The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/iommu/intel_utils.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/12.0/sys/x86/iommu/intel_utils.c 338807 2018-09-19 19:35:02Z kib $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/bus.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/malloc.h>
   40 #include <sys/memdesc.h>
   41 #include <sys/mutex.h>
   42 #include <sys/proc.h>
   43 #include <sys/queue.h>
   44 #include <sys/rman.h>
   45 #include <sys/rwlock.h>
   46 #include <sys/sched.h>
   47 #include <sys/sf_buf.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/systm.h>
   50 #include <sys/taskqueue.h>
   51 #include <sys/time.h>
   52 #include <sys/tree.h>
   53 #include <sys/vmem.h>
   54 #include <dev/pci/pcivar.h>
   55 #include <vm/vm.h>
   56 #include <vm/vm_extern.h>
   57 #include <vm/vm_kern.h>
   58 #include <vm/vm_object.h>
   59 #include <vm/vm_page.h>
   60 #include <vm/vm_map.h>
   61 #include <vm/vm_pageout.h>
   62 #include <machine/bus.h>
   63 #include <machine/cpu.h>
   64 #include <machine/intr_machdep.h>
   65 #include <x86/include/apicvar.h>
   66 #include <x86/include/busdma_impl.h>
   67 #include <x86/iommu/intel_reg.h>
   68 #include <x86/iommu/busdma_dmar.h>
   69 #include <x86/iommu/intel_dmar.h>
   70 
   71 u_int
   72 dmar_nd2mask(u_int nd)
   73 {
   74         static const u_int masks[] = {
   75                 0x000f, /* nd == 0 */
   76                 0x002f, /* nd == 1 */
   77                 0x00ff, /* nd == 2 */
   78                 0x02ff, /* nd == 3 */
   79                 0x0fff, /* nd == 4 */
   80                 0x2fff, /* nd == 5 */
   81                 0xffff, /* nd == 6 */
   82                 0x0000, /* nd == 7 reserved */
   83         };
   84 
   85         KASSERT(nd <= 6, ("number of domains %d", nd));
   86         return (masks[nd]);
   87 }
   88 
   89 static const struct sagaw_bits_tag {
   90         int agaw;
   91         int cap;
   92         int awlvl;
   93         int pglvl;
   94 } sagaw_bits[] = {
   95         {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
   96             .pglvl = 2},
   97         {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
   98             .pglvl = 3},
   99         {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
  100             .pglvl = 4},
  101         {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
  102             .pglvl = 5},
  103         {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
  104             .pglvl = 6}
  105 };
  106 
  107 bool
  108 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
  109 {
  110         int i;
  111 
  112         for (i = 0; i < nitems(sagaw_bits); i++) {
  113                 if (sagaw_bits[i].pglvl != pglvl)
  114                         continue;
  115                 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  116                         return (true);
  117         }
  118         return (false);
  119 }
  120 
  121 int
  122 domain_set_agaw(struct dmar_domain *domain, int mgaw)
  123 {
  124         int sagaw, i;
  125 
  126         domain->mgaw = mgaw;
  127         sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
  128         for (i = 0; i < nitems(sagaw_bits); i++) {
  129                 if (sagaw_bits[i].agaw >= mgaw) {
  130                         domain->agaw = sagaw_bits[i].agaw;
  131                         domain->pglvl = sagaw_bits[i].pglvl;
  132                         domain->awlvl = sagaw_bits[i].awlvl;
  133                         return (0);
  134                 }
  135         }
  136         device_printf(domain->dmar->dev,
  137             "context request mgaw %d: no agaw found, sagaw %x\n",
  138             mgaw, sagaw);
  139         return (EINVAL);
  140 }
  141 
  142 /*
  143  * Find a best fit mgaw for the given maxaddr:
  144  *   - if allow_less is false, must find sagaw which maps all requested
  145  *     addresses (used by identity mappings);
  146  *   - if allow_less is true, and no supported sagaw can map all requested
  147  *     address space, accept the biggest sagaw, whatever is it.
