The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_intrmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/kernel.h>
   37 #include <sys/lock.h>
   38 #include <sys/malloc.h>
   39 #include <sys/memdesc.h>
   40 #include <sys/rman.h>
   41 #include <sys/rwlock.h>
   42 #include <sys/taskqueue.h>
   43 #include <sys/tree.h>
   44 #include <sys/vmem.h>
   45 #include <machine/bus.h>
   46 #include <machine/intr_machdep.h>
   47 #include <vm/vm.h>
   48 #include <vm/vm_extern.h>
   49 #include <vm/vm_kern.h>
   50 #include <vm/vm_object.h>
   51 #include <vm/vm_page.h>
   52 #include <x86/include/apicreg.h>
   53 #include <x86/include/apicvar.h>
   54 #include <x86/include/busdma_impl.h>
   55 #include <x86/iommu/intel_reg.h>
   56 #include <x86/iommu/busdma_dmar.h>
   57 #include <dev/pci/pcireg.h>
   58 #include <x86/iommu/intel_dmar.h>
   59 #include <dev/pci/pcivar.h>
   60 #include <x86/iommu/iommu_intrmap.h>
   61 
   62 static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid,
   63     int *is_dmar);
   64 static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx,
   65     uint64_t low, uint16_t rid);
   66 static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie);
   67 
   68 int
   69 iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count)
   70 {
   71         struct dmar_unit *unit;
   72         vmem_addr_t vmem_res;
   73         u_int idx, i;
   74         int error;
   75 
   76         unit = dmar_ir_find(src, NULL, NULL);
   77         if (unit == NULL || !unit->ir_enabled) {
   78                 for (i = 0; i < count; i++)
   79                         cookies[i] = -1;
   80                 return (EOPNOTSUPP);
   81         }
   82 
   83         error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT,
   84             &vmem_res);
   85         if (error != 0) {
   86                 KASSERT(error != EOPNOTSUPP,
   87                     ("impossible EOPNOTSUPP from vmem"));
   88                 return (error);
   89         }
   90         idx = vmem_res;
   91         for (i = 0; i < count; i++)
   92                 cookies[i] = idx + i;
   93         return (0);
   94 }
   95 
   96 int
   97 iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie,
   98     uint64_t *addr, uint32_t *data)
   99 {
  100         struct dmar_unit *unit;
  101         uint64_t low;
  102         uint16_t rid;
  103         int is_dmar;
  104 
  105         unit = dmar_ir_find(src, &rid, &is_dmar);
  106         if (is_dmar) {
  107                 KASSERT(unit == NULL, ("DMAR cannot translate itself"));
  108 
  109                 /*
  110                  * See VT-d specification, 5.1.6 Remapping Hardware -
  111                  * Interrupt Programming.
  112                  */
  113                 *data = vector;
  114                 *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12);
  115                 if (x2apic_mode)
  116                         *addr |= ((uint64_t)cpu & 0xffffff00) << 32;
  117                 else
  118                         KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu));
  119                 return (0);
  120         }
  121         if (unit == NULL || !unit->ir_enabled || cookie == -1)
  122                 return (EOPNOTSUPP);
  123 
  124         low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
  125             DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) |
  126             DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT |
  127             DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
  128         dmar_ir_program_irte(unit, cookie, low, rid);
  129 
  130         if (addr != NULL) {
  131                 /*
  132                  * See VT-d specification, 5.1.5.2 MSI and MSI-X
  133                  * Register Programming.
