The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/x86/x86/tsc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998-2003 Poul-Henning Kamp
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.4/sys/x86/x86/tsc.c 280973 2015-04-02 01:02:42Z jhb $");
   29 
   30 #include "opt_compat.h"
   31 #include "opt_clock.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/bus.h>
   35 #include <sys/cpu.h>
   36 #include <sys/limits.h>
   37 #include <sys/malloc.h>
   38 #include <sys/systm.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/time.h>
   41 #include <sys/timetc.h>
   42 #include <sys/kernel.h>
   43 #include <sys/power.h>
   44 #include <sys/smp.h>
   45 #include <sys/vdso.h>
   46 #include <machine/clock.h>
   47 #include <machine/cputypes.h>
   48 #include <machine/md_var.h>
   49 #include <machine/specialreg.h>
   50 #include <x86/vmware.h>
   51 
   52 #include "cpufreq_if.h"
   53 
   54 uint64_t        tsc_freq;
   55 int             tsc_is_invariant;
   56 int             tsc_perf_stat;
   57 
   58 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
   59 
   60 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
   61     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
   62 TUNABLE_INT("kern.timecounter.invariant_tsc", &tsc_is_invariant);
   63 
   64 #ifdef SMP
   65 int     smp_tsc;
   66 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
   67     "Indicates whether the TSC is safe to use in SMP mode");
   68 TUNABLE_INT("kern.timecounter.smp_tsc", &smp_tsc);
   69 
   70 int     smp_tsc_adjust = 0;
   71 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
   72     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
   73 TUNABLE_INT("kern.timecounter.smp_tsc_adjust", &smp_tsc_adjust);
   74 #endif
   75 
   76 static int      tsc_shift = 1;
   77 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
   78     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
   79 TUNABLE_INT("kern.timecounter.tsc_shift", &tsc_shift);
   80 
   81 static int      tsc_disabled;
   82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
   83     "Disable x86 Time Stamp Counter");
   84 TUNABLE_INT("machdep.disable_tsc", &tsc_disabled);
   85 
   86 static int      tsc_skip_calibration;
   87 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
   88     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
   89 TUNABLE_INT("machdep.disable_tsc_calibration", &tsc_skip_calibration);
   90 
   91 static void tsc_freq_changed(void *arg, const struct cf_level *level,
   92     int status);
   93 static void tsc_freq_changing(void *arg, const struct cf_level *level,
   94     int *status);
   95 static unsigned tsc_get_timecount(struct timecounter *tc);
   96 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
   97 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
   98 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
   99 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
  100 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
  101 static void tsc_levels_changed(void *arg, int unit);
  102 
  103 static struct timecounter tsc_timecounter = {
  104         tsc_get_timecount,      /* get_timecount */
  105         0,                      /* no poll_pps */
  106         ~0u,                    /* counter_mask */
  107         0,                      /* frequency */
  108         "TSC",                  /* name */
  109         800,                    /* quality (adjusted in code) */
  110 };
  111 
  112 static void
  113 tsc_freq_vmware(void)
  114 {
  115         u_int regs[4];
  116 
  117         if (hv_high >= 0x40000010) {
  118                 do_cpuid(0x40000010, regs);
  119                 tsc_freq = regs[0] * 1000;
  120         } else {
  121                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
  122                 if (regs[1] != UINT_MAX)
  123                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
  124         }
  125         tsc_is_invariant = 1;
  126 }
  127 
  128 static void
  129 tsc_freq_intel(void)
  130 {
  131         char brand[48];
  132         u_int regs[4];
  133         uint64_t freq;
  134         char *p;
  135         u_int i;
  136 
  137         /*
  138          * Intel Processor Identification and the CPUID Instruction
  139          * Application Note 485.