  148  */
  149 int
  150 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
  151 {
  152         int i;
  153 
  154         for (i = 0; i < nitems(sagaw_bits); i++) {
  155                 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
  156                     (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
  157                         break;
  158         }
  159         if (allow_less && i == nitems(sagaw_bits)) {
  160                 do {
  161                         i--;
  162                 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
  163                     == 0);
  164         }
  165         if (i < nitems(sagaw_bits))
  166                 return (sagaw_bits[i].agaw);
  167         KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
  168             (uintmax_t) maxaddr, allow_less));
  169         return (-1);
  170 }
  171 
  172 /*
  173  * Calculate the total amount of page table pages needed to map the
  174  * whole bus address space on the context with the selected agaw.
  175  */
  176 vm_pindex_t
  177 pglvl_max_pages(int pglvl)
  178 {
  179         vm_pindex_t res;
  180         int i;
  181 
  182         for (res = 0, i = pglvl; i > 0; i--) {
  183                 res *= DMAR_NPTEPG;
  184                 res++;
  185         }
  186         return (res);
  187 }
  188 
  189 /*
  190  * Return true if the page table level lvl supports the superpage for
  191  * the context ctx.
  192  */
  193 int
  194 domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
  195 {
  196         int alvl, cap_sps;
  197         static const int sagaw_sp[] = {
  198                 DMAR_CAP_SPS_2M,
  199                 DMAR_CAP_SPS_1G,
  200                 DMAR_CAP_SPS_512G,
  201                 DMAR_CAP_SPS_1T
  202         };
  203 
  204         alvl = domain->pglvl - lvl - 1;
  205         cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
  206         return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
  207 }
  208 
  209 dmar_gaddr_t
  210 pglvl_page_size(int total_pglvl, int lvl)
  211 {
  212         int rlvl;
  213         static const dmar_gaddr_t pg_sz[] = {
  214                 (dmar_gaddr_t)DMAR_PAGE_SIZE,
  215                 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
  216                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
  217                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
  218                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
  219                 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
  220         };
  221 
  222         KASSERT(lvl >= 0 && lvl < total_pglvl,
  223             ("total %d lvl %d", total_pglvl, lvl));
  224         rlvl = total_pglvl - lvl - 1;
  225         KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
  226         return (pg_sz[rlvl]);
  227 }
  228 
  229 dmar_gaddr_t
  230 domain_page_size(struct dmar_domain *domain, int lvl)
  231 {
  232 
  233         return (pglvl_page_size(domain->pglvl, lvl));
  234 }
  235 
  236 int
  237 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
  238     dmar_gaddr_t *isizep)
  239 {
  240         dmar_gaddr_t isize;
  241         int am;
  242 
  243         for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
  244                 isize = 1ULL << (am + DMAR_PAGE_SHIFT);
  245                 if ((base & (isize - 1)) == 0 && size >= isize)
  246                         break;
  247                 if (am == 0)
  248                         break;
  249         }
  250         *isizep = isize;
  251         return (am);
  252 }
  253 
  254 dmar_haddr_t dmar_high;
  255 int haw;
  256 int dmar_tbl_pagecnt;
  257 
  258 vm_page_t
  259 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
  260 {
  261         vm_page_t m;
  262         int zeroed, aflags;
  263 
  264         zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
  265         aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
  266             ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
  267             VM_ALLOC_NOWAIT);
  268         for (;;) {
  269                 if ((flags & DMAR_PGF_OBJL) == 0)
  270                         VM_OBJECT_WLOCK(obj);
  271                 m = vm_page_lookup(obj, idx);
  272                 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
  273                         if ((flags & DMAR_PGF_OBJL) == 0)
  274                                 VM_OBJECT_WUNLOCK(obj);
  275                         break;
  276                 }
  277                 m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
  278                     dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
  279                 if ((flags & DMAR_PGF_OBJL) == 0)
  280                         VM_OBJECT_WUNLOCK(obj);
