1 /*-
2 * Copyright (c) 2013 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/memdesc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/rman.h>
43 #include <sys/rwlock.h>
44 #include <sys/sched.h>
45 #include <sys/sf_buf.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/tree.h>
51 #include <sys/vmem.h>
52 #include <dev/pci/pcivar.h>
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_pageout.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/intr_machdep.h>
63 #include <x86/include/apicvar.h>
64 #include <x86/include/busdma_impl.h>
65 #include <x86/iommu/intel_reg.h>
66 #include <x86/iommu/busdma_dmar.h>
67 #include <x86/iommu/intel_dmar.h>
68
69 u_int
70 dmar_nd2mask(u_int nd)
71 {
72 static const u_int masks[] = {
73 0x000f, /* nd == 0 */
74 0x002f, /* nd == 1 */
75 0x00ff, /* nd == 2 */
76 0x02ff, /* nd == 3 */
77 0x0fff, /* nd == 4 */
78 0x2fff, /* nd == 5 */
79 0xffff, /* nd == 6 */
80 0x0000, /* nd == 7 reserved */
81 };
82
83 KASSERT(nd <= 6, ("number of domains %d", nd));
84 return (masks[nd]);
85 }
86
87 static const struct sagaw_bits_tag {
88 int agaw;
89 int cap;
90 int awlvl;
91 int pglvl;
92 } sagaw_bits[] = {
93 {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
94 .pglvl = 2},
95 {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
96 .pglvl = 3},
97 {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
98 .pglvl = 4},
99 {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
100 .pglvl = 5},
101 {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
102 .pglvl = 6}
103 };
104
105 bool
106 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
107 {
108 int i;
109
110 for (i = 0; i < nitems(sagaw_bits); i++) {
111 if (sagaw_bits[i].pglvl != pglvl)
112 continue;
113 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
114 return (true);
115 }
116 return (false);
117 }
118
119 int
120 domain_set_agaw(struct dmar_domain *domain, int mgaw)
121 {
122 int sagaw, i;
123
124 domain->mgaw = mgaw;
125 sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
126 for (i = 0; i < nitems(sagaw_bits); i++) {
127 if (sagaw_bits[i].agaw >= mgaw) {
128 domain->agaw = sagaw_bits[i].agaw;
129 domain->pglvl = sagaw_bits[i].pglvl;
130 domain->awlvl = sagaw_bits[i].awlvl;
131 return (0);
132 }
133 }
134 device_printf(domain->dmar->dev,
135 "context request mgaw %d: no agaw found, sagaw %x\n",
136 mgaw, sagaw);
137 return (EINVAL);
138 }
139
140 /*
141 * Find a best fit mgaw for the given maxaddr:
142 * - if allow_less is false, must find sagaw which maps all requested
143 * addresses (used by identity mappings);
144 * - if allow_less is true, and no supported sagaw can map all requested
145 * address space, accept the biggest sagaw, whatever is it.
146 */
147 int
148 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
149 {
150 int i;
151
152 for (i = 0; i < nitems(sagaw_bits); i++) {
153 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
154 (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
155 break;
156 }
157 if (allow_less && i == nitems(sagaw_bits)) {
158 do {
159 i--;
160 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
161 == 0);
162 }
163 if (i < nitems(sagaw_bits))
164 return (sagaw_bits[i].agaw);
165 KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
166 (uintmax_t) maxaddr, allow_less));
167 return (-1);
168 }
169
170 /*
171 * Calculate the total amount of page table pages needed to map the
172 * whole bus address space on the context with the selected agaw.
173 */
174 vm_pindex_t
175 pglvl_max_pages(int pglvl)
176 {
177 vm_pindex_t res;
178 int i;
179
180 for (res = 0, i = pglvl; i > 0; i--) {
181 res *= DMAR_NPTEPG;
182 res++;
183 }
184 return (res);
185 }
186
187 /*
188 * Return true if the page table level lvl supports the superpage for
189 * the context ctx.
