The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_utils.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/11.0/sys/x86/iommu/intel_utils.c 298144 2016-04-17 10:56:56Z kib $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/bus.h>
   35 #include <sys/kernel.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/memdesc.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/queue.h>
   42 #include <sys/rman.h>
   43 #include <sys/rwlock.h>
   44 #include <sys/sched.h>
   45 #include <sys/sf_buf.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/systm.h>
   48 #include <sys/taskqueue.h>
   49 #include <sys/tree.h>
   50 #include <sys/vmem.h>
   51 #include <dev/pci/pcivar.h>
   52 #include <vm/vm.h>
   53 #include <vm/vm_extern.h>
   54 #include <vm/vm_kern.h>
   55 #include <vm/vm_object.h>
   56 #include <vm/vm_page.h>
   57 #include <vm/vm_map.h>
   58 #include <vm/vm_pageout.h>
   59 #include <machine/bus.h>
   60 #include <machine/cpu.h>
   61 #include <machine/intr_machdep.h>
   62 #include <x86/include/apicvar.h>
   63 #include <x86/include/busdma_impl.h>
   64 #include <x86/iommu/intel_reg.h>
   65 #include <x86/iommu/busdma_dmar.h>
   66 #include <x86/iommu/intel_dmar.h>
   67 
   68 u_int
   69 dmar_nd2mask(u_int nd)
   70 {
   71         static const u_int masks[] = {
   72                 0x000f, /* nd == 0 */
   73                 0x002f, /* nd == 1 */
   74                 0x00ff, /* nd == 2 */
   75                 0x02ff, /* nd == 3 */
   76                 0x0fff, /* nd == 4 */
   77                 0x2fff, /* nd == 5 */
   78                 0xffff, /* nd == 6 */
   79                 0x0000, /* nd == 7 reserved */
   80         };
   81 
   82         KASSERT(nd <= 6, ("number of domains %d", nd));
   83         return (masks[nd]);
   84 }
   85 
   86 static const struct sagaw_bits_tag {
   87         int agaw;
   88         int cap;
   89         int awlvl;
   90         int pglvl;
   91 } sagaw_bits[] = {
   92         {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
   93             .pglvl = 2},
   94         {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
   95             .pglvl = 3},
   96         {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
   97             .pglvl = 4},
   98         {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
   99             .pglvl = 5},
  100         {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
  101             .pglvl = 6}
  102 };
  103 
  104 bool
  105 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
  106 {
  107         int i;
  108 
  109         for (i = 0; i < nitems(sagaw_bits); i++) {
  110                 if (sagaw_bits[i].pglvl != pglvl)
  111                         continue;
  112                 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  113                         return (true);
  114         }
  115         return (false);
  116 }
  117 
  118 int
  119 domain_set_agaw(struct dmar_domain *domain, int mgaw)
  120 {
  121         int sagaw, i;
  122 
  123         domain->mgaw = mgaw;
  124         sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
  125         for (i = 0; i < nitems(sagaw_bits); i++) {
  126                 if (sagaw_bits[i].agaw >= mgaw) {
  127                         domain->agaw = sagaw_bits[i].agaw;
  128                         domain->pglvl = sagaw_bits[i].pglvl;
  129                         domain->awlvl = sagaw_bits[i].awlvl;
  130                         return (0);
  131                 }
  132         }
  133         device_printf(domain->dmar->dev,
  134             "context request mgaw %d: no agaw found, sagaw %x\n",
  135             mgaw, sagaw);
  136         return (EINVAL);
  137 }
  138 
  139 /*
  140  * Find a best fit mgaw for the given maxaddr:
  141  *   - if allow_less is false, must find sagaw which maps all requested
  142  *     addresses (used by identity mappings);
  143  *   - if allow_less is true, and no supported sagaw can map all requested
  144  *     address space, accept the biggest sagaw, whatever is it.
  145  */
  146 int
  147 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
  148 {
  149         int i;
  150 
  151         for (i = 0; i < nitems(sagaw_bits); i++) {
  152                 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
  153                     (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  154                         break;
  155         }
  156         if (allow_less && i == nitems(sagaw_bits)) {
  157                 do {
  158                         i--;
  159                 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
  160                     == 0);
  161         }
  162         if (i < nitems(sagaw_bits))
  163                 return (sagaw_bits[i].agaw);
  164         KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
  165             (uintmax_t) maxaddr, allow_less));
  166         return (-1);
  167 }
  168 
  169 /*
  170  * Calculate the total amount of page table pages needed to map the
  171  * whole bus address space on the context with the selected agaw.
  172  */
  173 vm_pindex_t
  174 pglvl_max_pages(int pglvl)
  175 {
  176         vm_pindex_t res;
  177         int i;
  178 
  179         for (res = 0, i = pglvl; i > 0; i--) {
  180                 res *= DMAR_NPTEPG;
  181                 res++;
  182         }
  183         return (res);
  184 }
  185 
  186 /*
  187  * Return true if the page table level lvl supports the superpage for
  188  * the context ctx.
