The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1990 The Regents of the University of California.
    5  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * William Jolitz and Don Ahn.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 /*
   42  * Routines to handle clock hardware.
   43  */
   44 
   45 #include "opt_clock.h"
   46 #include "opt_isa.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/bus.h>
   51 #include <sys/lock.h>
   52 #include <sys/kdb.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/kernel.h>
   56 #include <sys/module.h>
   57 #include <sys/rman.h>
   58 #include <sys/sched.h>
   59 #include <sys/smp.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/timeet.h>
   62 #include <sys/timetc.h>
   63 
   64 #include <machine/clock.h>
   65 #include <machine/cpu.h>
   66 #include <machine/intr_machdep.h>
   67 #include <machine/ppireg.h>
   68 #include <machine/timerreg.h>
   69 #include <x86/init.h>
   70 
   71 #include <isa/rtc.h>
   72 #ifdef DEV_ISA
   73 #include <isa/isareg.h>
   74 #include <isa/isavar.h>
   75 #endif
   76 
   77 int     clkintr_pending;
   78 #ifndef TIMER_FREQ
   79 #define TIMER_FREQ   1193182
   80 #endif
   81 u_int   i8254_freq = TIMER_FREQ;
   82 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
   83 int     i8254_max_count;
   84 static int i8254_timecounter = 1;
   85 
   86 static  struct mtx clock_lock;
   87 static  struct intsrc *i8254_intsrc;
   88 static  uint16_t i8254_lastcount;
   89 static  uint16_t i8254_offset;
   90 static  int     (*i8254_pending)(struct intsrc *);
   91 static  int     i8254_ticked;
   92 
   93 struct attimer_softc {
   94         int intr_en;
   95         int port_rid, intr_rid;
   96         struct resource *port_res;
   97         struct resource *intr_res;
   98         void *intr_handler;
   99         struct timecounter tc;
  100         struct eventtimer et;
  101         int             mode;
  102 #define MODE_STOP       0
  103 #define MODE_PERIODIC   1
  104 #define MODE_ONESHOT    2
  105         uint32_t        period;
  106 };
  107 static struct attimer_softc *attimer_sc = NULL;
  108 
  109 static int timer0_period = -2;
  110 static int timer0_mode = 0xffff;
  111 static int timer0_last = 0xffff;
  112 
  113 /* Values for timerX_state: */
  114 #define RELEASED        0
  115 #define RELEASE_PENDING 1
  116 #define ACQUIRED        2
  117 #define ACQUIRE_PENDING 3
  118 
  119 static  u_char  timer2_state;
  120 
  121 static  unsigned i8254_get_timecount(struct timecounter *tc);
  122 static  void    set_i8254_freq(int mode, uint32_t period);
  123 
  124 void
  125 clock_init(void)
  126 {
  127         /* Init the clock lock */
  128         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
  129         /* Init the clock in order to use DELAY */
  130         init_ops.early_clock_source_init();
  131 }
  132 
  133 static int
  134 clkintr(void *arg)
  135 {
  136         struct attimer_softc *sc = (struct attimer_softc *)arg;
  137 
  138         if (i8254_timecounter && sc->period != 0) {
  139                 mtx_lock_spin(&clock_lock);
  140                 if (i8254_ticked)
  141                         i8254_ticked = 0;
  142                 else {
  143                         i8254_offset += i8254_max_count;
  144                         i8254_lastcount = 0;
  145                 }
  146                 clkintr_pending = 0;
  147                 mtx_unlock_spin(&clock_lock);
  148         }
  149 
  150         if (sc->et.et_active && sc->mode != MODE_STOP)
  151                 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
  152 
  153         return (FILTER_HANDLED);
  154 }
  155 
  156 int
  157 timer_spkr_acquire(void)
  158 {
  159         int mode;
  160 
  161         mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
  162 
  163         if (timer2_state != RELEASED)
  164                 return (-1);
  165         timer2_state = ACQUIRED;
  166 
  167         /*
  168          * This access to the timer registers is as atomic as possible
  169          * because it is a single instruction.  We could do better if we
  170          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  171          * and this is probably good enough for timer2, so we aren't as
  172          * careful with it as with timer0.