190 */
191 int
192 domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
193 {
194 int alvl, cap_sps;
195 static const int sagaw_sp[] = {
196 DMAR_CAP_SPS_2M,
197 DMAR_CAP_SPS_1G,
198 DMAR_CAP_SPS_512G,
199 DMAR_CAP_SPS_1T
200 };
201
202 alvl = domain->pglvl - lvl - 1;
203 cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
204 return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
205 }
206
207 dmar_gaddr_t
208 pglvl_page_size(int total_pglvl, int lvl)
209 {
210 int rlvl;
211 static const dmar_gaddr_t pg_sz[] = {
212 (dmar_gaddr_t)DMAR_PAGE_SIZE,
213 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
214 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
215 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
216 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
217 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
218 };
219
220 KASSERT(lvl >= 0 && lvl < total_pglvl,
221 ("total %d lvl %d", total_pglvl, lvl));
222 rlvl = total_pglvl - lvl - 1;
223 KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
224 return (pg_sz[rlvl]);
225 }
226
227 dmar_gaddr_t
228 domain_page_size(struct dmar_domain *domain, int lvl)
229 {
230
231 return (pglvl_page_size(domain->pglvl, lvl));
232 }
233
234 int
235 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
236 dmar_gaddr_t *isizep)
237 {
238 dmar_gaddr_t isize;
239 int am;
240
241 for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
242 isize = 1ULL << (am + DMAR_PAGE_SHIFT);
243 if ((base & (isize - 1)) == 0 && size >= isize)
244 break;
245 if (am == 0)
246 break;
247 }
248 *isizep = isize;
249 return (am);
250 }
251
252 dmar_haddr_t dmar_high;
253 int haw;
254 int dmar_tbl_pagecnt;
255
256 vm_page_t
257 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
258 {
259 vm_page_t m;
260 int zeroed, aflags;
261
262 zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
263 aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
264 ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
265 VM_ALLOC_NOWAIT);
266 for (;;) {
267 if ((flags & DMAR_PGF_OBJL) == 0)
268 VM_OBJECT_WLOCK(obj);
269 m = vm_page_lookup(obj, idx);
270 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
271 if ((flags & DMAR_PGF_OBJL) == 0)
272 VM_OBJECT_WUNLOCK(obj);
273 break;
274 }
275 m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
276 dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
277 if ((flags & DMAR_PGF_OBJL) == 0)
278 VM_OBJECT_WUNLOCK(obj);
279 if (m != NULL) {
280 if (zeroed && (m->flags & PG_ZERO) == 0)
281 pmap_zero_page(m);
282 atomic_add_int(&dmar_tbl_pagecnt, 1);
283 break;
284 }
285 if ((flags & DMAR_PGF_WAITOK) == 0)
286 break;
287 }
288 return (m);
289 }
290
291 void
292 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
293 {
294 vm_page_t m;
295
296 if ((flags & DMAR_PGF_OBJL) == 0)
297 VM_OBJECT_WLOCK(obj);
298 m = vm_page_lookup(obj, idx);
299 if (m != NULL) {
300 vm_page_free(m);
301 atomic_subtract_int(&dmar_tbl_pagecnt, 1);
302 }
303 if ((flags & DMAR_PGF_OBJL) == 0)
304 VM_OBJECT_WUNLOCK(obj);
305 }
306
307 void *
308 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
309 struct sf_buf **sf)
310 {
311 vm_page_t m;
312 bool allocated;
313
314 if ((flags & DMAR_PGF_OBJL) == 0)
315 VM_OBJECT_WLOCK(obj);
316 m = vm_page_lookup(obj, idx);
317 if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
318 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
319 allocated = true;
320 } else
321 allocated = false;
322 if (m == NULL) {
323 if ((flags & DMAR_PGF_OBJL) == 0)
324 VM_OBJECT_WUNLOCK(obj);
325 return (NULL);
326 }
327 /* Sleepable allocations cannot fail. */
328 if ((flags & DMAR_PGF_WAITOK) != 0)
329 VM_OBJECT_WUNLOCK(obj);
330 sched_pin();
331 *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
332 == 0 ? SFB_NOWAIT : 0));
333 if (*sf == NULL) {
334 sched_unpin();
335 if (allocated) {
336 VM_OBJECT_ASSERT_WLOCKED(obj);
337 dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
338 }
339 if ((flags & DMAR_PGF_OBJL) == 0)
340 VM_OBJECT_WUNLOCK(obj);
341 return (NULL);
342 }
343 if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
344 (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
345 VM_OBJECT_WLOCK(obj);
346 else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
347 VM_OBJECT_WUNLOCK(obj);
348 return ((void *)sf_buf_kva(*sf));
349 }
350
351 void
352 dmar_unmap_pgtbl(struct sf_buf *sf)
353 {
354
355 sf_buf_free(sf);
356 sched_unpin();
357 }
358
359 static void
360 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
361 {
362
363 if (DMAR_IS_COHERENT(unit))
364 return;
365 /*
366 * If DMAR does not snoop paging structures accesses, flush
367 * CPU cache to memory.