  189  */
  190 int
  191 domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
  192 {
  193         int alvl, cap_sps;
  194         static const int sagaw_sp[] = {
  195                 DMAR_CAP_SPS_2M,
  196                 DMAR_CAP_SPS_1G,
  197                 DMAR_CAP_SPS_512G,
  198                 DMAR_CAP_SPS_1T
  199         };
  200 
  201         alvl = domain->pglvl - lvl - 1;
  202         cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
  203         return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
  204 }
  205 
  206 dmar_gaddr_t
  207 pglvl_page_size(int total_pglvl, int lvl)
  208 {
  209         int rlvl;
  210         static const dmar_gaddr_t pg_sz[] = {
  211                 (dmar_gaddr_t)DMAR_PAGE_SIZE,
  212                 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
  213                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
  214                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
  215                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
  216                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
  217         };
  218 
  219         KASSERT(lvl >= 0 && lvl < total_pglvl,
  220             ("total %d lvl %d", total_pglvl, lvl));
  221         rlvl = total_pglvl - lvl - 1;
  222         KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
  223         return (pg_sz[rlvl]);
  224 }
  225 
  226 dmar_gaddr_t
  227 domain_page_size(struct dmar_domain *domain, int lvl)
  228 {
  229 
  230         return (pglvl_page_size(domain->pglvl, lvl));
  231 }
  232 
  233 int
  234 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
  235     dmar_gaddr_t *isizep)
  236 {
  237         dmar_gaddr_t isize;
  238         int am;
  239 
  240         for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
  241                 isize = 1ULL << (am + DMAR_PAGE_SHIFT);
  242                 if ((base & (isize - 1)) == 0 && size >= isize)
  243                         break;
  244                 if (am == 0)
  245                         break;
  246         }
  247         *isizep = isize;
  248         return (am);
  249 }
  250 
  251 dmar_haddr_t dmar_high;
  252 int haw;
  253 int dmar_tbl_pagecnt;
  254 
  255 vm_page_t
  256 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
  257 {
  258         vm_page_t m;
  259         int zeroed;
  260 
  261         zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
  262         for (;;) {
  263                 if ((flags & DMAR_PGF_OBJL) == 0)
  264                         VM_OBJECT_WLOCK(obj);
  265                 m = vm_page_lookup(obj, idx);
  266                 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
  267                         if ((flags & DMAR_PGF_OBJL) == 0)
  268                                 VM_OBJECT_WUNLOCK(obj);
  269                         break;
  270                 }
  271                 m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
  272                     VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
  273                     dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
  274                 if ((flags & DMAR_PGF_OBJL) == 0)
  275                         VM_OBJECT_WUNLOCK(obj);
  276                 if (m != NULL) {
  277                         if (zeroed && (m->flags & PG_ZERO) == 0)
  278                                 pmap_zero_page(m);
  279                         atomic_add_int(&dmar_tbl_pagecnt, 1);
  280                         break;
  281                 }
  282                 if ((flags & DMAR_PGF_WAITOK) == 0)
  283                         break;
  284                 if ((flags & DMAR_PGF_OBJL) != 0)
  285                         VM_OBJECT_WUNLOCK(obj);
  286                 VM_WAIT;
  287                 if ((flags & DMAR_PGF_OBJL) != 0)
  288                         VM_OBJECT_WLOCK(obj);
  289         }
  290         return (m);
  291 }
  292 
  293 void
  294 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
  295 {
  296         vm_page_t m;
  297 
  298         if ((flags & DMAR_PGF_OBJL) == 0)
  299                 VM_OBJECT_WLOCK(obj);
  300         m = vm_page_lookup(obj, idx);
  301         if (m != NULL) {
  302                 vm_page_free(m);
  303                 atomic_subtract_int(&dmar_tbl_pagecnt, 1);
  304         }
  305         if ((flags & DMAR_PGF_OBJL) == 0)
  306                 VM_OBJECT_WUNLOCK(obj);
  307 }
  308 
  309 void *
  310 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
  311     struct sf_buf **sf)
  312 {
  313         vm_page_t m;
  314         bool allocated;
  315 
  316         if ((flags & DMAR_PGF_OBJL) == 0)
  317                 VM_OBJECT_WLOCK(obj);
  318         m = vm_page_lookup(obj, idx);
  319         if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
  320                 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
  321                 allocated = true;
  322         } else
  323                 allocated = false;
  324         if (m == NULL) {
  325                 if ((flags & DMAR_PGF_OBJL) == 0)
  326                         VM_OBJECT_WUNLOCK(obj);
  327                 return (NULL);
  328         }
  329         /* Sleepable allocations cannot fail. */
  330         if ((flags & DMAR_PGF_WAITOK) != 0)
  331                 VM_OBJECT_WUNLOCK(obj);
  332         sched_pin();
  333         *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
  334             == 0 ? SFB_NOWAIT : 0));
  335         if (*sf == NULL) {
  336                 sched_unpin();
  337                 if (allocated) {
  338                         VM_OBJECT_ASSERT_WLOCKED(obj);
  339                         dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
  340                 }
  341                 if ((flags & DMAR_PGF_OBJL) == 0)
  342                         VM_OBJECT_WUNLOCK(obj);
  343                 return (NULL);
  344         }
  345         if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
  346             (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
  347                 VM_OBJECT_WLOCK(obj);
  348         else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
  349                 VM_OBJECT_WUNLOCK(obj);
  350         return ((void *)sf_buf_kva(*sf));
  351 }
  352 
  353 void
  354 dmar_unmap_pgtbl(struct sf_buf *sf)
  355 {
  356 
  357         sf_buf_free(sf);
  358         sched_unpin();
  359 }
  360 
  361 static void
  362 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
  363 {
  364 
  365         if (DMAR_IS_COHERENT(unit))
  366                 return;
  367         /*
  368          * If DMAR does not snoop paging structures accesses, flush
  369          * CPU cache to memory.
