The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_intrmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 The FreeBSD Foundation
    3  *
    4  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    5  * under sponsorship from the FreeBSD Foundation.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/bus.h>
   35 #include <sys/kernel.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/memdesc.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rman.h>
   41 #include <sys/rwlock.h>
   42 #include <sys/sysctl.h>
   43 #include <sys/taskqueue.h>
   44 #include <sys/tree.h>
   45 #include <sys/vmem.h>
   46 #include <vm/vm.h>
   47 #include <vm/vm_extern.h>
   48 #include <vm/vm_kern.h>
   49 #include <vm/vm_object.h>
   50 #include <vm/vm_page.h>
   51 #include <dev/pci/pcireg.h>
   52 #include <dev/pci/pcivar.h>
   53 #include <machine/bus.h>
   54 #include <machine/intr_machdep.h>
   55 #include <x86/include/apicreg.h>
   56 #include <x86/include/apicvar.h>
   57 #include <x86/include/busdma_impl.h>
   58 #include <dev/iommu/busdma_iommu.h>
   59 #include <x86/iommu/intel_reg.h>
   60 #include <x86/iommu/intel_dmar.h>
   61 #include <x86/iommu/iommu_intrmap.h>
   62 
   63 static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid,
   64     int *is_dmar);
   65 static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx,
   66     uint64_t low, uint16_t rid);
   67 static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie);
   68 
   69 int
   70 iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count)
   71 {
   72         struct dmar_unit *unit;
   73         vmem_addr_t vmem_res;
   74         u_int idx, i;
   75         int error;
   76 
   77         unit = dmar_ir_find(src, NULL, NULL);
   78         if (unit == NULL || !unit->ir_enabled) {
   79                 for (i = 0; i < count; i++)
   80                         cookies[i] = -1;
   81                 return (EOPNOTSUPP);
   82         }
   83 
   84         error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT,
   85             &vmem_res);
   86         if (error != 0) {
   87                 KASSERT(error != EOPNOTSUPP,
   88                     ("impossible EOPNOTSUPP from vmem"));
   89                 return (error);
   90         }
   91         idx = vmem_res;
   92         for (i = 0; i < count; i++)
   93                 cookies[i] = idx + i;
   94         return (0);
   95 }
   96 
   97 int
   98 iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie,
   99     uint64_t *addr, uint32_t *data)
  100 {
  101         struct dmar_unit *unit;
  102         uint64_t low;
  103         uint16_t rid;
  104         int is_dmar;
  105 
  106         unit = dmar_ir_find(src, &rid, &is_dmar);
  107         if (is_dmar) {
  108                 KASSERT(unit == NULL, ("DMAR cannot translate itself"));
  109 
  110                 /*
  111                  * See VT-d specification, 5.1.6 Remapping Hardware -
  112                  * Interrupt Programming.
  113                  */
  114                 *data = vector;
  115                 *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12);
  116                 if (x2apic_mode)
  117                         *addr |= ((uint64_t)cpu & 0xffffff00) << 32;
  118                 else
  119                         KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu));
  120                 return (0);
  121         }
  122         if (unit == NULL || !unit->ir_enabled || cookie == -1)
  123                 return (EOPNOTSUPP);
  124 
  125         low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
  126             DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) |
  127             DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT |
  128             DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
  129         dmar_ir_program_irte(unit, cookie, low, rid);
  130 
  131         if (addr != NULL) {
  132                 /*
  133                  * See VT-d specification, 5.1.5.2 MSI and MSI-X
  134                  * Register Programming.
