1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD: releng/12.0/sys/x86/iommu/intel_utils.c 338807 2018-09-19 19:35:02Z kib $");
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/memdesc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46 #include <sys/sched.h>
47 #include <sys/sf_buf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/taskqueue.h>
51 #include <sys/time.h>
52 #include <sys/tree.h>
53 #include <sys/vmem.h>
54 #include <dev/pci/pcivar.h>
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pageout.h>
62 #include <machine/bus.h>
63 #include <machine/cpu.h>
64 #include <machine/intr_machdep.h>
65 #include <x86/include/apicvar.h>
66 #include <x86/include/busdma_impl.h>
67 #include <x86/iommu/intel_reg.h>
68 #include <x86/iommu/busdma_dmar.h>
69 #include <x86/iommu/intel_dmar.h>
70
71 u_int
72 dmar_nd2mask(u_int nd)
73 {
74 static const u_int masks[] = {
75 0x000f, /* nd == 0 */
76 0x002f, /* nd == 1 */
77 0x00ff, /* nd == 2 */
78 0x02ff, /* nd == 3 */
79 0x0fff, /* nd == 4 */
80 0x2fff, /* nd == 5 */
81 0xffff, /* nd == 6 */
82 0x0000, /* nd == 7 reserved */
83 };
84
85 KASSERT(nd <= 6, ("number of domains %d", nd));
86 return (masks[nd]);
87 }
88
89 static const struct sagaw_bits_tag {
90 int agaw;
91 int cap;
92 int awlvl;
93 int pglvl;
94 } sagaw_bits[] = {
95 {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
96 .pglvl = 2},
97 {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
98 .pglvl = 3},
99 {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
100 .pglvl = 4},
101 {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
102 .pglvl = 5},
103 {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
104 .pglvl = 6}
105 };
106
107 bool
108 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
109 {
110 int i;
111
112 for (i = 0; i < nitems(sagaw_bits); i++) {
113 if (sagaw_bits[i].pglvl != pglvl)
114 continue;
115 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
116 return (true);
117 }
118 return (false);
119 }
120
121 int
122 domain_set_agaw(struct dmar_domain *domain, int mgaw)
123 {
124 int sagaw, i;
125
126 domain->mgaw = mgaw;
127 sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
128 for (i = 0; i < nitems(sagaw_bits); i++) {
129 if (sagaw_bits[i].agaw >= mgaw) {
130 domain->agaw = sagaw_bits[i].agaw;
131 domain->pglvl = sagaw_bits[i].pglvl;
132 domain->awlvl = sagaw_bits[i].awlvl;
133 return (0);
134 }
135 }
136 device_printf(domain->dmar->dev,
137 "context request mgaw %d: no agaw found, sagaw %x\n",
138 mgaw, sagaw);
139 return (EINVAL);
140 }
141
142 /*
143 * Find a best fit mgaw for the given maxaddr:
144 * - if allow_less is false, must find sagaw which maps all requested
145 * addresses (used by identity mappings);
146 * - if allow_less is true, and no supported sagaw can map all requested
147 * address space, accept the biggest sagaw, whatever is it.
148 */
149 int
150 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
151 {
152 int i;
153
154 for (i = 0; i < nitems(sagaw_bits); i++) {
155 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
156 (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
157 break;
158 }
159 if (allow_less && i == nitems(sagaw_bits)) {
160 do {
161 i--;
162 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
163 == 0);
164 }
165 if (i < nitems(sagaw_bits))
166 return (sagaw_bits[i].agaw);
167 KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
168 (uintmax_t) maxaddr, allow_less));
169 return (-1);
170 }
171
172 /*
173 * Calculate the total amount of page table pages needed to map the
174 * whole bus address space on the context with the selected agaw.
175 */
176 vm_pindex_t
177 pglvl_max_pages(int pglvl)
178 {
179 vm_pindex_t res;
180 int i;
181
182 for (res = 0, i = pglvl; i > 0; i--) {
183 res *= DMAR_NPTEPG;
184 res++;
185 }
186 return (res);
187 }
188
189 /*
190 * Return true if the page table level lvl supports the superpage for
191 * the context ctx.