  370          */
  371         pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
  372             TRUE);
  373 }
  374 
  375 void
  376 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
  377 {
  378 
  379         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  380 }
  381 
  382 void
  383 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
  384 {
  385 
  386         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  387 }
  388 
  389 void
  390 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
  391 {
  392 
  393         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  394 }
  395 
  396 /*
  397  * Load the root entry pointer into the hardware, busily waiting for
  398  * the completion.
  399  */
  400 int
  401 dmar_load_root_entry_ptr(struct dmar_unit *unit)
  402 {
  403         vm_page_t root_entry;
  404 
  405         /*
  406          * Access to the GCMD register must be serialized while the
  407          * command is submitted.
  408          */
  409         DMAR_ASSERT_LOCKED(unit);
  410 
  411         VM_OBJECT_RLOCK(unit->ctx_obj);
  412         root_entry = vm_page_lookup(unit->ctx_obj, 0);
  413         VM_OBJECT_RUNLOCK(unit->ctx_obj);
  414         dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
  415         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
  416         /* XXXKIB should have a timeout */
  417         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0)
  418                 cpu_spinwait();
  419         return (0);
  420 }
  421 
  422 /*
  423  * Globally invalidate the context entries cache, busily waiting for
  424  * the completion.
  425  */
  426 int
  427 dmar_inv_ctx_glob(struct dmar_unit *unit)
  428 {
  429 
  430         /*
  431          * Access to the CCMD register must be serialized while the
  432          * command is submitted.
  433          */
  434         DMAR_ASSERT_LOCKED(unit);
  435         KASSERT(!unit->qi_enabled, ("QI enabled"));
  436 
  437         /*
  438          * The DMAR_CCMD_ICC bit in the upper dword should be written
  439          * after the low dword write is completed.  Amd64
  440          * dmar_write8() does not have this issue, i386 dmar_write8()
  441          * writes the upper dword last.
  442          */
  443         dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
  444         /* XXXKIB should have a timeout */
  445         while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0)
  446                 cpu_spinwait();
  447         return (0);
  448 }
  449 
  450 /*
  451  * Globally invalidate the IOTLB, busily waiting for the completion.
  452  */
  453 int
  454 dmar_inv_iotlb_glob(struct dmar_unit *unit)
  455 {
  456         int reg;
  457 
  458         DMAR_ASSERT_LOCKED(unit);
  459         KASSERT(!unit->qi_enabled, ("QI enabled"));
  460 
  461         reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
  462         /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
  463         dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  464             DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
  465         /* XXXKIB should have a timeout */
  466         while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
  467             DMAR_IOTLB_IVT32) != 0)
  468                 cpu_spinwait();
  469         return (0);
  470 }
  471 
  472 /*
  473  * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
  474  * in the architecture specification.