  135                  */
  136                 *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) |
  137                     ((cookie & 0x8000) << 2) | 0x18;
  138                 *data = 0;
  139         }
  140         return (0);
  141 }
  142 
  143 int
  144 iommu_unmap_msi_intr(device_t src, u_int cookie)
  145 {
  146         struct dmar_unit *unit;
  147 
  148         if (cookie == -1)
  149                 return (0);
  150         unit = dmar_ir_find(src, NULL, NULL);
  151         return (dmar_ir_free_irte(unit, cookie));
  152 }
  153 
  154 int
  155 iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge,
  156     bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo)
  157 {
  158         struct dmar_unit *unit;
  159         vmem_addr_t vmem_res;
  160         uint64_t low, iorte;
  161         u_int idx;
  162         int error;
  163         uint16_t rid;
  164 
  165         unit = dmar_find_ioapic(ioapic_id, &rid);
  166         if (unit == NULL || !unit->ir_enabled) {
  167                 *cookie = -1;
  168                 return (EOPNOTSUPP);
  169         }
  170 
  171         error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res);
  172         if (error != 0) {
  173                 KASSERT(error != EOPNOTSUPP,
  174                     ("impossible EOPNOTSUPP from vmem"));
  175                 return (error);
  176         }
  177         idx = vmem_res;
  178         low = 0;
  179         switch (irq) {
  180         case IRQ_EXTINT:
  181                 low |= DMAR_IRTE1_DLM_ExtINT;
  182                 break;
  183         case IRQ_NMI:
  184                 low |= DMAR_IRTE1_DLM_NMI;
  185                 break;
  186         case IRQ_SMI:
  187                 low |= DMAR_IRTE1_DLM_SMI;
  188                 break;
  189         default:
  190                 KASSERT(vector != 0, ("No vector for IRQ %u", irq));
  191                 low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector);
  192                 break;
  193         }
  194         low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
  195             DMAR_IRTE1_DST_xAPIC(cpu)) |
  196             (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) |
  197             DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
  198         dmar_ir_program_irte(unit, idx, low, rid);
  199 
  200         if (hi != NULL) {
  201                 /*
  202                  * See VT-d specification, 5.1.5.1 I/OxAPIC
  203                  * Programming.
  204                  */
  205                 iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) |
  206                     ((idx & 0x8000) != 0 ? (1 << 11) : 0) |
  207                     (edge ? IOART_TRGREDG : IOART_TRGRLVL) |
  208                     (activehi ? IOART_INTAHI : IOART_INTALO) |
  209                     IOART_DELFIXED | vector;
  210                 *hi = iorte >> 32;
  211                 *lo = iorte;
  212         }
  213         *cookie = idx;
  214         return (0);
  215 }
  216 
  217 int
  218 iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie)
  219 {
  220         struct dmar_unit *unit;
  221         u_int idx;
  222 
  223         idx = *cookie;
  224         if (idx == -1)
  225                 return (0);
  226         *cookie = -1;
  227         unit = dmar_find_ioapic(ioapic_id, NULL);
  228         KASSERT(unit != NULL && unit->ir_enabled,
  229             ("unmap: cookie %d unit %p", idx, unit));
  230         return (dmar_ir_free_irte(unit, idx));
  231 }
  232 
  233 static struct dmar_unit *
  234 dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar)
  235 {
  236         devclass_t src_class;
  237         struct dmar_unit *unit;
  238 
  239         /*
  240          * We need to determine if the interrupt source generates FSB
  241          * interrupts.  If yes, it is either DMAR, in which case
  242          * interrupts are not remapped.  Or it is HPET, and interrupts
  243          * are remapped.  For HPET, source id is reported by HPET
  244          * record in DMAR ACPI table.
  245          */
  246         if (is_dmar != NULL)
  247                 *is_dmar = FALSE;
  248         src_class = device_get_devclass(src);
  249         if (src_class == devclass_find("dmar")) {
  250                 unit = NULL;
  251                 if (is_dmar != NULL)
  252                         *is_dmar = TRUE;
  253         } else if (src_class == devclass_find("hpet")) {
  254                 unit = dmar_find_hpet(src, rid);
  255         } else {
  256                 unit = dmar_find(src, bootverbose);
  257                 if (unit != NULL && rid != NULL)
  258                         iommu_get_requester(src, rid);
  259         }
  260         return (unit);
  261 }
  262 
  263 static void
  264 dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low,
  265     uint16_t rid)
  266 {
  267         dmar_irte_t *irte;
  268         uint64_t high;
  269 
  270         KASSERT(idx < unit->irte_cnt,
  271             ("bad cookie %d %d", idx, unit->irte_cnt));
  272         irte = &(unit->irt[idx]);
  273         high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID |
  274             DMAR_IRTE2_SID_RID(rid);
  275         if (bootverbose) {
  276                 device_printf(unit->dev,
  277                     "programming irte[%d] rid %#x high %#jx low %#jx\n",
  278                     idx, rid, (uintmax_t)high, (uintmax_t)low);
  279         }
  280         DMAR_LOCK(unit);
  281         if ((irte->irte1 & DMAR_IRTE1_P) != 0) {
  282                 /*
  283                  * The rte is already valid.  Assume that the request
  284                  * is to remap the interrupt for balancing.  Only low
  285                  * word of rte needs to be changed.  Assert that the
  286                  * high word contains expected value.