192 */
193 int
194 domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
195 {
196 int alvl, cap_sps;
197 static const int sagaw_sp[] = {
198 DMAR_CAP_SPS_2M,
199 DMAR_CAP_SPS_1G,
200 DMAR_CAP_SPS_512G,
201 DMAR_CAP_SPS_1T
202 };
203
204 alvl = domain->pglvl - lvl - 1;
205 cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
206 return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
207 }
208
209 dmar_gaddr_t
210 pglvl_page_size(int total_pglvl, int lvl)
211 {
212 int rlvl;
213 static const dmar_gaddr_t pg_sz[] = {
214 (dmar_gaddr_t)DMAR_PAGE_SIZE,
215 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
216 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
217 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
218 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
219 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
220 };
221
222 KASSERT(lvl >= 0 && lvl < total_pglvl,
223 ("total %d lvl %d", total_pglvl, lvl));
224 rlvl = total_pglvl - lvl - 1;
225 KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
226 return (pg_sz[rlvl]);
227 }
228
229 dmar_gaddr_t
230 domain_page_size(struct dmar_domain *domain, int lvl)
231 {
232
233 return (pglvl_page_size(domain->pglvl, lvl));
234 }
235
236 int
237 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
238 dmar_gaddr_t *isizep)
239 {
240 dmar_gaddr_t isize;
241 int am;
242
243 for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
244 isize = 1ULL << (am + DMAR_PAGE_SHIFT);
245 if ((base & (isize - 1)) == 0 && size >= isize)
246 break;
247 if (am == 0)
248 break;
249 }
250 *isizep = isize;
251 return (am);
252 }
253
254 dmar_haddr_t dmar_high;
255 int haw;
256 int dmar_tbl_pagecnt;
257
258 vm_page_t
259 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
260 {
261 vm_page_t m;
262 int zeroed, aflags;
263
264 zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
265 aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
266 ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
267 VM_ALLOC_NOWAIT);
268 for (;;) {
269 if ((flags & DMAR_PGF_OBJL) == 0)
270 VM_OBJECT_WLOCK(obj);
271 m = vm_page_lookup(obj, idx);
272 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
273 if ((flags & DMAR_PGF_OBJL) == 0)
274 VM_OBJECT_WUNLOCK(obj);
275 break;
276 }
277 m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
278 dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
279 if ((flags & DMAR_PGF_OBJL) == 0)
280 VM_OBJECT_WUNLOCK(obj);
281 if (m != NULL) {
282 if (zeroed && (m->flags & PG_ZERO) == 0)
283 pmap_zero_page(m);
284 atomic_add_int(&dmar_tbl_pagecnt, 1);
285 break;
286 }
287 if ((flags & DMAR_PGF_WAITOK) == 0)
288 break;
289 }
290 return (m);
291 }
292
293 void
294 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
295 {
296 vm_page_t m;
297
298 if ((flags & DMAR_PGF_OBJL) == 0)
299 VM_OBJECT_WLOCK(obj);
300 m = vm_page_lookup(obj, idx);
301 if (m != NULL) {
302 vm_page_free(m);
303 atomic_subtract_int(&dmar_tbl_pagecnt, 1);
304 }
305 if ((flags & DMAR_PGF_OBJL) == 0)
306 VM_OBJECT_WUNLOCK(obj);
307 }
308
309 void *
310 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
311 struct sf_buf **sf)
312 {
313 vm_page_t m;
314 bool allocated;
315
316 if ((flags & DMAR_PGF_OBJL) == 0)
317 VM_OBJECT_WLOCK(obj);
318 m = vm_page_lookup(obj, idx);
319 if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
320 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
321 allocated = true;
322 } else
323 allocated = false;
324 if (m == NULL) {
325 if ((flags & DMAR_PGF_OBJL) == 0)
326 VM_OBJECT_WUNLOCK(obj);
327 return (NULL);
328 }
329 /* Sleepable allocations cannot fail. */
330 if ((flags & DMAR_PGF_WAITOK) != 0)
331 VM_OBJECT_WUNLOCK(obj);
332 sched_pin();
333 *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
334 == 0 ? SFB_NOWAIT : 0));
335 if (*sf == NULL) {
336 sched_unpin();
337 if (allocated) {
338 VM_OBJECT_ASSERT_WLOCKED(obj);
339 dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
340 }
341 if ((flags & DMAR_PGF_OBJL) == 0)
342 VM_OBJECT_WUNLOCK(obj);
343 return (NULL);
344 }
345 if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
346 (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
347 VM_OBJECT_WLOCK(obj);
348 else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
349 VM_OBJECT_WUNLOCK(obj);
350 return ((void *)sf_buf_kva(*sf));
351 }
352
353 void
354 dmar_unmap_pgtbl(struct sf_buf *sf)
355 {
356
357 sf_buf_free(sf);
358 sched_unpin();
359 }
360
361 static void
362 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
363 {
364
365 if (DMAR_IS_COHERENT(unit))
366 return;
367 /*
368 * If DMAR does not snoop paging structures accesses, flush
369 * CPU cache to memory.