  140          * http://www.intel.com/assets/pdf/appnote/241618.pdf
  141          */
  142         if (cpu_exthigh >= 0x80000004) {
  143                 p = brand;
  144                 for (i = 0x80000002; i < 0x80000005; i++) {
  145                         do_cpuid(i, regs);
  146                         memcpy(p, regs, sizeof(regs));
  147                         p += sizeof(regs);
  148                 }
  149                 p = NULL;
  150                 for (i = 0; i < sizeof(brand) - 1; i++)
  151                         if (brand[i] == 'H' && brand[i + 1] == 'z')
  152                                 p = brand + i;
  153                 if (p != NULL) {
  154                         p -= 5;
  155                         switch (p[4]) {
  156                         case 'M':
  157                                 i = 1;
  158                                 break;
  159                         case 'G':
  160                                 i = 1000;
  161                                 break;
  162                         case 'T':
  163                                 i = 1000000;
  164                                 break;
  165                         default:
  166                                 return;
  167                         }
  168 #define C2D(c)  ((c) - '')
  169                         if (p[1] == '.') {
  170                                 freq = C2D(p[0]) * 1000;
  171                                 freq += C2D(p[2]) * 100;
  172                                 freq += C2D(p[3]) * 10;
  173                                 freq *= i * 1000;
  174                         } else {
  175                                 freq = C2D(p[0]) * 1000;
  176                                 freq += C2D(p[1]) * 100;
  177                                 freq += C2D(p[2]) * 10;
  178                                 freq += C2D(p[3]);
  179                                 freq *= i * 1000000;
  180                         }
  181 #undef C2D
  182                         tsc_freq = freq;
  183                 }
  184         }
  185 }
  186 
  187 static void
  188 probe_tsc_freq(void)
  189 {
  190         u_int regs[4];
  191         uint64_t tsc1, tsc2;
  192 
  193         if (cpu_high >= 6) {
  194                 do_cpuid(6, regs);
  195                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
  196                         /*
  197                          * XXX Some emulators expose host CPUID without actual
  198                          * support for these MSRs.  We must test whether they
  199                          * really work.
  200                          */
  201                         wrmsr(MSR_MPERF, 0);
  202                         wrmsr(MSR_APERF, 0);
  203                         DELAY(10);
  204                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
  205                                 tsc_perf_stat = 1;
  206                 }
  207         }
  208 
  209         if (vm_guest == VM_GUEST_VMWARE) {
  210                 tsc_freq_vmware();
  211                 return;
  212         }
  213 
  214         switch (cpu_vendor_id) {
  215         case CPU_VENDOR_AMD:
  216                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
  217                     (vm_guest == VM_GUEST_NO &&
  218                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
  219                         tsc_is_invariant = 1;
  220                 if (cpu_feature & CPUID_SSE2) {
  221                         tsc_timecounter.tc_get_timecount =
  222                             tsc_get_timecount_mfence;
  223                 }
  224                 break;
  225         case CPU_VENDOR_INTEL:
  226                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
  227                     (vm_guest == VM_GUEST_NO &&
  228                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
  229                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
  230                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
  231                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
  232                         tsc_is_invariant = 1;
  233                 if (cpu_feature & CPUID_SSE2) {
  234                         tsc_timecounter.tc_get_timecount =
  235                             tsc_get_timecount_lfence;
  236                 }
  237                 break;
  238         case CPU_VENDOR_CENTAUR:
  239                 if (vm_guest == VM_GUEST_NO &&
  240                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
  241                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
  242                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
  243                         tsc_is_invariant = 1;
  244                 if (cpu_feature & CPUID_SSE2) {
  245                         tsc_timecounter.tc_get_timecount =
  246                             tsc_get_timecount_lfence;
  247                 }
  248                 break;
  249         }
  250 
  251         if (tsc_skip_calibration) {
  252                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
  253                         tsc_freq_intel();
  254                 return;
  255         }
  256 
  257         if (bootverbose)
  258                 printf("Calibrating TSC clock ... ");
  259         tsc1 = rdtsc();
  260         DELAY(1000000);
  261         tsc2 = rdtsc();
  262         tsc_freq = tsc2 - tsc1;
  263         if (bootverbose)
  264                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
  265 }
  266 
  267 void
  268 init_TSC(void)
  269 {
  270 
  271         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
  272                 return;
  273 
  274 #ifdef __i386__
  275         /* The TSC is known to be broken on certain CPUs. */
  276         switch (cpu_vendor_id) {
  277         case CPU_VENDOR_AMD:
  278                 switch (cpu_id & 0xFF0) {
  279                 case 0x500:
  280                         /* K5 Model 0 */
  281                         return;
  282                 }
  283                 break;
  284         case CPU_VENDOR_CENTAUR:
  285                 switch (cpu_id & 0xff0) {
  286                 case 0x540:
  287                         /*
  288                          * http://www.centtech.com/c6_data_sheet.pdf
  289                          *
  290                          * I-12 RDTSC may return incoherent values in EDX:EAX
  291                          * I-13 RDTSC hangs when certain event counters are used
  292                          */
  293                         return;
  294                 }
  295                 break;
  296         case CPU_VENDOR_NSC:
  297                 switch (cpu_id & 0xff0) {
  298                 case 0x540:
  299                         if ((cpu_id & CPUID_STEPPING) == 0)
  300                                 return;
  301                         break;
  302                 }
  303                 break;
  304         }
  305 #endif
  306                 
  307         probe_tsc_freq();
  308 
  309         /*
  310          * Inform CPU accounting about our boot-time clock rate.  This will
  311          * be updated if someone loads a cpufreq driver after boot that
  312          * discovers a new max frequency.
