The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_utils.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2013 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/11.1/sys/x86/iommu/intel_utils.c 316449 2017-04-03 09:41:43Z kib $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/bus.h>
   35 #include <sys/kernel.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/memdesc.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/queue.h>
   42 #include <sys/rman.h>
   43 #include <sys/rwlock.h>
   44 #include <sys/sched.h>
   45 #include <sys/sf_buf.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/systm.h>
   48 #include <sys/taskqueue.h>
   49 #include <sys/time.h>
   50 #include <sys/tree.h>
   51 #include <sys/vmem.h>
   52 #include <dev/pci/pcivar.h>
   53 #include <vm/vm.h>
   54 #include <vm/vm_extern.h>
   55 #include <vm/vm_kern.h>
   56 #include <vm/vm_object.h>
   57 #include <vm/vm_page.h>
   58 #include <vm/vm_map.h>
   59 #include <vm/vm_pageout.h>
   60 #include <machine/bus.h>
   61 #include <machine/cpu.h>
   62 #include <machine/intr_machdep.h>
   63 #include <x86/include/apicvar.h>
   64 #include <x86/include/busdma_impl.h>
   65 #include <x86/iommu/intel_reg.h>
   66 #include <x86/iommu/busdma_dmar.h>
   67 #include <x86/iommu/intel_dmar.h>
   68 
   69 u_int
   70 dmar_nd2mask(u_int nd)
   71 {
   72         static const u_int masks[] = {
   73                 0x000f, /* nd == 0 */
   74                 0x002f, /* nd == 1 */
   75                 0x00ff, /* nd == 2 */
   76                 0x02ff, /* nd == 3 */
   77                 0x0fff, /* nd == 4 */
   78                 0x2fff, /* nd == 5 */
   79                 0xffff, /* nd == 6 */
   80                 0x0000, /* nd == 7 reserved */
   81         };
   82 
   83         KASSERT(nd <= 6, ("number of domains %d", nd));
   84         return (masks[nd]);
   85 }
   86 
   87 static const struct sagaw_bits_tag {
   88         int agaw;
   89         int cap;
   90         int awlvl;
   91         int pglvl;
   92 } sagaw_bits[] = {
   93         {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
   94             .pglvl = 2},
   95         {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
   96             .pglvl = 3},
   97         {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
   98             .pglvl = 4},
   99         {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
  100             .pglvl = 5},
  101         {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
  102             .pglvl = 6}
  103 };
  104 
  105 bool
  106 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
  107 {
  108         int i;
  109 
  110         for (i = 0; i < nitems(sagaw_bits); i++) {
  111                 if (sagaw_bits[i].pglvl != pglvl)
  112                         continue;
  113                 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  114                         return (true);
  115         }
  116         return (false);
  117 }
  118 
  119 int
  120 domain_set_agaw(struct dmar_domain *domain, int mgaw)
  121 {
  122         int sagaw, i;
  123 
  124         domain->mgaw = mgaw;
  125         sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
  126         for (i = 0; i < nitems(sagaw_bits); i++) {
  127                 if (sagaw_bits[i].agaw >= mgaw) {
  128                         domain->agaw = sagaw_bits[i].agaw;
  129                         domain->pglvl = sagaw_bits[i].pglvl;
  130                         domain->awlvl = sagaw_bits[i].awlvl;
  131                         return (0);
  132                 }
  133         }
  134         device_printf(domain->dmar->dev,
  135             "context request mgaw %d: no agaw found, sagaw %x\n",
  136             mgaw, sagaw);
  137         return (EINVAL);
  138 }
  139 
  140 /*
  141  * Find a best fit mgaw for the given maxaddr:
  142  *   - if allow_less is false, must find sagaw which maps all requested
  143  *     addresses (used by identity mappings);
  144  *   - if allow_less is true, and no supported sagaw can map all requested
  145  *     address space, accept the biggest sagaw, whatever is it.