  173          */
  174         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  175 
  176         ppi_spkr_on();          /* enable counter2 output to speaker */
  177         return (0);
  178 }
  179 
  180 int
  181 timer_spkr_release(void)
  182 {
  183 
  184         if (timer2_state != ACQUIRED)
  185                 return (-1);
  186         timer2_state = RELEASED;
  187         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  188 
  189         ppi_spkr_off();         /* disable counter2 output to speaker */
  190         return (0);
  191 }
  192 
  193 void
  194 timer_spkr_setfreq(int freq)
  195 {
  196 
  197         freq = i8254_freq / freq;
  198         mtx_lock_spin(&clock_lock);
  199         outb(TIMER_CNTR2, freq & 0xff);
  200         outb(TIMER_CNTR2, freq >> 8);
  201         mtx_unlock_spin(&clock_lock);
  202 }
  203 
  204 static int
  205 getit(void)
  206 {
  207         int high, low;
  208 
  209         mtx_lock_spin(&clock_lock);
  210 
  211         /* Select timer0 and latch counter value. */
  212         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  213 
  214         low = inb(TIMER_CNTR0);
  215         high = inb(TIMER_CNTR0);
  216 
  217         mtx_unlock_spin(&clock_lock);
  218         return ((high << 8) | low);
  219 }
  220 
  221 /*
  222  * Wait "n" microseconds.
  223  * Relies on timer 1 counting down from (i8254_freq / hz)
  224  * Note: timer had better have been programmed before this is first used!
  225  */
  226 void
  227 i8254_delay(int n)
  228 {
  229         int delta, prev_tick, tick, ticks_left;
  230 #ifdef DELAYDEBUG
  231         int getit_calls = 1;
  232         int n1;
  233         static int state = 0;
  234 
  235         if (state == 0) {
  236                 state = 1;
  237                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  238                         DELAY(n1);
  239                 state = 2;
  240         }
  241         if (state == 1)
  242                 printf("DELAY(%d)...", n);
  243 #endif
  244         /*
  245          * Read the counter first, so that the rest of the setup overhead is
  246          * counted.  Guess the initial overhead is 20 usec (on most systems it
  247          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  248          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  249          * multiplications and divisions to scale the count take a while).
  250          *
  251          * However, if ddb is active then use a fake counter since reading
  252          * the i8254 counter involves acquiring a lock.  ddb must not do
  253          * locking for many reasons, but it calls here for at least atkbd
  254          * input.
  255          */
  256 #ifdef KDB
  257         if (kdb_active)
  258                 prev_tick = 1;
  259         else
  260 #endif
  261                 prev_tick = getit();
  262         n -= 0;                 /* XXX actually guess no initial overhead */
  263         /*
  264          * Calculate (n * (i8254_freq / 1e6)) without using floating point
  265          * and without any avoidable overflows.
  266          */
  267         if (n <= 0)
  268                 ticks_left = 0;
  269         else if (n < 256)
  270                 /*
  271                  * Use fixed point to avoid a slow division by 1000000.
  272                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  273                  * 2^15 is the first power of 2 that gives exact results
  274                  * for n between 0 and 256.
  275                  */
  276                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  277         else
  278                 /*
  279                  * Don't bother using fixed point, although gcc-2.7.2
  280                  * generates particularly poor code for the long long
  281                  * division, since even the slow way will complete long
  282                  * before the delay is up (unless we're interrupted).
  283                  */
  284                 ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
  285                              / 1000000;
  286 
  287         while (ticks_left > 0) {
  288 #ifdef KDB
  289                 if (kdb_active) {
  290                         inb(0x84);
  291                         tick = prev_tick - 1;
  292                         if (tick <= 0)
  293                                 tick = i8254_max_count;
  294                 } else
  295 #endif
  296                         tick = getit();
  297 #ifdef DELAYDEBUG
  298                 ++getit_calls;
  299 #endif
  300                 delta = prev_tick - tick;
  301                 prev_tick = tick;
  302                 if (delta < 0) {
  303                         delta += i8254_max_count;
  304                         /*
  305                          * Guard against i8254_max_count being wrong.
  306                          * This shouldn't happen in normal operation,
  307                          * but it may happen if set_i8254_freq() is
  308                          * traced.