  281                 if (m != NULL) {
  282                         if (zeroed && (m->flags & PG_ZERO) == 0)
  283                                 pmap_zero_page(m);
  284                         atomic_add_int(&dmar_tbl_pagecnt, 1);
  285                         break;
  286                 }
  287                 if ((flags & DMAR_PGF_WAITOK) == 0)
  288                         break;
  289         }
  290         return (m);
  291 }
  292 
  293 void
  294 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
  295 {
  296         vm_page_t m;
  297 
  298         if ((flags & DMAR_PGF_OBJL) == 0)
  299                 VM_OBJECT_WLOCK(obj);
  300         m = vm_page_lookup(obj, idx);
  301         if (m != NULL) {
  302                 vm_page_free(m);
  303                 atomic_subtract_int(&dmar_tbl_pagecnt, 1);
  304         }
  305         if ((flags & DMAR_PGF_OBJL) == 0)
  306                 VM_OBJECT_WUNLOCK(obj);
  307 }
  308 
  309 void *
  310 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
  311     struct sf_buf **sf)
  312 {
  313         vm_page_t m;
  314         bool allocated;
  315 
  316         if ((flags & DMAR_PGF_OBJL) == 0)
  317                 VM_OBJECT_WLOCK(obj);
  318         m = vm_page_lookup(obj, idx);
  319         if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
  320                 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
  321                 allocated = true;
  322         } else
  323                 allocated = false;
  324         if (m == NULL) {
  325                 if ((flags & DMAR_PGF_OBJL) == 0)
  326                         VM_OBJECT_WUNLOCK(obj);
  327                 return (NULL);
  328         }
  329         /* Sleepable allocations cannot fail. */
  330         if ((flags & DMAR_PGF_WAITOK) != 0)
  331                 VM_OBJECT_WUNLOCK(obj);
  332         sched_pin();
  333         *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
  334             == 0 ? SFB_NOWAIT : 0));
  335         if (*sf == NULL) {
  336                 sched_unpin();
  337                 if (allocated) {
  338                         VM_OBJECT_ASSERT_WLOCKED(obj);
  339                         dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
  340                 }
  341                 if ((flags & DMAR_PGF_OBJL) == 0)
  342                         VM_OBJECT_WUNLOCK(obj);
  343                 return (NULL);
  344         }
  345         if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
  346             (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
  347                 VM_OBJECT_WLOCK(obj);
  348         else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
  349                 VM_OBJECT_WUNLOCK(obj);
  350         return ((void *)sf_buf_kva(*sf));
  351 }
  352 
  353 void
  354 dmar_unmap_pgtbl(struct sf_buf *sf)
  355 {
  356 
  357         sf_buf_free(sf);
  358         sched_unpin();
  359 }
  360 
  361 static void
  362 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
  363 {
  364 
  365         if (DMAR_IS_COHERENT(unit))
  366                 return;
  367         /*
  368          * If DMAR does not snoop paging structures accesses, flush
  369          * CPU cache to memory.
  370          */
  371         pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz);
  372 }
  373 
  374 void
  375 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
  376 {
  377 
  378         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  379 }
  380 
  381 void
  382 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
  383 {
  384 
  385         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  386 }
  387 
  388 void
  389 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
  390 {
  391 
  392         dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
  393 }
  394 
  395 /*
  396  * Load the root entry pointer into the hardware, busily waiting for
  397  * the completion.
  398  */
  399 int
  400 dmar_load_root_entry_ptr(struct dmar_unit *unit)
  401 {
  402         vm_page_t root_entry;
  403         int error;
  404 
  405         /*
  406          * Access to the GCMD register must be serialized while the
  407          * command is submitted.
  408          */
  409         DMAR_ASSERT_LOCKED(unit);
  410 
  411         VM_OBJECT_RLOCK(unit->ctx_obj);
  412         root_entry = vm_page_lookup(unit->ctx_obj, 0);
  413         VM_OBJECT_RUNLOCK(unit->ctx_obj);
  414         dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
  415         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
  416         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
  417             != 0));
  418         return (error);
  419 }
  420 
  421 /*
  422  * Globally invalidate the context entries cache, busily waiting for
  423  * the completion.