  146  */
  147 int
  148 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
  149 {
  150         int i;
  151 
  152         for (i = 0; i < nitems(sagaw_bits); i++) {
  153                 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
  154                     (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  155                         break;
  156         }
  157         if (allow_less && i == nitems(sagaw_bits)) {
  158                 do {
  159                         i--;
  160                 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
  161                     == 0);
  162         }
  163         if (i < nitems(sagaw_bits))
  164                 return (sagaw_bits[i].agaw);
  165         KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
  166             (uintmax_t) maxaddr, allow_less));
  167         return (-1);
  168 }
  169 
  170 /*
  171  * Calculate the total amount of page table pages needed to map the
  172  * whole bus address space on the context with the selected agaw.
  173  */
  174 vm_pindex_t
  175 pglvl_max_pages(int pglvl)
  176 {
  177         vm_pindex_t res;
  178         int i;
  179 
  180         for (res = 0, i = pglvl; i > 0; i--) {
  181                 res *= DMAR_NPTEPG;
  182                 res++;
  183         }
  184         return (res);
  185 }
  186 
  187 /*
  188  * Return true if the page table level lvl supports the superpage for
  189  * the context ctx.
  190  */
  191 int
  192 domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
  193 {
  194         int alvl, cap_sps;
  195         static const int sagaw_sp[] = {
  196                 DMAR_CAP_SPS_2M,
  197                 DMAR_CAP_SPS_1G,
  198                 DMAR_CAP_SPS_512G,
  199                 DMAR_CAP_SPS_1T
  200         };
  201 
  202         alvl = domain->pglvl - lvl - 1;
  203         cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
  204         return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
  205 }
  206 
  207 dmar_gaddr_t
  208 pglvl_page_size(int total_pglvl, int lvl)
  209 {
  210         int rlvl;
  211         static const dmar_gaddr_t pg_sz[] = {
  212                 (dmar_gaddr_t)DMAR_PAGE_SIZE,
  213                 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
  214                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
  215                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
  216                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
  217                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
  218         };
  219 
  220         KASSERT(lvl >= 0 && lvl < total_pglvl,
  221             ("total %d lvl %d", total_pglvl, lvl));
  222         rlvl = total_pglvl - lvl - 1;
  223         KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
  224         return (pg_sz[rlvl]);
  225 }
  226 
  227 dmar_gaddr_t
  228 domain_page_size(struct dmar_domain *domain, int lvl)
  229 {
  230 
  231         return (pglvl_page_size(domain->pglvl, lvl));
  232 }
  233 
  234 int
  235 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
  236     dmar_gaddr_t *isizep)
  237 {
  238         dmar_gaddr_t isize;
  239         int am;
  240 
  241         for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
  242                 isize = 1ULL << (am + DMAR_PAGE_SHIFT);
  243                 if ((base & (isize - 1)) == 0 && size >= isize)
  244                         break;
  245                 if (am == 0)
  246                         break;
  247         }
  248         *isizep = isize;
  249         return (am);
  250 }
  251 
  252 dmar_haddr_t dmar_high;
  253 int haw;
  254 int dmar_tbl_pagecnt;
  255 
  256 vm_page_t
  257 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
  258 {
  259         vm_page_t m;
  260         int zeroed;
  261 
  262         zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
  263         for (;;) {
  264                 if ((flags & DMAR_PGF_OBJL) == 0)
  265                         VM_OBJECT_WLOCK(obj);
  266                 m = vm_page_lookup(obj, idx);
  267                 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
  268                         if ((flags & DMAR_PGF_OBJL) == 0)
  269                                 VM_OBJECT_WUNLOCK(obj);
  270                         break;
  271                 }
  272                 m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
  273                     VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
  274                     dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
  275                 if ((flags & DMAR_PGF_OBJL) == 0)
  276                         VM_OBJECT_WUNLOCK(obj);
  277                 if (m != NULL) {
  278                         if (zeroed && (m->flags & PG_ZERO) == 0)
  279                                 pmap_zero_page(m);