  134                  */
  135                 *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) |
  136                     ((cookie & 0x8000) << 2) | 0x18;
  137                 *data = 0;
  138         }
  139         return (0);
  140 }
  141 
  142 int
  143 iommu_unmap_msi_intr(device_t src, u_int cookie)
  144 {
  145         struct dmar_unit *unit;
  146 
  147         if (cookie == -1)
  148                 return (0);
  149         unit = dmar_ir_find(src, NULL, NULL);
  150         return (dmar_ir_free_irte(unit, cookie));
  151 }
  152 
  153 int
  154 iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge,
  155     bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo)
  156 {
  157         struct dmar_unit *unit;
  158         vmem_addr_t vmem_res;
  159         uint64_t low, iorte;
  160         u_int idx;
  161         int error;
  162         uint16_t rid;
  163 
  164         unit = dmar_find_ioapic(ioapic_id, &rid);
  165         if (unit == NULL || !unit->ir_enabled) {
  166                 *cookie = -1;
  167                 return (EOPNOTSUPP);
  168         }
  169 
  170         error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res);
  171         if (error != 0) {
  172                 KASSERT(error != EOPNOTSUPP,
  173                     ("impossible EOPNOTSUPP from vmem"));
  174                 return (error);
  175         }
  176         idx = vmem_res;
  177         low = 0;
  178         switch (irq) {
  179         case IRQ_EXTINT:
  180                 low |= DMAR_IRTE1_DLM_ExtINT;
  181                 break;
  182         case IRQ_NMI:
  183                 low |= DMAR_IRTE1_DLM_NMI;
  184                 break;
  185         case IRQ_SMI:
  186                 low |= DMAR_IRTE1_DLM_SMI;
  187                 break;
  188         default:
  189                 KASSERT(vector != 0, ("No vector for IRQ %u", irq));
  190                 low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector);
  191                 break;
  192         }
  193         low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
  194             DMAR_IRTE1_DST_xAPIC(cpu)) |
  195             (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) |
  196             DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
  197         dmar_ir_program_irte(unit, idx, low, rid);
  198 
  199         if (hi != NULL) {
  200                 /*
  201                  * See VT-d specification, 5.1.5.1 I/OxAPIC
  202                  * Programming.
  203                  */
  204                 iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) |
  205                     ((idx & 0x8000) != 0 ? (1 << 11) : 0) |
  206                     (edge ? IOART_TRGREDG : IOART_TRGRLVL) |
  207                     (activehi ? IOART_INTAHI : IOART_INTALO) |
  208                     IOART_DELFIXED | vector;
  209                 *hi = iorte >> 32;
  210                 *lo = iorte;
  211         }
  212         *cookie = idx;
  213         return (0);
  214 }
  215 
  216 int
  217 iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie)
  218 {
  219         struct dmar_unit *unit;
  220         u_int idx;
  221 
  222         idx = *cookie;
  223         if (idx == -1)
  224                 return (0);
  225         *cookie = -1;
  226         unit = dmar_find_ioapic(ioapic_id, NULL);
  227         KASSERT(unit != NULL && unit->ir_enabled,
  228             ("unmap: cookie %d unit %p", idx, unit));
  229         return (dmar_ir_free_irte(unit, idx));
  230 }
  231 
  232 static struct dmar_unit *
  233 dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar)
  234 {
  235         devclass_t src_class;
  236         struct dmar_unit *unit;
  237 
  238         /*
  239          * We need to determine if the interrupt source generates FSB
  240          * interrupts.  If yes, it is either DMAR, in which case
  241          * interrupts are not remapped.  Or it is HPET, and interrupts
  242          * are remapped.  For HPET, source id is reported by HPET
  243          * record in DMAR ACPI table.
  244          */
  245         if (is_dmar != NULL)
  246                 *is_dmar = FALSE;
  247         src_class = device_get_devclass(src);
  248         if (src_class == devclass_find("dmar")) {
  249                 unit = NULL;
  250                 if (is_dmar != NULL)
  251                         *is_dmar = TRUE;
  252         } else if (src_class == devclass_find("hpet")) {
  253                 unit = dmar_find_hpet(src, rid);
  254         } else {
  255                 unit = dmar_find(src, bootverbose);
  256                 if (unit != NULL && rid != NULL)
  257                         dmar_get_requester(src, rid);
  258         }
  259         return (unit);
  260 }
  261 
  262 static void
  263 dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low,
  264     uint16_t rid)
  265 {
  266         dmar_irte_t *irte;
  267         uint64_t high;
  268 
  269         KASSERT(idx < unit->irte_cnt,
  270             ("bad cookie %d %d", idx, unit->irte_cnt));
  271         irte = &(unit->irt[idx]);
  272         high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID |
  273             DMAR_IRTE2_SID_RID(rid);
  274         if (bootverbose) {
  275                 device_printf(unit->dev,
  276                     "programming irte[%d] rid %#x high %#jx low %#jx\n",
  277                     idx, rid, (uintmax_t)high, (uintmax_t)low);
  278         }
  279         DMAR_LOCK(unit);
  280         if ((irte->irte1 & DMAR_IRTE1_P) != 0) {
  281                 /*
  282                  * The rte is already valid.  Assume that the request
  283                  * is to remap the interrupt for balancing.  Only low
  284                  * word of rte needs to be changed.  Assert that the
  285                  * high word contains expected value.