  309                          */
  310                         if (delta < 0)
  311                                 delta = 0;
  312                 }
  313                 ticks_left -= delta;
  314         }
  315 #ifdef DELAYDEBUG
  316         if (state == 1)
  317                 printf(" %d calls to getit() at %d usec each\n",
  318                        getit_calls, (n + 5) / getit_calls);
  319 #endif
  320 }
  321 
  322 static void
  323 set_i8254_freq(int mode, uint32_t period)
  324 {
  325         int new_count, new_mode;
  326 
  327         mtx_lock_spin(&clock_lock);
  328         if (mode == MODE_STOP) {
  329                 if (i8254_timecounter) {
  330                         mode = MODE_PERIODIC;
  331                         new_count = 0x10000;
  332                 } else
  333                         new_count = -1;
  334         } else {
  335                 new_count = min(((uint64_t)i8254_freq * period +
  336                     0x80000000LLU) >> 32, 0x10000);
  337         }
  338         if (new_count == timer0_period)
  339                 goto out;
  340         i8254_max_count = ((new_count & ~0xffff) != 0) ? 0xffff : new_count;
  341         timer0_period = (mode == MODE_PERIODIC) ? new_count : -1;
  342         switch (mode) {
  343         case MODE_STOP:
  344                 new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT;
  345                 outb(TIMER_MODE, new_mode);
  346                 outb(TIMER_CNTR0, 0);
  347                 outb(TIMER_CNTR0, 0);
  348                 break;
  349         case MODE_PERIODIC:
  350                 new_mode = TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT;
  351                 outb(TIMER_MODE, new_mode);
  352                 outb(TIMER_CNTR0, new_count & 0xff);
  353                 outb(TIMER_CNTR0, new_count >> 8);
  354                 break;
  355         case MODE_ONESHOT:
  356                 if (new_count < 256 && timer0_last < 256) {
  357                         new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_LSB;
  358                         if (new_mode != timer0_mode)
  359                                 outb(TIMER_MODE, new_mode);
  360                         outb(TIMER_CNTR0, new_count & 0xff);
  361                         break;
  362                 }
  363                 new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT;
  364                 if (new_mode != timer0_mode)
  365                         outb(TIMER_MODE, new_mode);
  366                 outb(TIMER_CNTR0, new_count & 0xff);
  367                 outb(TIMER_CNTR0, new_count >> 8);
  368                 break;
  369         default:
  370                 panic("set_i8254_freq: unknown operational mode");
  371         }
  372         timer0_mode = new_mode;
  373         timer0_last = new_count;
  374 out:
  375         mtx_unlock_spin(&clock_lock);
  376 }
  377 
  378 static void
  379 i8254_restore(void)
  380 {
  381 
  382         timer0_period = -2;
  383         timer0_mode = 0xffff;
  384         timer0_last = 0xffff;
  385         if (attimer_sc != NULL)
  386                 set_i8254_freq(attimer_sc->mode, attimer_sc->period);
  387         else
  388                 set_i8254_freq(MODE_STOP, 0);
  389 }
  390 
  391 #ifndef __amd64__
  392 /*
  393  * Restore all the timers non-atomically (XXX: should be atomically).
  394  *
  395  * This function is called from pmtimer_resume() to restore all the timers.
  396  * This should not be necessary, but there are broken laptops that do not
  397  * restore all the timers on resume. The APM spec was at best vague on the
  398  * subject.
  399  * pmtimer is used only with the old APM power management, and not with
  400  * acpi, which is required for amd64, so skip it in that case.
  401  */
  402 void
  403 timer_restore(void)
  404 {
  405 
  406         i8254_restore();                /* restore i8254_freq and hz */
  407         atrtc_restore();                /* reenable RTC interrupts */
  408 }
  409 #endif
  410 
  411 /* This is separate from startrtclock() so that it can be called early. */
  412 void
  413 i8254_init(void)
  414 {
  415 
  416         set_i8254_freq(MODE_STOP, 0);
  417 }
  418 
  419 void
  420 startrtclock()
  421 {
  422 
  423         init_TSC();
  424 }
  425 
  426 void
  427 cpu_initclocks(void)
  428 {
  429 #ifdef EARLY_AP_STARTUP
  430         struct thread *td;
  431         int i;
  432 
  433         td = curthread;
  434         cpu_initclocks_bsp();
  435         CPU_FOREACH(i) {
  436                 if (i == 0)
  437                         continue;
  438                 thread_lock(td);
  439                 sched_bind(td, i);
  440                 thread_unlock(td);
  441                 cpu_initclocks_ap();
  442         }
  443         thread_lock(td);
  444         if (sched_is_bound(td))
  445                 sched_unbind(td);
  446         thread_unlock(td);
  447 #else
  448         cpu_initclocks_bsp();
  449 #endif
  450 }
  451 
  452 static int
  453 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  454 {
  455         int error;
  456         u_int freq;
  457 
  458         /*
  459          * Use `i8254' instead of `timer' in external names because `timer'
  460          * is too generic.  Should use it everywhere.