  424  */
  425 int
  426 dmar_inv_ctx_glob(struct dmar_unit *unit)
  427 {
  428         int error;
  429 
  430         /*
  431          * Access to the CCMD register must be serialized while the
  432          * command is submitted.
  433          */
  434         DMAR_ASSERT_LOCKED(unit);
  435         KASSERT(!unit->qi_enabled, ("QI enabled"));
  436 
  437         /*
  438          * The DMAR_CCMD_ICC bit in the upper dword should be written
  439          * after the low dword write is completed.  Amd64
  440          * dmar_write8() does not have this issue, i386 dmar_write8()
  441          * writes the upper dword last.
  442          */
  443         dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
  444         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
  445             == 0));
  446         return (error);
  447 }
  448 
  449 /*
  450  * Globally invalidate the IOTLB, busily waiting for the completion.
  451  */
  452 int
  453 dmar_inv_iotlb_glob(struct dmar_unit *unit)
  454 {
  455         int error, reg;
  456 
  457         DMAR_ASSERT_LOCKED(unit);
  458         KASSERT(!unit->qi_enabled, ("QI enabled"));
  459 
  460         reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
  461         /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
  462         dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
  463             DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
  464         DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
  465             DMAR_IOTLB_IVT32) == 0));
  466         return (error);
  467 }
  468 
  469 /*
  470  * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
  471  * in the architecture specification.
  472  */
  473 int
  474 dmar_flush_write_bufs(struct dmar_unit *unit)
  475 {
  476         int error;
  477 
  478         DMAR_ASSERT_LOCKED(unit);
  479 
  480         /*
  481          * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
  482          */
  483         KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
  484             ("dmar%d: no RWBF", unit->unit));
  485 
  486         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
  487         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
  488             != 0));
  489         return (error);
  490 }
  491 
  492 int
  493 dmar_enable_translation(struct dmar_unit *unit)
  494 {
  495         int error;
  496 
  497         DMAR_ASSERT_LOCKED(unit);
  498         unit->hw_gcmd |= DMAR_GCMD_TE;
  499         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  500         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
  501             != 0));
  502         return (error);
  503 }
  504 
  505 int
  506 dmar_disable_translation(struct dmar_unit *unit)
  507 {
  508         int error;
  509 
  510         DMAR_ASSERT_LOCKED(unit);
  511         unit->hw_gcmd &= ~DMAR_GCMD_TE;
  512         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  513         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
  514             == 0));
  515         return (error);
  516 }
  517 
  518 int
  519 dmar_load_irt_ptr(struct dmar_unit *unit)
  520 {
  521         uint64_t irta, s;
  522         int error;
  523 
  524         DMAR_ASSERT_LOCKED(unit);
  525         irta = unit->irt_phys;
  526         if (DMAR_X2APIC(unit))
  527                 irta |= DMAR_IRTA_EIME;
  528         s = fls(unit->irte_cnt) - 2;
  529         KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
  530             powerof2(unit->irte_cnt),
  531             ("IRTA_REG_S overflow %x", unit->irte_cnt));
  532         irta |= s;
  533         dmar_write8(unit, DMAR_IRTA_REG, irta);
  534         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
  535         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
  536             != 0));
  537         return (error);
  538 }
  539 
  540 int
  541 dmar_enable_ir(struct dmar_unit *unit)
  542 {
  543         int error;
  544 
  545         DMAR_ASSERT_LOCKED(unit);
  546         unit->hw_gcmd |= DMAR_GCMD_IRE;
  547         unit->hw_gcmd &= ~DMAR_GCMD_CFI;
  548         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  549         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
  550             != 0));
  551         return (error);
  552 }
  553 
  554 int
  555 dmar_disable_ir(struct dmar_unit *unit)