  313          */
  314         if (tsc_freq != 0)
  315                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
  316 
  317         if (tsc_is_invariant)
  318                 return;
  319 
  320         /* Register to find out about changes in CPU frequency. */
  321         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
  322             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
  323         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
  324             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
  325         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
  326             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
  327 }
  328 
  329 #ifdef SMP
  330 
  331 /*
  332  * RDTSC is not a serializing instruction, and does not drain
  333  * instruction stream, so we need to drain the stream before executing
  334  * it.  It could be fixed by use of RDTSCP, except the instruction is
  335  * not available everywhere.
  336  *
  337  * Use CPUID for draining in the boot-time SMP constistency test.  The
  338  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
  339  * and VIA) when SSE2 is present, and nothing on older machines which
  340  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
  341  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
  342  *
  343  * Do not use do_cpuid(), since we do not need CPUID results, which
  344  * have to be written into memory with do_cpuid().
  345  */
  346 #define TSC_READ(x)                                                     \
  347 static void                                                             \
  348 tsc_read_##x(void *arg)                                                 \
  349 {                                                                       \
  350         uint64_t *tsc = arg;                                            \
  351         u_int cpu = PCPU_GET(cpuid);                                    \
  352                                                                         \
  353         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
  354         tsc[cpu * 3 + x] = rdtsc();                                     \
  355 }
  356 TSC_READ(0)
  357 TSC_READ(1)
  358 TSC_READ(2)
  359 #undef TSC_READ
  360 
  361 #define N       1000
  362 
  363 static void
  364 comp_smp_tsc(void *arg)
  365 {
  366         uint64_t *tsc;
  367         int64_t d1, d2;
  368         u_int cpu = PCPU_GET(cpuid);
  369         u_int i, j, size;
  370 
  371         size = (mp_maxid + 1) * 3;
  372         for (i = 0, tsc = arg; i < N; i++, tsc += size)
  373                 CPU_FOREACH(j) {
  374                         if (j == cpu)
  375                                 continue;
  376                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
  377                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
  378                         if (d1 <= 0 || d2 <= 0) {
  379                                 smp_tsc = 0;
  380                                 return;
  381                         }
  382                 }
  383 }
  384 
  385 static void
  386 adj_smp_tsc(void *arg)
  387 {
  388         uint64_t *tsc;
  389         int64_t d, min, max;
  390         u_int cpu = PCPU_GET(cpuid);
  391         u_int first, i, size;
  392 
  393         first = CPU_FIRST();
  394         if (cpu == first)
  395                 return;
  396         min = INT64_MIN;
  397         max = INT64_MAX;
  398         size = (mp_maxid + 1) * 3;
  399         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
  400                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
  401                 if (d > min)
  402                         min = d;
  403                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
  404                 if (d > min)
  405                         min = d;
  406                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
  407                 if (d < max)
  408                         max = d;
  409                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
  410                 if (d < max)
  411                         max = d;
  412         }
  413         if (min > max)
  414                 return;
  415         d = min / 2 + max / 2;
  416         __asm __volatile (
  417                 "movl $0x10, %%ecx\n\t"
  418                 "rdmsr\n\t"
  419                 "addl %%edi, %%eax\n\t"
  420                 "adcl %%esi, %%edx\n\t"
  421                 "wrmsr\n"
  422                 : /* No output */
  423                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
  424                 : "ax", "cx", "dx", "cc"
  425         );
  426 }
  427 
  428 static int
  429 test_tsc(void)
  430 {
  431         uint64_t *data, *tsc;
  432         u_int i, size, adj;
  433 
  434         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
  435                 return (-100);
  436         size = (mp_maxid + 1) * 3;
  437         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
  438         adj = 0;
  439 retry:
  440         for (i = 0, tsc = data; i < N; i++, tsc += size)
  441                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
  442         smp_tsc = 1;    /* XXX */
  443         smp_rendezvous(smp_no_rendevous_barrier, comp_smp_tsc,
  444             smp_no_rendevous_barrier, data);
  445         if (!smp_tsc && adj < smp_tsc_adjust) {
  446                 adj++;
  447                 smp_rendezvous(smp_no_rendevous_barrier, adj_smp_tsc,
  448                     smp_no_rendevous_barrier, data);
  449                 goto retry;
  450         }
  451         free(data, M_TEMP);
  452         if (bootverbose)
  453                 printf("SMP: %sed TSC synchronization test%s\n",
  454                     smp_tsc ? "pass" : "fail", 
  455                     adj > 0 ? " after adjustment" : "");
  456         if (smp_tsc && tsc_is_invariant) {
  457                 switch (cpu_vendor_id) {
  458                 case CPU_VENDOR_AMD:
  459                         /*
  460                          * Starting with Family 15h processors, TSC clock
  461                          * source is in the north bridge.  Check whether
  462                          * we have a single-socket/multi-core platform.