  461          */
  462         freq = i8254_freq;
  463         error = sysctl_handle_int(oidp, &freq, 0, req);
  464         if (error == 0 && req->newptr != NULL) {
  465                 i8254_freq = freq;
  466                 if (attimer_sc != NULL) {
  467                         set_i8254_freq(attimer_sc->mode, attimer_sc->period);
  468                         attimer_sc->tc.tc_frequency = freq;
  469                 } else {
  470                         set_i8254_freq(MODE_STOP, 0);
  471                 }
  472         }
  473         return (error);
  474 }
  475 
  476 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  477     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU",
  478     "i8254 timer frequency");
  479 
  480 static unsigned
  481 i8254_get_timecount(struct timecounter *tc)
  482 {
  483         device_t dev = (device_t)tc->tc_priv;
  484         struct attimer_softc *sc = device_get_softc(dev);
  485         register_t flags;
  486         uint16_t count;
  487         u_int high, low;
  488 
  489         if (sc->period == 0)
  490                 return (i8254_max_count - getit());
  491 
  492 #ifdef __amd64__
  493         flags = read_rflags();
  494 #else
  495         flags = read_eflags();
  496 #endif
  497         mtx_lock_spin(&clock_lock);
  498 
  499         /* Select timer0 and latch counter value. */
  500         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  501 
  502         low = inb(TIMER_CNTR0);
  503         high = inb(TIMER_CNTR0);
  504         count = i8254_max_count - ((high << 8) | low);
  505         if (count < i8254_lastcount ||
  506             (!i8254_ticked && (clkintr_pending ||
  507             ((count < 20 || (!(flags & PSL_I) &&
  508             count < i8254_max_count / 2u)) &&
  509             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  510                 i8254_ticked = 1;
  511                 i8254_offset += i8254_max_count;
  512         }
  513         i8254_lastcount = count;
  514         count += i8254_offset;
  515         mtx_unlock_spin(&clock_lock);
  516         return (count);
  517 }
  518 
  519 static int
  520 attimer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
  521 {
  522         device_t dev = (device_t)et->et_priv;
  523         struct attimer_softc *sc = device_get_softc(dev);
  524 
  525         if (period != 0) {
  526                 sc->mode = MODE_PERIODIC;
  527                 sc->period = period;
  528         } else {
  529                 sc->mode = MODE_ONESHOT;
  530                 sc->period = first;
  531         }
  532         if (!sc->intr_en) {
  533                 i8254_intsrc->is_pic->pic_enable_source(i8254_intsrc);
  534                 sc->intr_en = 1;
  535         }
  536         set_i8254_freq(sc->mode, sc->period);
  537         return (0);
  538 }
  539 
  540 static int
  541 attimer_stop(struct eventtimer *et)
  542 {
  543         device_t dev = (device_t)et->et_priv;
  544         struct attimer_softc *sc = device_get_softc(dev);
  545         
  546         sc->mode = MODE_STOP;
  547         sc->period = 0;
  548         set_i8254_freq(sc->mode, sc->period);
  549         return (0);
  550 }
  551 
  552 #ifdef DEV_ISA
  553 /*
  554  * Attach to the ISA PnP descriptors for the timer
  555  */
  556 static struct isa_pnp_id attimer_ids[] = {
  557         { 0x0001d041 /* PNP0100 */, "AT timer" },
  558         { 0 }
  559 };
  560 
  561 static int
  562 attimer_probe(device_t dev)
  563 {
  564         int result;
  565         
  566         result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
  567         /* ENOENT means no PnP-ID, device is hinted. */
  568         if (result == ENOENT) {
  569                 device_set_desc(dev, "AT timer");
  570                 return (BUS_PROBE_LOW_PRIORITY);
  571         }
  572         return (result);
  573 }
  574 
  575 static int
  576 attimer_attach(device_t dev)
  577 {
  578         struct attimer_softc *sc;
  579         rman_res_t s;
  580         int i;
  581 
  582         attimer_sc = sc = device_get_softc(dev);
  583         bzero(sc, sizeof(struct attimer_softc));