368 */
369 pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
370 TRUE);
371 }
372
373 void
374 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
375 {
376
377 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
378 }
379
380 void
381 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
382 {
383
384 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
385 }
386
387 void
388 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
389 {
390
391 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
392 }
393
394 /*
395 * Load the root entry pointer into the hardware, busily waiting for
396 * the completion.
397 */
398 int
399 dmar_load_root_entry_ptr(struct dmar_unit *unit)
400 {
401 vm_page_t root_entry;
402 int error;
403
404 /*
405 * Access to the GCMD register must be serialized while the
406 * command is submitted.
407 */
408 DMAR_ASSERT_LOCKED(unit);
409
410 VM_OBJECT_RLOCK(unit->ctx_obj);
411 root_entry = vm_page_lookup(unit->ctx_obj, 0);
412 VM_OBJECT_RUNLOCK(unit->ctx_obj);
413 dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
414 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
415 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
416 != 0));
417 return (error);
418 }
419
420 /*
421 * Globally invalidate the context entries cache, busily waiting for
422 * the completion.
423 */
424 int
425 dmar_inv_ctx_glob(struct dmar_unit *unit)
426 {
427 int error;
428
429 /*
430 * Access to the CCMD register must be serialized while the
431 * command is submitted.
432 */
433 DMAR_ASSERT_LOCKED(unit);
434 KASSERT(!unit->qi_enabled, ("QI enabled"));
435
436 /*
437 * The DMAR_CCMD_ICC bit in the upper dword should be written
438 * after the low dword write is completed. Amd64
439 * dmar_write8() does not have this issue, i386 dmar_write8()
440 * writes the upper dword last.
441 */
442 dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
443 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
444 == 0));
445 return (error);
446 }
447
448 /*
449 * Globally invalidate the IOTLB, busily waiting for the completion.
450 */
451 int
452 dmar_inv_iotlb_glob(struct dmar_unit *unit)
453 {
454 int error, reg;
455
456 DMAR_ASSERT_LOCKED(unit);
457 KASSERT(!unit->qi_enabled, ("QI enabled"));
458
459 reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
460 /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
461 dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
462 DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
463 DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
464 DMAR_IOTLB_IVT32) == 0));
465 return (error);
466 }
467
468 /*
469 * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
470 * in the architecture specification.
471 */
472 int
473 dmar_flush_write_bufs(struct dmar_unit *unit)
474 {
475 int error;
476
477 DMAR_ASSERT_LOCKED(unit);
478
479 /*
480 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
481 */
482 KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
483 ("dmar%d: no RWBF", unit->unit));
484
485 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
486 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
487 != 0));
488 return (error);
489 }
490
491 int
492 dmar_enable_translation(struct dmar_unit *unit)
493 {
494 int error;
495
496 DMAR_ASSERT_LOCKED(unit);
497 unit->hw_gcmd |= DMAR_GCMD_TE;
498 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
499 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
500 != 0));
501 return (error);
502 }
503
504 int
505 dmar_disable_translation(struct dmar_unit *unit)
506 {
507 int error;
508
509 DMAR_ASSERT_LOCKED(unit);
510 unit->hw_gcmd &= ~DMAR_GCMD_TE;
511 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
512 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
513 == 0));
514 return (error);
515 }
516
517 int
518 dmar_load_irt_ptr(struct dmar_unit *unit)
519 {
520 uint64_t irta, s;
521 int error;
522
523 DMAR_ASSERT_LOCKED(unit);
524 irta = unit->irt_phys;
525 if (DMAR_X2APIC(unit))
526 irta |= DMAR_IRTA_EIME;
527 s = fls(unit->irte_cnt) - 2;