  280                         atomic_add_int(&dmar_tbl_pagecnt, 1);
  281                         break;
  282                 }
  283                 if ((flags & DMAR_PGF_WAITOK) == 0)
  284                         break;
  285                 if ((flags & DMAR_PGF_OBJL) != 0)
  286                         VM_OBJECT_WUNLOCK(obj);
  287                 VM_WAIT;
  288                 if ((flags & DMAR_PGF_OBJL) != 0)
  289                         VM_OBJECT_WLOCK(obj);
  290         }
  291         return (m);
  292 }
  293 
  294 void
  295 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
  296 {
  297         vm_page_t m;
  298 
  299         if ((flags & DMAR_PGF_OBJL) == 0)
  300                 VM_OBJECT_WLOCK(obj);
  301         m = vm_page_lookup(obj, idx);
  302         if (m != NULL) {
  303                 vm_page_free(m);
  304                 atomic_subtract_int(&dmar_tbl_pagecnt, 1);
  305         }
  306         if ((flags & DMAR_PGF_OBJL) == 0)
  307                 VM_OBJECT_WUNLOCK(obj);
  308 }
  309 
  310 void *
  311 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
  312     struct sf_buf **sf)
  313 {
  314         vm_page_t m;
  315         bool allocated;
  316 
  317         if ((flags & DMAR_PGF_OBJL) == 0)
  318                 VM_OBJECT_WLOCK(obj);
  319         m = vm_page_lookup(obj, idx);
  320         if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
  321                 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
  322                 allocated = true;
  323         } else
  324                 allocated = false;
  325         if (m == NULL) {
  326                 if ((flags & DMAR_PGF_OBJL) == 0)
  327                         VM_OBJECT_WUNLOCK(obj);
  328                 return (NULL);
  329         }
  330         /* Sleepable allocations cannot fail. */
  331         if ((flags & DMAR_PGF_WAITOK) != 0)
  332                 VM_OBJECT_WUNLOCK(obj);
  333         sched_pin();
  334         *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
  335             == 0 ? SFB_NOWAIT : 0));
  336         if (*sf == NULL) {
  337                 sched_unpin();
  338                 if (allocated) {
  339                         VM_OBJECT_ASSERT_WLOCKED(obj);
  340                         dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
  341                 }
  342                 if ((flags & DMAR_PGF_OBJL) == 0)
  343                         VM_OBJECT_WUNLOCK(obj);
  344                 return (NULL);
  345         }
  346         if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
  347             (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
  348                 VM_OBJECT_WLOCK(obj);
  349         else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
  350                 VM_OBJECT_WUNLOCK(obj);
  351         return ((void *)sf_buf_kva(*sf));
  352 }
  353 
  354 void
  355 dmar_unmap_pgtbl(struct sf_buf *sf)
  356 {
  357 
  358         sf_buf_free(sf);
  359         sched_unpin();
  360 }
  361 
  362 static void
  363 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
  364 {
  365 
  366         if (DMAR_IS_COHERENT(unit))
  367                 return;
  368         /*
  369          * If DMAR does not snoop paging structures accesses, flush
  370          * CPU cache to memory.
  371          */
  372         pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
  373             TRUE);
  374 }
  375 
  376 void
  377 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
  378 {
  379 
  380         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  381 }
  382 
  383 void
  384 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
  385 {
  386 
  387         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  388 }
  389 
  390 void
  391 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
  392 {
  393 
  394         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  395 }
  396 
  397 /*
  398  * Load the root entry pointer into the hardware, busily waiting for
  399  * the completion.
  400  */
  401 int
  402 dmar_load_root_entry_ptr(struct dmar_unit *unit)
  403 {
  404         vm_page_t root_entry;
  405         int error;
  406 
  407         /*
  408          * Access to the GCMD register must be serialized while the
  409          * command is submitted.
  410          */
  411         DMAR_ASSERT_LOCKED(unit);
  412 
  413         VM_OBJECT_RLOCK(unit->ctx_obj);
  414         root_entry = vm_page_lookup(unit->ctx_obj, 0);
  415         VM_OBJECT_RUNLOCK(unit->ctx_obj);
  416         dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
  417         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
  418         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
  419             != 0));
  420         return (error);
  421 }
  422 
  423 /*
  424  * Globally invalidate the context entries cache, busily waiting for
  425  * the completion.