  584         if (!(sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT,
  585             &sc->port_rid, IO_TIMER1, IO_TIMER1 + 3, 4, RF_ACTIVE)))
  586                 device_printf(dev,"Warning: Couldn't map I/O.\n");
  587         i8254_intsrc = intr_lookup_source(0);
  588         if (i8254_intsrc != NULL)
  589                 i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
  590         resource_int_value(device_get_name(dev), device_get_unit(dev),
  591             "timecounter", &i8254_timecounter);
  592         set_i8254_freq(MODE_STOP, 0);
  593         if (i8254_timecounter) {
  594                 sc->tc.tc_get_timecount = i8254_get_timecount;
  595                 sc->tc.tc_counter_mask = 0xffff;
  596                 sc->tc.tc_frequency = i8254_freq;
  597                 sc->tc.tc_name = "i8254";
  598                 sc->tc.tc_quality = 0;
  599                 sc->tc.tc_priv = dev;
  600                 tc_init(&sc->tc);
  601         }
  602         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
  603             "clock", &i) != 0 || i != 0) {
  604                 sc->intr_rid = 0;
  605                 while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
  606                     &s, NULL) == 0 && s != 0)
  607                         sc->intr_rid++;
  608                 if (!(sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
  609                     &sc->intr_rid, 0, 0, 1, RF_ACTIVE))) {
  610                         device_printf(dev,"Can't map interrupt.\n");
  611                         return (0);
  612                 }
  613                 /* Dirty hack, to make bus_setup_intr to not enable source. */
  614                 i8254_intsrc->is_handlers++;
  615                 if ((bus_setup_intr(dev, sc->intr_res,
  616                     INTR_MPSAFE | INTR_TYPE_CLK,
  617                     (driver_filter_t *)clkintr, NULL,
  618                     sc, &sc->intr_handler))) {
  619                         device_printf(dev, "Can't setup interrupt.\n");
  620                         i8254_intsrc->is_handlers--;
  621                         return (0);
  622                 }
  623                 i8254_intsrc->is_handlers--;
  624                 i8254_intsrc->is_pic->pic_enable_intr(i8254_intsrc);
  625                 sc->et.et_name = "i8254";
  626                 sc->et.et_flags = ET_FLAGS_PERIODIC;
  627                 if (!i8254_timecounter)
  628                         sc->et.et_flags |= ET_FLAGS_ONESHOT;
  629                 sc->et.et_quality = 100;
  630                 sc->et.et_frequency = i8254_freq;
  631                 sc->et.et_min_period = (0x0002LLU << 32) / i8254_freq;
  632                 sc->et.et_max_period = (0xfffeLLU << 32) / i8254_freq;
  633                 sc->et.et_start = attimer_start;
  634                 sc->et.et_stop = attimer_stop;
  635                 sc->et.et_priv = dev;
  636                 et_register(&sc->et);
  637         }
  638         return(0);
  639 }
  640 
  641 static int
  642 attimer_resume(device_t dev)
  643 {
  644 
  645         i8254_restore();
  646         return (0);
  647 }
  648 
  649 static device_method_t attimer_methods[] = {
  650         /* Device interface */
  651         DEVMETHOD(device_probe,         attimer_probe),
  652         DEVMETHOD(device_attach,        attimer_attach),
  653         DEVMETHOD(device_detach,        bus_generic_detach),
  654         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  655         DEVMETHOD(device_suspend,       bus_generic_suspend),
  656         DEVMETHOD(device_resume,        attimer_resume),
  657         { 0, 0 }
  658 };
  659 
  660 static driver_t attimer_driver = {
  661         "attimer",
  662         attimer_methods,
  663         sizeof(struct attimer_softc),
  664 };
  665 
  666 static devclass_t attimer_devclass;
  667 
  668 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  669 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  670 ISA_PNP_INFO(attimer_ids);
  671 
  672 #endif /* DEV_ISA */

Cache object: c05241d5ee46ad9e1f66220f5bfd3dd9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.