528 KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
529 powerof2(unit->irte_cnt),
530 ("IRTA_REG_S overflow %x", unit->irte_cnt));
531 irta |= s;
532 dmar_write8(unit, DMAR_IRTA_REG, irta);
533 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
534 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
535 != 0));
536 return (error);
537 }
538
539 int
540 dmar_enable_ir(struct dmar_unit *unit)
541 {
542 int error;
543
544 DMAR_ASSERT_LOCKED(unit);
545 unit->hw_gcmd |= DMAR_GCMD_IRE;
546 unit->hw_gcmd &= ~DMAR_GCMD_CFI;
547 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
548 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
549 != 0));
550 return (error);
551 }
552
553 int
554 dmar_disable_ir(struct dmar_unit *unit)
555 {
556 int error;
557
558 DMAR_ASSERT_LOCKED(unit);
559 unit->hw_gcmd &= ~DMAR_GCMD_IRE;
560 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
561 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
562 == 0));
563 return (error);
564 }
565
566 #define BARRIER_F \
567 u_int f_done, f_inproc, f_wakeup; \
568 \
569 f_done = 1 << (barrier_id * 3); \
570 f_inproc = 1 << (barrier_id * 3 + 1); \
571 f_wakeup = 1 << (barrier_id * 3 + 2)
572
573 bool
574 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
575 {
576 BARRIER_F;
577
578 DMAR_LOCK(dmar);
579 if ((dmar->barrier_flags & f_done) != 0) {
580 DMAR_UNLOCK(dmar);
581 return (false);
582 }
583
584 if ((dmar->barrier_flags & f_inproc) != 0) {
585 while ((dmar->barrier_flags & f_inproc) != 0) {
586 dmar->barrier_flags |= f_wakeup;
587 msleep(&dmar->barrier_flags, &dmar->lock, 0,
588 "dmarb", 0);
589 }
590 KASSERT((dmar->barrier_flags & f_done) != 0,
591 ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
592 DMAR_UNLOCK(dmar);
593 return (false);
594 }
595
596 dmar->barrier_flags |= f_inproc;
597 DMAR_UNLOCK(dmar);
598 return (true);
599 }
600
601 void
602 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
603 {
604 BARRIER_F;
605
606 DMAR_ASSERT_LOCKED(dmar);
607 KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
608 ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
609 dmar->barrier_flags |= f_done;
610 if ((dmar->barrier_flags & f_wakeup) != 0)
611 wakeup(&dmar->barrier_flags);
612 dmar->barrier_flags &= ~(f_inproc | f_wakeup);
613 DMAR_UNLOCK(dmar);
614 }
615
616 int dmar_match_verbose;
617 int dmar_batch_coalesce = 100;
618 struct timespec dmar_hw_timeout = {
619 .tv_sec = 0,
620 .tv_nsec = 1000000
621 };
622
623 static const uint64_t d = 1000000000;
624
625 void
626 dmar_update_timeout(uint64_t newval)
627 {
628
629 /* XXXKIB not atomic */
630 dmar_hw_timeout.tv_sec = newval / d;
631 dmar_hw_timeout.tv_nsec = newval % d;
632 }
633
634 uint64_t
635 dmar_get_timeout(void)
636 {
637
638 return ((uint64_t)dmar_hw_timeout.tv_sec * d +
639 dmar_hw_timeout.tv_nsec);
640 }
641
642 static int
643 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
644 {
645 uint64_t val;
646 int error;
647
648 val = dmar_get_timeout();
649 error = sysctl_handle_long(oidp, &val, 0, req);
650 if (error != 0 || req->newptr == NULL)
651 return (error);
652 dmar_update_timeout(val);
653 return (error);
654 }
655
656 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
657 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
658 &dmar_tbl_pagecnt, 0,
659 "Count of pages used for DMAR pagetables");
660 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
661 &dmar_match_verbose, 0,
662 "Verbose matching of the PCI devices to DMAR paths");
663 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
664 &dmar_batch_coalesce, 0,
665 "Number of qi batches between interrupt");
666 SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
667 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
668 dmar_timeout_sysctl, "QU",
669 "Timeout for command wait, in nanoseconds");
670 #ifdef INVARIANTS
671 int dmar_check_free;
672 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
673 &dmar_check_free, 0,
674 "Check the GPA RBtree for free_down and free_after validity");
675 #endif
676
Cache object: 00549c6f8596c557f9628569a0963c53
|