  426  */
  427 int
  428 dmar_inv_ctx_glob(struct dmar_unit *unit)
  429 {
  430         int error;
  431 
  432         /*
  433          * Access to the CCMD register must be serialized while the
  434          * command is submitted.
  435          */
  436         DMAR_ASSERT_LOCKED(unit);
  437         KASSERT(!unit->qi_enabled, ("QI enabled"));
  438 
  439         /*
  440          * The DMAR_CCMD_ICC bit in the upper dword should be written
  441          * after the low dword write is completed.  Amd64
  442          * dmar_write8() does not have this issue, i386 dmar_write8()
  443          * writes the upper dword last.
  444          */
  445         dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
  446         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
  447             == 0));
  448         return (error);
  449 }
  450 
  451 /*
  452  * Globally invalidate the IOTLB, busily waiting for the completion.
  453  */
  454 int
  455 dmar_inv_iotlb_glob(struct dmar_unit *unit)
  456 {
  457         int error, reg;
  458 
  459         DMAR_ASSERT_LOCKED(unit);
  460         KASSERT(!unit->qi_enabled, ("QI enabled"));
  461 
  462         reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
  463         /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
  464         dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  465             DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
  466         DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
  467             DMAR_IOTLB_IVT32) == 0));
  468         return (error);
  469 }
  470 
  471 /*
  472  * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
  473  * in the architecture specification.
  474  */
  475 int
  476 dmar_flush_write_bufs(struct dmar_unit *unit)
  477 {
  478         int error;
  479 
  480         DMAR_ASSERT_LOCKED(unit);
  481 
  482         /*
  483          * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
  484          */
  485         KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
  486             ("dmar%d: no RWBF", unit->unit));
  487 
  488         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
  489         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
  490             != 0));
  491         return (error);
  492 }
  493 
  494 int
  495 dmar_enable_translation(struct dmar_unit *unit)
  496 {
  497         int error;
  498 
  499         DMAR_ASSERT_LOCKED(unit);
  500         unit->hw_gcmd |= DMAR_GCMD_TE;
  501         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  502         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
  503             != 0));
  504         return (error);
  505 }
  506 
  507 int
  508 dmar_disable_translation(struct dmar_unit *unit)
  509 {
  510         int error;
  511 
  512         DMAR_ASSERT_LOCKED(unit);
  513         unit->hw_gcmd &= ~DMAR_GCMD_TE;
  514         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  515         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
  516             == 0));
  517         return (error);
  518 }
  519 
  520 int
  521 dmar_load_irt_ptr(struct dmar_unit *unit)
  522 {
  523         uint64_t irta, s;
  524         int error;
  525 
  526         DMAR_ASSERT_LOCKED(unit);
  527         irta = unit->irt_phys;
  528         if (DMAR_X2APIC(unit))
  529                 irta |= DMAR_IRTA_EIME;
  530         s = fls(unit->irte_cnt) - 2;
  531         KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
  532             powerof2(unit->irte_cnt),
  533             ("IRTA_REG_S overflow %x", unit->irte_cnt));
  534         irta |= s;
  535         dmar_write8(unit, DMAR_IRTA_REG, irta);
  536         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
  537         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
  538             != 0));
  539         return (error);
  540 }
  541 
  542 int
  543 dmar_enable_ir(struct dmar_unit *unit)
  544 {
  545         int error;
  546 
  547         DMAR_ASSERT_LOCKED(unit);
  548         unit->hw_gcmd |= DMAR_GCMD_IRE;
  549         unit->hw_gcmd &= ~DMAR_GCMD_CFI;
  550         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  551         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
  552             != 0));
  553         return (error);
  554 }
  555 
  556 int
  557 dmar_disable_ir(struct dmar_unit *unit)