  463                          * XXX Need more work for complex cases.
  464                          */
  465                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
  466                             (amd_feature2 & AMDID2_CMP) == 0 ||
  467                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
  468                                 break;
  469                         return (1000);
  470                 case CPU_VENDOR_INTEL:
  471                         /*
  472                          * XXX Assume Intel platforms have synchronized TSCs.
  473                          */
  474                         return (1000);
  475                 }
  476                 return (800);
  477         }
  478         return (-100);
  479 }
  480 
  481 #undef N
  482 
  483 #else
  484 
  485 /*
  486  * The function is not called, it is provided to avoid linking failure
  487  * on uniprocessor kernel.
  488  */
  489 static int
  490 test_tsc(void)
  491 {
  492 
  493         return (0);
  494 }
  495 
  496 #endif /* SMP */
  497 
  498 static void
  499 init_TSC_tc(void)
  500 {
  501         uint64_t max_freq;
  502         int shift;
  503 
  504         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
  505                 return;
  506 
  507         /*
  508          * Limit timecounter frequency to fit in an int and prevent it from
  509          * overflowing too fast.
  510          */
  511         max_freq = UINT_MAX;
  512 
  513         /*
  514          * We can not use the TSC if we support APM.  Precise timekeeping
  515          * on an APM'ed machine is at best a fools pursuit, since 
  516          * any and all of the time spent in various SMM code can't 
  517          * be reliably accounted for.  Reading the RTC is your only
  518          * source of reliable time info.  The i8254 loses too, of course,
  519          * but we need to have some kind of time...
  520          * We don't know at this point whether APM is going to be used
  521          * or not, nor when it might be activated.  Play it safe.
  522          */
  523         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
  524                 tsc_timecounter.tc_quality = -1000;
  525                 if (bootverbose)
  526                         printf("TSC timecounter disabled: APM enabled.\n");
  527                 goto init;
  528         }
  529 
  530         /*
  531          * We cannot use the TSC if it stops incrementing while idle.
  532          * Intel CPUs without a C-state invariant TSC can stop the TSC
  533          * in either C2 or C3.
  534          */
  535         if (cpu_deepest_sleep >= 2 && cpu_vendor_id == CPU_VENDOR_INTEL &&
  536             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
  537                 tsc_timecounter.tc_quality = -1000;
  538                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
  539                 if (bootverbose)
  540                         printf("TSC timecounter disabled: C2/C3 may halt it.\n");
  541                 goto init;
  542         }
  543 
  544         /*
  545          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
  546          * are synchronized.  If the user is sure that the system has
  547          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
  548          * non-zero value.  The TSC seems unreliable in virtualized SMP
  549          * environments, so it is set to a negative quality in those cases.
  550          */
  551         if (mp_ncpus > 1)
  552                 tsc_timecounter.tc_quality = test_tsc();
  553         else if (tsc_is_invariant)
  554                 tsc_timecounter.tc_quality = 1000;
  555         max_freq >>= tsc_shift;
  556 
  557 init:
  558         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
  559                 ;
  560         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
  561                 if (cpu_vendor_id == CPU_VENDOR_AMD) {
  562                         tsc_timecounter.tc_get_timecount = shift > 0 ?
  563                             tsc_get_timecount_low_mfence :
  564                             tsc_get_timecount_mfence;
  565                 } else {
  566                         tsc_timecounter.tc_get_timecount = shift > 0 ?
  567                             tsc_get_timecount_low_lfence :
  568                             tsc_get_timecount_lfence;
  569                 }
  570         } else {
  571                 tsc_timecounter.tc_get_timecount = shift > 0 ?
  572                     tsc_get_timecount_low : tsc_get_timecount;
  573         }
  574         if (shift > 0) {
  575                 tsc_timecounter.tc_name = "TSC-low";
  576                 if (bootverbose)
  577                         printf("TSC timecounter discards lower %d bit(s)\n",
  578                             shift);
  579         }
  580         if (tsc_freq != 0) {
  581                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
  582                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
  583                 tc_init(&tsc_timecounter);
  584         }
  585 }
  586 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
  587 
  588 /*
  589  * When cpufreq levels change, find out about the (new) max frequency.  We
  590  * use this to update CPU accounting in case it got a lower estimate at boot.