370 */
371 pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz);
372 }
373
374 void
375 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
376 {
377
378 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
379 }
380
381 void
382 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
383 {
384
385 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
386 }
387
388 void
389 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
390 {
391
392 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
393 }
394
395 /*
396 * Load the root entry pointer into the hardware, busily waiting for
397 * the completion.
398 */
399 int
400 dmar_load_root_entry_ptr(struct dmar_unit *unit)
401 {
402 vm_page_t root_entry;
403 int error;
404
405 /*
406 * Access to the GCMD register must be serialized while the
407 * command is submitted.
408 */
409 DMAR_ASSERT_LOCKED(unit);
410
411 VM_OBJECT_RLOCK(unit->ctx_obj);
412 root_entry = vm_page_lookup(unit->ctx_obj, 0);
413 VM_OBJECT_RUNLOCK(unit->ctx_obj);
414 dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
415 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
416 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
417 != 0));
418 return (error);
419 }
420
421 /*
422 * Globally invalidate the context entries cache, busily waiting for
423 * the completion.
424 */
425 int
426 dmar_inv_ctx_glob(struct dmar_unit *unit)
427 {
428 int error;
429
430 /*
431 * Access to the CCMD register must be serialized while the
432 * command is submitted.
433 */
434 DMAR_ASSERT_LOCKED(unit);
435 KASSERT(!unit->qi_enabled, ("QI enabled"));
436
437 /*
438 * The DMAR_CCMD_ICC bit in the upper dword should be written
439 * after the low dword write is completed. Amd64
440 * dmar_write8() does not have this issue, i386 dmar_write8()
441 * writes the upper dword last.
442 */
443 dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
444 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
445 == 0));
446 return (error);
447 }
448
449 /*
450 * Globally invalidate the IOTLB, busily waiting for the completion.
451 */
452 int
453 dmar_inv_iotlb_glob(struct dmar_unit *unit)
454 {
455 int error, reg;
456
457 DMAR_ASSERT_LOCKED(unit);
458 KASSERT(!unit->qi_enabled, ("QI enabled"));
459
460 reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
461 /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
462 dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
463 DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
464 DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
465 DMAR_IOTLB_IVT32) == 0));
466 return (error);
467 }
468
469 /*
470 * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
471 * in the architecture specification.
472 */
473 int
474 dmar_flush_write_bufs(struct dmar_unit *unit)
475 {
476 int error;
477
478 DMAR_ASSERT_LOCKED(unit);
479
480 /*
481 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
482 */
483 KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
484 ("dmar%d: no RWBF", unit->unit));
485
486 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
487 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
488 != 0));
489 return (error);
490 }
491
492 int
493 dmar_enable_translation(struct dmar_unit *unit)
494 {
495 int error;
496
497 DMAR_ASSERT_LOCKED(unit);
498 unit->hw_gcmd |= DMAR_GCMD_TE;
499 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
500 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
501 != 0));
502 return (error);
503 }
504
505 int
506 dmar_disable_translation(struct dmar_unit *unit)
507 {
508 int error;
509
510 DMAR_ASSERT_LOCKED(unit);
511 unit->hw_gcmd &= ~DMAR_GCMD_TE;
512 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
513 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
514 == 0));
515 return (error);
516 }
517
518 int
519 dmar_load_irt_ptr(struct dmar_unit *unit)
520 {
521 uint64_t irta, s;
522 int error;
523
524 DMAR_ASSERT_LOCKED(unit);
525 irta = unit->irt_phys;
526 if (DMAR_X2APIC(unit))
527 irta |= DMAR_IRTA_EIME;
528 s = fls(unit->irte_cnt) - 2;