  287                  */
  288                 KASSERT(irte->irte2 == high,
  289                     ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2,
  290                     (uintmax_t)high));
  291                 dmar_pte_update(&irte->irte1, low);
  292         } else {
  293                 dmar_pte_store(&irte->irte2, high);
  294                 dmar_pte_store(&irte->irte1, low);
  295         }
  296         dmar_qi_invalidate_iec(unit, idx, 1);
  297         DMAR_UNLOCK(unit);
  298 
  299 }
  300 
  301 static int
  302 dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie)
  303 {
  304         dmar_irte_t *irte;
  305 
  306         KASSERT(unit != NULL && unit->ir_enabled,
  307             ("unmap: cookie %d unit %p", cookie, unit));
  308         KASSERT(cookie < unit->irte_cnt,
  309             ("bad cookie %u %u", cookie, unit->irte_cnt));
  310         irte = &(unit->irt[cookie]);
  311         dmar_pte_clear(&irte->irte1);
  312         dmar_pte_clear(&irte->irte2);
  313         DMAR_LOCK(unit);
  314         dmar_qi_invalidate_iec(unit, cookie, 1);
  315         DMAR_UNLOCK(unit);
  316         vmem_free(unit->irtids, cookie, 1);
  317         return (0);
  318 }
  319 
  320 static u_int
  321 clp2(u_int v)
  322 {
  323 
  324         return (powerof2(v) ? v : 1 << fls(v));
  325 }
  326 
  327 int
  328 dmar_init_irt(struct dmar_unit *unit)
  329 {
  330 
  331         if ((unit->hw_ecap & DMAR_ECAP_IR) == 0)
  332                 return (0);
  333         unit->ir_enabled = 1;
  334         TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled);
  335         if (!unit->ir_enabled)
  336                 return (0);
  337         if (!unit->qi_enabled) {
  338                 unit->ir_enabled = 0;
  339                 if (bootverbose)
  340                         device_printf(unit->dev,
  341              "QI disabled, disabling interrupt remapping\n");
  342                 return (0);
  343         }
  344         unit->irte_cnt = clp2(num_io_irqs);
  345         unit->irt = kmem_alloc_contig(unit->irte_cnt * sizeof(dmar_irte_t),
  346             M_ZERO | M_WAITOK, 0, dmar_high, PAGE_SIZE, 0,
  347             DMAR_IS_COHERENT(unit) ?
  348             VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE);
  349         if (unit->irt == NULL)
  350                 return (ENOMEM);
  351         unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt);
  352         unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0,
  353             M_FIRSTFIT | M_NOWAIT);
  354         DMAR_LOCK(unit);
  355         dmar_load_irt_ptr(unit);
  356         dmar_qi_invalidate_iec_glob(unit);
  357         DMAR_UNLOCK(unit);
  358 
  359         /*
  360          * Initialize mappings for already configured interrupt pins.
  361          * Required, because otherwise the interrupts fault without
  362          * irtes.
  363          */
  364         intr_reprogram();
  365 
  366         DMAR_LOCK(unit);
  367         dmar_enable_ir(unit);
  368         DMAR_UNLOCK(unit);
  369         return (0);
  370 }
  371 
  372 void
  373 dmar_fini_irt(struct dmar_unit *unit)
  374 {
  375 
  376         unit->ir_enabled = 0;
  377         if (unit->irt != NULL) {
  378                 dmar_disable_ir(unit);
  379                 dmar_qi_invalidate_iec_glob(unit);
  380                 vmem_destroy(unit->irtids);
  381                 kmem_free(unit->irt, unit->irte_cnt * sizeof(dmar_irte_t));
  382         }
  383 }

Cache object: 3c264d35298428055f02d8dcb4197c8d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.