  286                  */
  287                 KASSERT(irte->irte2 == high,
  288                     ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2,
  289                     (uintmax_t)high));
  290                 dmar_pte_update(&irte->irte1, low);
  291         } else {
  292                 dmar_pte_store(&irte->irte2, high);
  293                 dmar_pte_store(&irte->irte1, low);
  294         }
  295         dmar_qi_invalidate_iec(unit, idx, 1);
  296         DMAR_UNLOCK(unit);
  297 
  298 }
  299 
  300 static int
  301 dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie)
  302 {
  303         dmar_irte_t *irte;
  304 
  305         KASSERT(unit != NULL && unit->ir_enabled,
  306             ("unmap: cookie %d unit %p", cookie, unit));
  307         KASSERT(cookie < unit->irte_cnt,
  308             ("bad cookie %u %u", cookie, unit->irte_cnt));
  309         irte = &(unit->irt[cookie]);
  310         dmar_pte_clear(&irte->irte1);
  311         dmar_pte_clear(&irte->irte2);
  312         DMAR_LOCK(unit);
  313         dmar_qi_invalidate_iec(unit, cookie, 1);
  314         DMAR_UNLOCK(unit);
  315         vmem_free(unit->irtids, cookie, 1);
  316         return (0);
  317 }
  318 
  319 static u_int
  320 clp2(u_int v)
  321 {
  322 
  323         return (powerof2(v) ? v : 1 << fls(v));
  324 }
  325 
  326 int
  327 dmar_init_irt(struct dmar_unit *unit)
  328 {
  329 
  330         if ((unit->hw_ecap & DMAR_ECAP_IR) == 0)
  331                 return (0);
  332         unit->ir_enabled = 1;
  333         TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled);
  334         if (!unit->ir_enabled)
  335                 return (0);
  336         if (!unit->qi_enabled) {
  337                 unit->ir_enabled = 0;
  338                 if (bootverbose)
  339                         device_printf(unit->dev,
  340              "QI disabled, disabling interrupt remapping\n");
  341                 return (0);
  342         }
  343         unit->irte_cnt = clp2(num_io_irqs);
  344         unit->irt = (dmar_irte_t *)(uintptr_t)kmem_alloc_contig(
  345             unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0,
  346             dmar_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ?
  347             VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE);
  348         if (unit->irt == NULL)
  349                 return (ENOMEM);
  350         unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt);
  351         unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0,
  352             M_FIRSTFIT | M_NOWAIT);
  353         DMAR_LOCK(unit);
  354         dmar_load_irt_ptr(unit);
  355         dmar_qi_invalidate_iec_glob(unit);
  356         DMAR_UNLOCK(unit);
  357 
  358         /*
  359          * Initialize mappings for already configured interrupt pins.
  360          * Required, because otherwise the interrupts fault without
  361          * irtes.
  362          */
  363         intr_reprogram();
  364 
  365         DMAR_LOCK(unit);
  366         dmar_enable_ir(unit);
  367         DMAR_UNLOCK(unit);
  368         return (0);
  369 }
  370 
  371 void
  372 dmar_fini_irt(struct dmar_unit *unit)
  373 {
  374 
  375         unit->ir_enabled = 0;
  376         if (unit->irt != NULL) {
  377                 dmar_disable_ir(unit);
  378                 dmar_qi_invalidate_iec_glob(unit);
  379                 vmem_destroy(unit->irtids);
  380                 kmem_free((vm_offset_t)unit->irt, unit->irte_cnt *
  381                     sizeof(dmar_irte_t));
  382         }
  383 }

Cache object: a43f22026f4420027db5b568de8bb1f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.