  556 {
  557         int error;
  558 
  559         DMAR_ASSERT_LOCKED(unit);
  560         unit->hw_gcmd &= ~DMAR_GCMD_IRE;
  561         dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
  562         DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
  563             == 0));
  564         return (error);
  565 }
  566 
  567 #define BARRIER_F                               \
  568         u_int f_done, f_inproc, f_wakeup;       \
  569                                                 \
  570         f_done = 1 << (barrier_id * 3);         \
  571         f_inproc = 1 << (barrier_id * 3 + 1);   \
  572         f_wakeup = 1 << (barrier_id * 3 + 2)
  573 
  574 bool
  575 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
  576 {
  577         BARRIER_F;
  578 
  579         DMAR_LOCK(dmar);
  580         if ((dmar->barrier_flags & f_done) != 0) {
  581                 DMAR_UNLOCK(dmar);
  582                 return (false);
  583         }
  584 
  585         if ((dmar->barrier_flags & f_inproc) != 0) {
  586                 while ((dmar->barrier_flags & f_inproc) != 0) {
  587                         dmar->barrier_flags |= f_wakeup;
  588                         msleep(&dmar->barrier_flags, &dmar->lock, 0,
  589                             "dmarb", 0);
  590                 }
  591                 KASSERT((dmar->barrier_flags & f_done) != 0,
  592                     ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
  593                 DMAR_UNLOCK(dmar);
  594                 return (false);
  595         }
  596 
  597         dmar->barrier_flags |= f_inproc;
  598         DMAR_UNLOCK(dmar);
  599         return (true);
  600 }
  601 
  602 void
  603 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
  604 {
  605         BARRIER_F;
  606 
  607         DMAR_ASSERT_LOCKED(dmar);
  608         KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
  609             ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
  610         dmar->barrier_flags |= f_done;
  611         if ((dmar->barrier_flags & f_wakeup) != 0)
  612                 wakeup(&dmar->barrier_flags);
  613         dmar->barrier_flags &= ~(f_inproc | f_wakeup);
  614         DMAR_UNLOCK(dmar);
  615 }
  616 
  617 int dmar_match_verbose;
  618 int dmar_batch_coalesce = 100;
  619 struct timespec dmar_hw_timeout = {
  620         .tv_sec = 0,
  621         .tv_nsec = 1000000
  622 };
  623 
  624 static const uint64_t d = 1000000000;
  625 
  626 void
  627 dmar_update_timeout(uint64_t newval)
  628 {
  629 
  630         /* XXXKIB not atomic */
  631         dmar_hw_timeout.tv_sec = newval / d;
  632         dmar_hw_timeout.tv_nsec = newval % d;
  633 }
  634 
  635 uint64_t
  636 dmar_get_timeout(void)
  637 {
  638 
  639         return ((uint64_t)dmar_hw_timeout.tv_sec * d +
  640             dmar_hw_timeout.tv_nsec);
  641 }
  642 
  643 static int
  644 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
  645 {
  646         uint64_t val;
  647         int error;
  648 
  649         val = dmar_get_timeout();
  650         error = sysctl_handle_long(oidp, &val, 0, req);
  651         if (error != 0 || req->newptr == NULL)
  652                 return (error);
  653         dmar_update_timeout(val);
  654         return (error);
  655 }
  656 
  657 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
  658 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
  659     &dmar_tbl_pagecnt, 0,
  660     "Count of pages used for DMAR pagetables");
  661 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
  662     &dmar_match_verbose, 0,
  663     "Verbose matching of the PCI devices to DMAR paths");
  664 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
  665     &dmar_batch_coalesce, 0,
  666     "Number of qi batches between interrupt");
  667 SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
  668     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  669     dmar_timeout_sysctl, "QU",
  670     "Timeout for command wait, in nanoseconds");
  671 #ifdef INVARIANTS
  672 int dmar_check_free;
  673 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
  674     &dmar_check_free, 0,
  675     "Check the GPA RBtree for free_down and free_after validity");
  676 #endif
  677 

Cache object: 08cdbed681e91b20985e96101a4c6667


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.