  591  */
  592 static void
  593 tsc_levels_changed(void *arg, int unit)
  594 {
  595         device_t cf_dev;
  596         struct cf_level *levels;
  597         int count, error;
  598         uint64_t max_freq;
  599 
  600         /* Only use values from the first CPU, assuming all are equal. */
  601         if (unit != 0)
  602                 return;
  603 
  604         /* Find the appropriate cpufreq device instance. */
  605         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
  606         if (cf_dev == NULL) {
  607                 printf("tsc_levels_changed() called but no cpufreq device?\n");
  608                 return;
  609         }
  610 
  611         /* Get settings from the device and find the max frequency. */
  612         count = 64;
  613         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
  614         if (levels == NULL)
  615                 return;
  616         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
  617         if (error == 0 && count != 0) {
  618                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
  619                 set_cputicker(rdtsc, max_freq, 1);
  620         } else
  621                 printf("tsc_levels_changed: no max freq found\n");
  622         free(levels, M_TEMP);
  623 }
  624 
  625 /*
  626  * If the TSC timecounter is in use, veto the pending change.  It may be
  627  * possible in the future to handle a dynamically-changing timecounter rate.
  628  */
  629 static void
  630 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
  631 {
  632 
  633         if (*status != 0 || timecounter != &tsc_timecounter)
  634                 return;
  635 
  636         printf("timecounter TSC must not be in use when "
  637             "changing frequencies; change denied\n");
  638         *status = EBUSY;
  639 }
  640 
  641 /* Update TSC freq with the value indicated by the caller. */
  642 static void
  643 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
  644 {
  645         uint64_t freq;
  646 
  647         /* If there was an error during the transition, don't do anything. */
  648         if (tsc_disabled || status != 0)
  649                 return;
  650 
  651         /* Total setting for this level gives the new frequency in MHz. */
  652         freq = (uint64_t)level->total_set.freq * 1000000;
  653         atomic_store_rel_64(&tsc_freq, freq);
  654         tsc_timecounter.tc_frequency =
  655             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
  656 }
  657 
  658 static int
  659 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
  660 {
  661         int error;
  662         uint64_t freq;
  663 
  664         freq = atomic_load_acq_64(&tsc_freq);
  665         if (freq == 0)
  666                 return (EOPNOTSUPP);
  667         error = sysctl_handle_64(oidp, &freq, 0, req);
  668         if (error == 0 && req->newptr != NULL) {
  669                 atomic_store_rel_64(&tsc_freq, freq);
  670                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
  671                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
  672         }
  673         return (error);
  674 }
  675 
  676 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
  677     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
  678 
  679 static u_int
  680 tsc_get_timecount(struct timecounter *tc __unused)
  681 {
  682 
  683         return (rdtsc32());
  684 }
  685 
  686 static inline u_int
  687 tsc_get_timecount_low(struct timecounter *tc)
  688 {
  689         uint32_t rv;
  690 
  691         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
  692             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
  693         return (rv);
  694 }
  695 
  696 static u_int
  697 tsc_get_timecount_lfence(struct timecounter *tc __unused)
  698 {
  699 
  700         lfence();
  701         return (rdtsc32());
  702 }
  703 
  704 static u_int
  705 tsc_get_timecount_low_lfence(struct timecounter *tc)
  706 {
  707 
  708         lfence();
  709         return (tsc_get_timecount_low(tc));
  710 }
  711 
  712 static u_int
  713 tsc_get_timecount_mfence(struct timecounter *tc __unused)
  714 {
  715 
  716         mfence();
  717         return (rdtsc32());
  718 }
  719 
  720 static u_int
  721 tsc_get_timecount_low_mfence(struct timecounter *tc)
  722 {
  723 
  724         mfence();
  725         return (tsc_get_timecount_low(tc));
  726 }
  727 
  728 uint32_t
  729 cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th)
  730 {
  731 
  732         vdso_th->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
  733         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
  734         return (timecounter == &tsc_timecounter);
  735 }
  736 
  737 #ifdef COMPAT_FREEBSD32
  738 uint32_t
  739 cpu_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
  740 {
  741 
  742         vdso_th32->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
  743         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
  744         return (timecounter == &tsc_timecounter);
  745 }
  746 #endif

Cache object: 86e823b86af3f19e154f74b163d796ab


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.