  558 {
  559         int error;
  560 
  561         DMAR_ASSERT_LOCKED(unit);
  562         unit->hw_gcmd &= ~DMAR_GCMD_IRE;
  563         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  564         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
  565             == 0));
  566         return (error);
  567 }
  568 
  569 #define BARRIER_F                               \
  570         u_int f_done, f_inproc, f_wakeup;       \
  571                                                 \
  572         f_done = 1 << (barrier_id * 3);         \
  573         f_inproc = 1 << (barrier_id * 3 + 1);   \
  574         f_wakeup = 1 << (barrier_id * 3 + 2)
  575 
  576 bool
  577 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
  578 {
  579         BARRIER_F;
  580 
  581         DMAR_LOCK(dmar);
  582         if ((dmar->barrier_flags & f_done) != 0) {
  583                 DMAR_UNLOCK(dmar);
  584                 return (false);
  585         }
  586 
  587         if ((dmar->barrier_flags & f_inproc) != 0) {
  588                 while ((dmar->barrier_flags & f_inproc) != 0) {
  589                         dmar->barrier_flags |= f_wakeup;
  590                         msleep(&dmar->barrier_flags, &dmar->lock, 0,
  591                             "dmarb", 0);
  592                 }
  593                 KASSERT((dmar->barrier_flags & f_done) != 0,
  594                     ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
  595                 DMAR_UNLOCK(dmar);
  596                 return (false);
  597         }
  598 
  599         dmar->barrier_flags |= f_inproc;
  600         DMAR_UNLOCK(dmar);
  601         return (true);
  602 }
  603 
  604 void
  605 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
  606 {
  607         BARRIER_F;
  608 
  609         DMAR_ASSERT_LOCKED(dmar);
  610         KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
  611             ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
  612         dmar->barrier_flags |= f_done;
  613         if ((dmar->barrier_flags & f_wakeup) != 0)
  614                 wakeup(&dmar->barrier_flags);
  615         dmar->barrier_flags &= ~(f_inproc | f_wakeup);
  616         DMAR_UNLOCK(dmar);
  617 }
  618 
  619 int dmar_match_verbose;
  620 int dmar_batch_coalesce = 100;
  621 struct timespec dmar_hw_timeout = {
  622         .tv_sec = 0,
  623         .tv_nsec = 1000000
  624 };
  625 
  626 static const uint64_t d = 1000000000;
  627 
  628 void
  629 dmar_update_timeout(uint64_t newval)
  630 {
  631 
  632         /* XXXKIB not atomic */
  633         dmar_hw_timeout.tv_sec = newval / d;
  634         dmar_hw_timeout.tv_nsec = newval % d;
  635 }
  636 
  637 uint64_t
  638 dmar_get_timeout(void)
  639 {
  640 
  641         return ((uint64_t)dmar_hw_timeout.tv_sec * d +
  642             dmar_hw_timeout.tv_nsec);
  643 }
  644 
  645 static int
  646 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
  647 {
  648         uint64_t val;
  649         int error;
  650 
  651         val = dmar_get_timeout();
  652         error = sysctl_handle_long(oidp, &val, 0, req);
  653         if (error != 0 || req->newptr == NULL)
  654                 return (error);
  655         dmar_update_timeout(val);
  656         return (error);
  657 }
  658 
  659 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
  660 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
  661     &dmar_tbl_pagecnt, 0,
  662     "Count of pages used for DMAR pagetables");
  663 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
  664     &dmar_match_verbose, 0,
  665     "Verbose matching of the PCI devices to DMAR paths");
  666 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
  667     &dmar_batch_coalesce, 0,
  668     "Number of qi batches between interrupt");
  669 SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
  670     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  671     dmar_timeout_sysctl, "QU",
  672     "Timeout for command wait, in nanoseconds");
  673 #ifdef INVARIANTS
  674 int dmar_check_free;
  675 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
  676     &dmar_check_free, 0,
  677     "Check the GPA RBtree for free_down and free_after validity");
  678 #endif
  679 

Cache object: aca475099dcf9aecdfcbd556ab23d79a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.