706 KASSERT(domain->pgtbl_obj == NULL,
707 ("already initialized %p", domain));
708
709 domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
710 IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
711 DMAR_DOMAIN_PGLOCK(domain);
712 m = dmar_pgalloc(domain->pgtbl_obj, 0, IOMMU_PGF_WAITOK |
713 IOMMU_PGF_ZERO | IOMMU_PGF_OBJL);
714 /* No implicit free of the top level page table page. */
715 m->ref_count = 1;
716 DMAR_DOMAIN_PGUNLOCK(domain);
717 DMAR_LOCK(domain->dmar);
718 domain->iodom.flags |= IOMMU_DOMAIN_PGTBL_INITED;
719 DMAR_UNLOCK(domain->dmar);
720 return (0);
721 }
722
723 void
724 domain_free_pgtbl(struct dmar_domain *domain)
725 {
726 vm_object_t obj;
727 vm_page_t m;
728
729 obj = domain->pgtbl_obj;
730 if (obj == NULL) {
731 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
732 (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0,
733 ("lost pagetable object domain %p", domain));
734 return;
735 }
736 DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
737 domain->pgtbl_obj = NULL;
738
739 if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0) {
740 put_idmap_pgtbl(obj);
741 domain->iodom.flags &= ~IOMMU_DOMAIN_IDMAP;
742 return;
743 }
744
745 /* Obliterate ref_counts */
746 VM_OBJECT_ASSERT_WLOCKED(obj);
747 for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
748 m->ref_count = 0;
749 VM_OBJECT_WUNLOCK(obj);
750 vm_object_deallocate(obj);
751 }
752
753 static inline uint64_t
754 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
755 {
756 uint64_t iotlbr;
757
758 dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
759 DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
760 for (;;) {
761 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
762 if ((iotlbr & DMAR_IOTLB_IVT) == 0)
763 break;
764 cpu_spinwait();
765 }
766 return (iotlbr);
767 }
768
769 void
770 domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
771 iommu_gaddr_t size)
772 {
773 struct dmar_unit *unit;
774 iommu_gaddr_t isize;
775 uint64_t iotlbr;
776 int am, iro;
777
778 unit = domain->dmar;
779 KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
780 unit->iommu.unit));
781 iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
782 DMAR_LOCK(unit);
783 if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
784 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
785 DMAR_IOTLB_DID(domain->domain), iro);
786 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
787 DMAR_IOTLB_IAIG_INVLD,
788 ("dmar%d: invalidation failed %jx", unit->iommu.unit,
789 (uintmax_t)iotlbr));
790 } else {
791 for (; size > 0; base += isize, size -= isize) {
792 am = calc_am(unit, base, size, &isize);
793 dmar_write8(unit, iro, base | am);
794 iotlbr = domain_wait_iotlb_flush(unit,
795 DMAR_IOTLB_IIRG_PAGE |
796 DMAR_IOTLB_DID(domain->domain), iro);
797 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
798 DMAR_IOTLB_IAIG_INVLD,
799 ("dmar%d: PSI invalidation failed "
800 "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
801 unit->iommu.unit, (uintmax_t)iotlbr,
802 (uintmax_t)base, (uintmax_t)size, am));
803 /*
804 * Any non-page granularity covers whole guest
805 * address space for the domain.
806 */
807 if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
808 DMAR_IOTLB_IAIG_PAGE)
809 break;
810 }
811 }
812 DMAR_UNLOCK(unit);
813 }
814
815 const struct iommu_domain_map_ops dmar_domain_map_ops = {
816 .map = domain_map_buf,
817 .unmap = domain_unmap_buf,
818 };
Cache object: ad569cae53600151aa3d834bd7428d0d
|