  475  */
  476 int
  477 dmar_flush_write_bufs(struct dmar_unit *unit)
  478 {
  479 
  480         DMAR_ASSERT_LOCKED(unit);
  481 
  482         /*
  483          * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
  484          */
  485         KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
  486             ("dmar%d: no RWBF", unit->unit));
  487 
  488         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
  489         /* XXXKIB should have a timeout */
  490         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0)
  491                 cpu_spinwait();
  492         return (0);
  493 }
  494 
  495 int
  496 dmar_enable_translation(struct dmar_unit *unit)
  497 {
  498 
  499         DMAR_ASSERT_LOCKED(unit);
  500         unit->hw_gcmd |= DMAR_GCMD_TE;
  501         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  502         /* XXXKIB should have a timeout */
  503         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)
  504                 cpu_spinwait();
  505         return (0);
  506 }
  507 
  508 int
  509 dmar_disable_translation(struct dmar_unit *unit)
  510 {
  511 
  512         DMAR_ASSERT_LOCKED(unit);
  513         unit->hw_gcmd &= ~DMAR_GCMD_TE;
  514         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  515         /* XXXKIB should have a timeout */
  516         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)
  517                 cpu_spinwait();
  518         return (0);
  519 }
  520 
  521 int
  522 dmar_load_irt_ptr(struct dmar_unit *unit)
  523 {
  524         uint64_t irta, s;
  525 
  526         DMAR_ASSERT_LOCKED(unit);
  527         irta = unit->irt_phys;
  528         if (DMAR_X2APIC(unit))
  529                 irta |= DMAR_IRTA_EIME;
  530         s = fls(unit->irte_cnt) - 2;
  531         KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
  532             powerof2(unit->irte_cnt),
  533             ("IRTA_REG_S overflow %x", unit->irte_cnt));
  534         irta |= s;
  535         dmar_write8(unit, DMAR_IRTA_REG, irta);
  536         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
  537         /* XXXKIB should have a timeout */
  538         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) == 0)
  539                 cpu_spinwait();
  540         return (0);
  541 }
  542 
  543 int
  544 dmar_enable_ir(struct dmar_unit *unit)
  545 {
  546 
  547         DMAR_ASSERT_LOCKED(unit);
  548         unit->hw_gcmd |= DMAR_GCMD_IRE;
  549         unit->hw_gcmd &= ~DMAR_GCMD_CFI;
  550         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  551         /* XXXKIB should have a timeout */
  552         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)
  553                 cpu_spinwait();
  554         return (0);
  555 }
  556 
  557 int
  558 dmar_disable_ir(struct dmar_unit *unit)
  559 {
  560 
  561         DMAR_ASSERT_LOCKED(unit);
  562         unit->hw_gcmd &= ~DMAR_GCMD_IRE;
  563         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  564         /* XXXKIB should have a timeout */
  565         while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)
  566                 cpu_spinwait();
  567         return (0);
  568 }
  569 
  570 #define BARRIER_F                               \
  571         u_int f_done, f_inproc, f_wakeup;       \
  572                                                 \
  573         f_done = 1 << (barrier_id * 3);         \
  574         f_inproc = 1 << (barrier_id * 3 + 1);   \
  575         f_wakeup = 1 << (barrier_id * 3 + 2)
  576 
  577 bool
  578 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
  579 {
  580         BARRIER_F;
  581 
  582         DMAR_LOCK(dmar);
  583         if ((dmar->barrier_flags & f_done) != 0) {
  584                 DMAR_UNLOCK(dmar);
  585                 return (false);
  586         }
  587 
  588         if ((dmar->barrier_flags & f_inproc) != 0) {
  589                 while ((dmar->barrier_flags & f_inproc) != 0) {
  590                         dmar->barrier_flags |= f_wakeup;
  591                         msleep(&dmar->barrier_flags, &dmar->lock, 0,
  592                             "dmarb", 0);
  593                 }
  594                 KASSERT((dmar->barrier_flags & f_done) != 0,
  595                     ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
  596                 DMAR_UNLOCK(dmar);
  597                 return (false);
  598         }
  599 
  600         dmar->barrier_flags |= f_inproc;
  601         DMAR_UNLOCK(dmar);
  602         return (true);
  603 }
  604 
  605 void
  606 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
  607 {
  608         BARRIER_F;
  609 
  610         DMAR_ASSERT_LOCKED(dmar);
  611         KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
  612             ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
  613         dmar->barrier_flags |= f_done;
  614         if ((dmar->barrier_flags & f_wakeup) != 0)
  615                 wakeup(&dmar->barrier_flags);
  616         dmar->barrier_flags &= ~(f_inproc | f_wakeup);
  617         DMAR_UNLOCK(dmar);
  618 }
  619 
  620 int dmar_match_verbose;
  621 int dmar_batch_coalesce = 100;
  622 
  623 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
  624 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
  625     &dmar_tbl_pagecnt, 0,
  626     "Count of pages used for DMAR pagetables");
  627 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
  628     &dmar_match_verbose, 0,
  629     "Verbose matching of the PCI devices to DMAR paths");
  630 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
  631     &dmar_batch_coalesce, 0,
  632     "Number of qi batches between interrupt");
  633 #ifdef INVARIANTS
  634 int dmar_check_free;
  635 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
  636     &dmar_check_free, 0,
  637     "Check the GPA RBtree for free_down and free_after validity");
  638 #endif
  639 

Cache object: c912a7dcd1ac207832a9099dc058d845


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.