529 KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
530 powerof2(unit->irte_cnt),
531 ("IRTA_REG_S overflow %x", unit->irte_cnt));
532 irta |= s;
533 dmar_write8(unit, DMAR_IRTA_REG, irta);
534 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
535 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
536 != 0));
537 return (error);
538 }
539
540 int
541 dmar_enable_ir(struct dmar_unit *unit)
542 {
543 int error;
544
545 DMAR_ASSERT_LOCKED(unit);
546 unit->hw_gcmd |= DMAR_GCMD_IRE;
547 unit->hw_gcmd &= ~DMAR_GCMD_CFI;
548 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
549 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
550 != 0));
551 return (error);
552 }
553
554 int
555 dmar_disable_ir(struct dmar_unit *unit)
556 {
557 int error;
558
559 DMAR_ASSERT_LOCKED(unit);
560 unit->hw_gcmd &= ~DMAR_GCMD_IRE;
561 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
562 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
563 == 0));
564 return (error);
565 }
566
567 #define BARRIER_F \
568 u_int f_done, f_inproc, f_wakeup; \
569 \
570 f_done = 1 << (barrier_id * 3); \
571 f_inproc = 1 << (barrier_id * 3 + 1); \
572 f_wakeup = 1 << (barrier_id * 3 + 2)
573
574 bool
575 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
576 {
577 BARRIER_F;
578
579 DMAR_LOCK(dmar);
580 if ((dmar->barrier_flags & f_done) != 0) {
581 DMAR_UNLOCK(dmar);
582 return (false);
583 }
584
585 if ((dmar->barrier_flags & f_inproc) != 0) {
586 while ((dmar->barrier_flags & f_inproc) != 0) {
587 dmar->barrier_flags |= f_wakeup;
588 msleep(&dmar->barrier_flags, &dmar->lock, 0,
589 "dmarb", 0);
590 }
591 KASSERT((dmar->barrier_flags & f_done) != 0,
592 ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
593 DMAR_UNLOCK(dmar);
594 return (false);
595 }
596
597 dmar->barrier_flags |= f_inproc;
598 DMAR_UNLOCK(dmar);
599 return (true);
600 }
601
602 void
603 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
604 {
605 BARRIER_F;
606
607 DMAR_ASSERT_LOCKED(dmar);
608 KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
609 ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
610 dmar->barrier_flags |= f_done;
611 if ((dmar->barrier_flags & f_wakeup) != 0)
612 wakeup(&dmar->barrier_flags);
613 dmar->barrier_flags &= ~(f_inproc | f_wakeup);
614 DMAR_UNLOCK(dmar);
615 }
616
617 int dmar_match_verbose;
618 int dmar_batch_coalesce = 100;
619 struct timespec dmar_hw_timeout = {
620 .tv_sec = 0,
621 .tv_nsec = 1000000
622 };
623
624 static const uint64_t d = 1000000000;
625
626 void
627 dmar_update_timeout(uint64_t newval)
628 {
629
630 /* XXXKIB not atomic */
631 dmar_hw_timeout.tv_sec = newval / d;
632 dmar_hw_timeout.tv_nsec = newval % d;
633 }
634
635 uint64_t
636 dmar_get_timeout(void)
637 {
638
639 return ((uint64_t)dmar_hw_timeout.tv_sec * d +
640 dmar_hw_timeout.tv_nsec);
641 }
642
643 static int
644 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
645 {
646 uint64_t val;
647 int error;
648
649 val = dmar_get_timeout();
650 error = sysctl_handle_long(oidp, &val, 0, req);
651 if (error != 0 || req->newptr == NULL)
652 return (error);
653 dmar_update_timeout(val);
654 return (error);
655 }
656
657 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
658 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
659 &dmar_tbl_pagecnt, 0,
660 "Count of pages used for DMAR pagetables");
661 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
662 &dmar_match_verbose, 0,
663 "Verbose matching of the PCI devices to DMAR paths");
664 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
665 &dmar_batch_coalesce, 0,
666 "Number of qi batches between interrupt");
667 SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
668 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
669 dmar_timeout_sysctl, "QU",
670 "Timeout for command wait, in nanoseconds");
671 #ifdef INVARIANTS
672 int dmar_check_free;
673 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
674 &dmar_check_free, 0,
675 "Check the GPA RBtree for free_down and free_after validity");
676 #endif
677
Cache object: 08cdbed681e91b20985e96101a4c6667
|